A Note on L-cordial Labeling of Graphs

Mukund V. Bapat

1 Hindale, Devgad, Sindhudurg, Maharashtra, India.

Abstract: We discuss L-cordial labeling of some families of graph. We show that Book graph $\theta(C_4, n)$, Book graph $\theta(C_5, n)$, One point union of C_3 i.e., $(C_3)^n$, a double triangular snake $2S(C_3, n)$ are L-cordial.

MSC: 05C78.

Keywords: L-cordial labeling, double snake, Book graph, union.

1. Introduction and Preliminaries

Prof. Cahit was the first person to use the word cordial [3]. In any cordial labeling of graph the values assigned to vertex are restricted to 0 and 1. Even in edge cordial labeling the similar observation is followed. After [3] a number of papers on graph cordial labeling are published. We have explained L-Cordial labeling in [1]. A graph whose L-cordial labeling is available is called as L-cordial. Not much work has been done in this sort of labeling. We show that Book graph $\theta(C_4, n)$, Book graph $\theta(C_5, n)$, One point union of C_3 i.e., $(C_3)^n$ a double triangular snake $2S(C_3, n)$ are L-cordial.

Definition 1.1 (Fusion of vertex). Let $v \in V(G_1)$, $v' \in V(G_2)$ where G_1 and G_2 are two graphs. We fuse v and v' by replacing them with a single vertex say w and all edges incident with v in G_1 and that with v' in G_2 are incident with w in the new graph $G = G_1 FG_2$.

\[\deg G u = \deg G_1(v) + \deg G_2(v') \text{ and } |V(G)| = |V(G_1)| + |V(G_2)| - 1, |E(G)| = |E(G_1)| + |E(G_2)| \]

Definition 1.2. Book graph $\theta(G, n)$ is having n copies n of graph with a common edge. The common edge is same and fixed one in all copies of G. It has $1 + 3n$ edges and $2n + 2$ vertices. Let the fixed edge be $e = (uv)$.

Definition 1.3. One point union of G i.e $(G)^n$ At fixed point on G_n copies of G are fused. It has $n|V(G)| - n + 1$ vertices and $n|E(G)|$ edges.

Definition 1.4. Double snake on C_3 i.e., $2S(C_3, n)$ a double triangular snake consists of two triangular snakes that have a common path. That is, a double triangular snake is obtained from a path $v_1, v_2, \ldots, v_n, v_{n+1}$ by joining v_i and v_{i+1} to a new vertex w_i for $i = 1, 2, \ldots, n - 1$ and to a new vertex u_i for $i = 1, 2, \ldots, n$.

* E-mail: mukundbapat@yahoo.com
2. Main Results

Theorem 2.1. Book graph $\theta(C_4, n)$ is L-cordial.

Proof. There are n copies of $G = \theta(C_4, n)$ with fixed edge $e = (uv)$ common to all pages. C^i be the i^{th} page of book and is given by $(u, e_1^i, w_1^i, e_2^i, w_2^i, e_3^i, v)$ where $i = 1, 2, \ldots, n$. We define a function $f : E(G) \rightarrow \{1, 2, 3, \ldots, n\}$ a bijective function as follows:

- $f(e) = 1$
- $f(e_1^i) = 3i$
- $f(e_2^i) = 3(i - 1) + 2$
- $f(e_3^i) = 3i + 1$

It follows that Every time we go on adding a page to book the label of u and v alternates. For a book with n pages we have $v_f(1) = v_f(0)$ and $v_f(1) = v_f(0) + 1$ for n is odd.

Theorem 2.2. Book graph $\theta(C_5, n)$ is L-cordial.

Proof. The common edge $e = (uv)$ and i^{th} page of the book is given by $(u, e_1^i, w_1^i, e_2^i, w_2^i, e_3^i, w_3^i, e_4^i, v)$.

![Figure 1: Book graph $\theta(C_5, 4)$. The vertex labels are very close to vertex, the other numbers are edge labels](image)

Define a function $f : E(G) \rightarrow \{1, 2, 3, \ldots, |E|\}$ given by

- $f(e_1^i) = 4(i - 1) + 2$
- $f(e_2^i) = 4(i - 1) + 3$
- $f(e_3^i) = 4(i - 1) + 4$
- $f(e_4^i) = 4(i - 1) + 5$

for $i = 1, 3, 5, 7, \ldots$

- $f(e_1^i) = 4(i - 1) + 2$
- $f(e_2^i) = 4(i - 1) + 4$
- $f(e_3^i) = 4(i - 1) + 3$
- $f(e_4^i) = 4(i - 1) + 5$

for $i = 2, 4, 6, 8, \ldots$

$v_f(0) = \frac{(3n+2)}{2} = v_f(1)$ for n is even $v_f(0) = (3n+1)$, $v_f(1) = v_f(0) + 1$ for n is odd.

Theorem 2.3. One point union of C_3 i.e., $(C_3)^n$ is L-cordial.

Proof. The i^{th} copy on $(C_3)^n$ be given by $C^n = (v, e_1^i, u_1^i, e_2^i, u_2^i, e_3^i, v)$. Define a function $f : E(G) \rightarrow \{1, 2, 3, \ldots, q - 1\}$ given by $f(e_j^i) = 3(i - 1) + j$ for $j = 1, 2, 3, \ldots$ and for all i.

$v_f(0) = n$, $v_f(1) = n + 1$ for odd n

$v_f(0) = n + 1$, $v_f(1) = n$ for even n

Theorem 2.4. A double triangular snake $2S(C_3, n)$ is L-cordial.

Proof. To obtain a double snake on C_3 i.e $DS(C_3, n)$ we start with a path
\[P_{n+1} = (v_1, e_1, v_2, e_2, \ldots, e_n, v_{n+1}) \]. Between every two vertices \(v_i \) and \(v_{i+1} \) of \(P_{n+1} \) two vertices \(w_i \) and \(u_i \) are taken. Each \(w_i \) and \(u_i \) are joined to \(v_i \) and \(v_{i+1} \) giving edge \(p_i, p_{i+1} \) and \(q_i, q_{i+1} \) respectively. Define a function \(f : E(G) \to \{1, 2, 3, \ldots, |E|\} \) as follows:

For \(n = 1, n = 2 \) we have shown the labelling in Figure 2 (a), (b) and (c) above. For the snakes of length greater than 3 we use the labelling above for first three blocks.

For \(i \equiv 0, 2 \pmod{4} \) we have,

\[
\begin{align*}
 f(p_i^j) &= 20 + (i - 4)5 \text{ for } j = 1 \\
 f(p_i^j) &= 18 + (i - 4)5 \text{ for } j = 2 \\
 f(q_i^j) &= 17 + (i - 4)5 \text{ for } j = 1 \\
 f(p_i^j) &= 19 + (i - 4)5 \text{ for } j = 1 \\
 f(e_i) &= 16 + (i - 4)5 \text{ for } j = 1
\end{align*}
\]

For \(i \equiv 1, 3 \pmod{4} \) we get,

\[
\begin{align*}
 f(p_i^j) &= 25 + (i - 5)5 \text{ for } j = 1 \\
 f(p_i^j) &= 23 + (i - 5)5 \text{ for } j = 2 \\
 f(q_i^j) &= 24 + (i - 5)5 \text{ for } j = 1 \\
 f(p_i^j) &= 22 + (i - 5)5 \text{ for } j = 2 \\
 f(e_i) &= 21 + (i - 5)5
\end{align*}
\]

This produces vertex numbers as follows:

For \(n = 4 \) we have \(v_f(0) = 7 \) and \(v_f(1) = 6 \)

For \(n = 5 \) we have \(v_f(0) = 8 \) and \(v_f(1) = 8 \).

\[
\begin{align*}
 v_f(0) &= 7 + \left(\frac{n-6}{2} + 1\right)3, \quad v_f(1) = v_f(0) - 1 \text{ for } n = 2x, x = 3, 4, 5, \ldots \\
 v_f(0) &= 7 + \left(\frac{n-6}{2} + 1\right)3 + 1 = v_f(1) \text{ for } n = 2x + 1, x = 3, 4, 5, \ldots
\end{align*}
\]

It follows that \(f \) is L-cordial function.

References

