ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On Schur Complements in Range Quaternion Hermitian Matrices

Research Article

S. Sridevi^{1*} and K. Gunasekaran¹

1 PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India.

Abstract: It is established that under contain conditions a schur complement in a q-EP matrix is as well as q-EP matrix. As an

application a decomposition of a partitioned matrix into a sum of q-EP matrices is given.

MSC: 15A57, 15A15, 15A09.

Keywords: q-EP matrix, Schur Complement in q-EP, Complementary summands of q-EP.

© JS Publication.

1. Introduction

Throughout we shall deal with $n \times n$ quaternion matrices: Let A^* denote this conjugate transpose of A. Any matrix $A \in H_{n \times n}$ is called q-EP. If $R(A) = R(A^*)$ and is called $q - Ep_r$, if A is q-EP and rk(A) = r, where N(A), R(A) and rk(A) denote the null space, range space and rank of A respectively. It is well known that sum and product of q-EP, Generalized Inverse Group Inverse and Reverse order law for q-EP and Bicomplex representation methods and application of q-EP matrices. In this section, Schur complements in a q-EP matrices.

Lemma 1.1. If X and Y are generalized inverse of A, then CXB = CYB if and only if $N(A) \subseteq M(C)$ and $N(A^*) \subseteq N(B^*)$ or, equivalently if and only if

$$C = CA^{-}A \text{ and } B = AA^{-}B \text{ for every } A^{-}$$

$$\tag{1}$$

Throughout this paper, we are concerned with $n \times n$ quaternion matrices M partitioned in the form

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \tag{2}$$

Where A and D are square matrices with respect to this partitioning a Schur complements of A in M is a matrix at the form $(M/A) = D - CA^-B$. For entries of Schur complements one may refer to [2, 3, 5]. On account of Lemma 1.1 it is obvious that under certain conditions (M/A) is independent of the choice of A^- . However in the sequel we shall always assume that (M/A) is given in terms of specific choice of A^- .

 $^{^*}$ E-mail: sridevimahendran21@gmail.com

In [9] necessary and sufficient conditions are derived for a matrix of the (2) with B=0 and C=0 to be q-EP. The results are here extended for general matrices of the form (2). If a partitioned matrix of the form (2) is q-EP, then in general (M/A) is not q-EP. Here we determine necessary and sufficient conditions for M/A to be q-EP. In particular, when rk(M)=rk(A) our results include as special cases the results of paper [13]. In [5] we have given conditions for a sum of q-EP matrices to be q-EP.

Theorem 1.2. Let M be a matrix of the form (2) with $N(A) \subseteq N(C)$ and $N(M/A) \subseteq N(B)$, then the following are equivalent.

- (1). M is a q-EP matrix
- (2). A and M/A are q-EP, $N(A^*) \subseteq N(B^*)$ and $N((M/A)^*) \subseteq M(C^*)$;

(3). Both the matrices
$$\begin{pmatrix} A & 0 \\ C & M/A \end{pmatrix}$$
 and $\begin{pmatrix} A & B \\ 0 & M/A \end{pmatrix}$ are q-EP.

Proof

 $(1)\Rightarrow(2)$ Let us consider the matrices

$$p = \begin{pmatrix} I & 0 \\ CA^- & I \end{pmatrix}, \ Q = \begin{pmatrix} I & B(M/A)^- \\ 0 & I \end{pmatrix}, \ L = \begin{pmatrix} A & 0 \\ 0 & M/A \end{pmatrix}$$

Clearly P and Q are non-singular. By assumption $N(A) \subseteq N(C)$ and $N(M/A) \subseteq N(B)$ and by using Lemma 1.1 it is obvious that M can be factorized as M = PQL. Hence rk(M) = rk(L) and N(M) = N(L). But M is q-EP, e.g. $N(M^*) = N(M) = N(L)$. Therefore by using Lemma 1.1 again $M^* = M^*L^-L$ holds for every L^- . One choice of L^- is

$$L^{-} = \left(\begin{array}{cc} A^{-} & 0\\ 0 & (M/A)^{-} \end{array}\right),$$

which gives

$$M^* = \begin{pmatrix} A^* & C^* \\ B^* & D^* \end{pmatrix} = \begin{pmatrix} A^* & C^* \\ B^* & D^* \end{pmatrix} \begin{pmatrix} A^- A & 0 \\ 0 & (M/A)^- (M/A) \end{pmatrix}$$

 $A^* = A^*A^-A$ implies $N(A^*) \supseteq N(A)$, and since $rk(A^*) = rk(A)$ these imply $N(A^*) = N(A)$. Hence A is q-EP. From $B^* = B^*A^-A$ it follows that $N(B) \supseteq N(A) = N(A^*)$. After substituting $D = M/A + BA^-C$ and using $C^* = C^*(M/A)^-M/A$ in $D^* = D^*(M/A)^-M/A$ we get $(M/A)^* = (M/A)^*(M/A)^-M/A$. This implies that $N((M/A)^*) \supseteq N(M/A)$ and since

$$rk((M/A)^*) = rk(M/A)$$

we get $N((M/A)^*) = N(M/A)$. Thus M/A is q-EP. Further

$$N(C^*) \supset N(M/A) = N((M/A)^*)$$

Hence (2) holds.

(1) \Rightarrow (2) Since $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(B^*)$, $N(M/A) \subseteq N(B)$ and $N((M/A)^*) \subseteq N(C^*)$ hold according to the assumption. So M^{\dagger} is given buy the formula

$$M^{\dagger} = \begin{pmatrix} A^{\dagger} + A^{\dagger}B(M/A)^{\dagger}CA^{\dagger} & -A^{\dagger}B(M/A)^{\dagger} \\ -(M/A)^{\dagger}CA^{\dagger} & (M/A)^{\dagger} \end{pmatrix}$$

According to Lemma 1.1 the assumptions $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$ imply that M/A is invariant for every choice of A^- . Hence $M/A = D - CA^{\dagger}B$. Further, using $C = M/A(M/A)^{\dagger}C$ and $B = AA^{\dagger}B$, MM^{\dagger} is reduced to the form

$$M^{\dagger}M = \begin{pmatrix} AA^{\dagger} & 0\\ 0 & (M/A)(M/A)^{\dagger} \end{pmatrix}$$

The relations $AA^{\dagger} = A^{\dagger}A$ and $(M/A)(M/A)^{\dagger} = (M/A)^{\dagger}(M/A)$ result $MM^{\dagger} = M^{\dagger}M$, e.g., M is q-EP. Thus (1) holds. (2) \Rightarrow (3) By Corollary 8 in [9]

$$\left(\begin{array}{cc}
A & 0 \\
C & M/A
\end{array}\right)$$

is q-EP, iff A and (M/A) are q-EP, further $N(A) \subseteq N(C)$ and $N((M/A)^*) \subseteq N(C^*)$

$$\left(\begin{array}{cc}
A & B \\
0 & M/A
\end{array}\right)$$

Is q-EP iff A and M/A are q-EP, further $N(A^*) \subseteq N(B^*)$ and $N(M/A) \subseteq N(B)$. This proves the equivalence of (2) and (3). The proof is complete.

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem 1.3. Let M be a matrix of the form (2) with $N(A^*) \subseteq N(B^*)$ and $N((M/A)^*) \subseteq N(C^*)$, then the following are equivalent.

- (1). M is an q-EP matrix
- (2). A and (M/A) are q-EP, further $N(A) \subseteq N(C)$ and $N(M/A) \subseteq N(B)$;

(3). Both the matrices
$$\begin{pmatrix} A & 0 \\ C & M/A \end{pmatrix}$$
 and $\begin{pmatrix} A & B \\ 0 & M/A \end{pmatrix}$ are q-EP.

Proof. Theorem 1.3 follows immediately from Theorem 1.2 and from the fact that M is q-EP iff M^* is q-EP. If and only if M^* is q-EP.

In this special case when $B = C^*$ we get the following.

Corollary 1.4. Let $M = \begin{pmatrix} A & C^* \\ C & D \end{pmatrix}$ with $N(A) \subseteq N(C)$ and $N(M/A) \subseteq N(C^*)$, then the following are equivalent.

- (1). M is an q-EP matrix
- (2). A and (M/A) are q-EP matrices.

(3). the matrix
$$\begin{pmatrix} A & 0 \\ C & M/A \end{pmatrix}$$
 is q-EP.

Remark 1.5. The conditions that taken on M in the previous theorems are essential. This is illustrated in the following example. Let

M is symmetric and

$$B=C=\begin{pmatrix} 1 & 1+i+j+k \\ 1-i-j-k & 1 \end{pmatrix}$$

$$(M/A)=D-CA^{\dagger}B=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Clearly A and (M/A) are q-EP, $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$, but $N(M/A) \subseteq N(B)$ and $N((M/A)^*) \not\subset N(C^*)$, further $\begin{pmatrix} A & 0 \\ C & M/A \end{pmatrix}$ and $\begin{pmatrix} A & B \\ 0 & M/A \end{pmatrix}$ Or not q-EP. Thus Theorem 1.2 and 1.3 as well as Corollary 1.4 fail.

Remark 1.6. We conclude from Theorem 1.2 and Theorem 1.3 that for an q-EP matrix M of the form equation (2) the following are equivalent

$$N(A) \subseteq N(C), N(M/A) \subseteq N(B) \tag{3}$$

$$N(A^*) \subseteq N(B^*), N((M/A)^*) \subseteq N(C^*) \tag{4}$$

However this fails if we omit the condition that M is q-EP. For example Let

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

M is not q-EP. Here

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = C^* = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

A is q-EP, $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$. Hence (M/A) is independent of the choice of A^- and so

$$(M/A) = D - CA^{\dagger}B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

(M/A) is not q-EP, $N((M/A)^*) \subseteq N(C^*)$, but $N(A) \subseteq N(B)$. Thus Equation (4) holds, while Equation (4) fails.

Remark 1.7. It has been proved is [2] that for any matrix Aits Moore-Penrose inverse. M^{\dagger} is given by the formula Equation (??) iff both Equation (3) and Equation (4) holds. However it is clear by the previous Remark 1.6 that for an q-EP matrix formula (??) gives M^{\dagger} iff either (3) or (4) holds.

Theorem 1.8. Let M be of the form Equation (2) with rk(M) = rk(A) = r. Then M is an q-EP $_r$, matrix if and only if A is q-EP $_r$, and $CA^{\dagger} = (A^{\dagger}B)^*$.

Proof. Since rk(M) = rk(A) = r, we have by reason of the corollary of Theorem 1 in [3] that $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(B^*)$, and $M/A = D - CA^{\dagger}B = 0$. According to Theorem 1.1 these relation are equivalent $C = CA^{\dagger}A$, $B = AA^{\dagger}B$ and $D = CA^{\dagger}B$. Let us consider the matrices

$$P = \left(\begin{array}{cc} I & 0 \\ CA^\dagger & I \end{array} \right), \quad Q = \left(\begin{array}{cc} I & A^\dagger B \\ 0 & I \end{array} \right), \quad L = \left(\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right).$$

P and Q are non-singular and by assumption $CA^{\dagger} = (A^{\dagger}B)^*$ it holds $P = Q^*$. Therefore M can be factorized as $M = PLP^*$. Since A is q-EP_r consequently L is as well q-EP_r. Hence $N(L) = N(L^*)$ and so we have according to Lemma 3 of [1] that $N(M) = N(PLP^*) = N(PL^*P^*) = N(M^*)$. This shows that M is q-EP_r.

Conversely, let us assume that M is q-EP_r. Since M = PLQ, one choice of A^- is

$$M^- = Q^{-1} \left(\begin{array}{cc} A^\dagger & 0 \\ 0 & 0 \end{array} \right) P^{-1}$$

We know that $N(M) = N(M^*)$, therefore by Lemma 1.1 $M^* = M^*M^-M$ holds, e.g

$$M^* = \begin{pmatrix} A^* & C^* \\ B^* & D^* \end{pmatrix} = \begin{pmatrix} A^* & C^* \\ B^* & D^* \end{pmatrix} \begin{pmatrix} A^{\dagger}A & A^{\dagger}B \\ 0 & 0 \end{pmatrix}$$

or equivalently, $A^* = A^*A^{\dagger}A$ and $C^* = C^*A^{\dagger}B$. From $A^* = A^*A^{\dagger}A$ it follows $N(A^*) = N(A)$, i.e., A is q-EP_r and therefore $AA^{\dagger} = A^{\dagger}A$ taking into account $C^* = C^*A^{\dagger}B$, we have

$$CA^{\dagger} = B^* (A^{\dagger})^* (A^{\dagger}A)$$
$$= B^* (A^{\dagger}AA^{\dagger})^*$$
$$= B^* (A^{\dagger})^*$$
$$= (A^{\dagger}B)^*$$

Corollary 1.9. Let M of the form (2) with A non-singular matrix and rk(M) = rk(A). Then M is q-EP if and only if $CA^{\dagger} = (A^{\dagger}B)^*$.

Corollary 1.10. Let M be an $n \times n$ matrix f rank r. Then M is q- EP_r if and only if every principal sub matrix of rank r is q- EP_r .

Proof. Suppose M is an q-EP $_r$ matrix. Let A be any principal submatrix of M such that rk(M) = rk(A) = r. Then there exists a permutation matrix such that $\widehat{M} = PMP^T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and rk(A) = r. According to Lemma 3 in [1], is q-EP $_r$. Now, we conclude from Theorem 1.3 that A q-EP $_r$ as well. Since A was arbitrary, it follows that very principal submatrix of rank r is q-EP $_r$. The converse is obvious.

Remark 1.11. Theorem 1.8 fails if we relax the condition on rank of M.

2. Application

We give conditions under which a partitioned matrix is decomposed into complementary summands of q-EP matrices. M_1 and M_2 are called complementary summand of M if $M = M_1 + M_2$ and $rk(M) = rk(M_1) + rk(M_2)$.

Theorem 2.1. Let M of the form (2) with rk(M) = rk(A) = rk(M/A), where $(M/A) = D - CA^{\dagger}B$. If Aand (M/A) are q-EP matrices such that $CA^{\dagger} = (A+B)^*$ and $B(M/A)^{\dagger} = ((M/A)^{\dagger}C^*)$ then M can be decomposed into complementary summands of q-EP matrices.

Proof. Let us consider the matrices

$$M_1 = \left(egin{array}{cc} A & AA^\dagger B \ CA^\dagger A & CA^\dagger B \end{array}
ight) \;\; ext{and} \;\; M_2 = \left(egin{array}{cc} 0 & (I - AA^\dagger)B \ C(I - A^\dagger A) & M/A \end{array}
ight)$$

Taking into account that $N(A) \subseteq N(CA^{\dagger}A)$, $N(A^*) \subseteq N(AA^{\dagger}B)^*$ and

$$M_1/A = CA^{\dagger}B - ((CA^{\dagger}A)A - (AA^{\dagger}B) = CA^{\dagger}B - CA^{\dagger}B = 0$$

we obtain by the corollary after Theorem 1 in [5], that $rk(M_1) = rk(A)$. Since A is q-EP and $(CA^{\dagger}A)A^{\dagger} = CA^{\dagger} = (A^{\dagger}B)^* = (A^{\dagger}AA^{\dagger}B)^*$. We have from Theorem 1.8 that M_1 is q-EP. Since rk(M) = rk(A) + rk(M/A), Theorem 1 of [5] gives $N(M/A) \subseteq N(I - AA^{\dagger})B$, $N(M/A) \subseteq N((I - A^{\dagger})C)^*$ and $(I - AA^{\dagger})M(M/A)^{\dagger}C(I - A^{\dagger}A) = 0$. Thus by the corollary of the just applied Theorem 1.1 in [5], we have $rk(M_2) = rk(M/A)$. Further, using $AA^{\dagger} = A^{\dagger}A$, we obtain

$$(I - AA^{\dagger})B(M/A)^{\dagger} = (I - AA^{\dagger})((M/A)^{\dagger})^{*}$$
$$= ((M/A)^{\dagger}C(I - AA))^{*}$$
$$= ((M/A)^{\dagger}C(I - A^{\dagger}A))^{*}$$

Thus by Theorem 1.8, M_2 is also q-EP. Clearly $M = M_1 + M_2$, where both M_1 and M_2 are q-EP matrices and

$$rk(M) = rk(A) + rk(M/A) = rk(M_1) + rk(M_2).$$

Hence M_1 and M_2 are complementary summands of q-EP matrices.

Remark 2.2. Any matrix that is represented as the sum of complementary summands of q-EP matrices is itself q-EP. For if $M = \sum_{i=1}^{k} M_i$ such that each M_i is q-EP and $rk(M) = \sum rk(M_i)$, then

$$N(M) = \bigcap_{i=1}^{k} N(M_i) = \bigcap_{i=1}^{k} N(M_i^*) = N(M_i^*).$$

References

^[1] T.S.Baskett and I.J.Katz, Theorems on products of EP matrices, Linear Algebra and its Appl., 2(1969), 87-103.

 ^[2] F.Burns, D.Carlson, E.Haynsworth and TH.Markham, Generalized inverse formulas using the Schur Complement, SIAM
 J. Appl. Math., 26(1974), 254-259.

^[3] D.Carlson, E.Haynsworth and T.H.Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math., 26(1974), 169-175.

- [4] K.Gunasekaran and S.Sridevi, On Range Quaternion Hermitian Matrices, International Journal of Mathematical Archive, 6(8)(2015), 159-163.
- [5] K.Gunasekaran and S.Sridevi, On Sums of Range Quaternion Hermitian Matrices, Int. J. Modern Engineering Research, 5(2015), 44-49.
- [6] K.Gunasekaran and S.Sridevi, On Product of Range Quaternion Hermitian Matrices, Int. Journal of Pure Algebra, 6(6)(2016), 318-321.
- [7] K.Gunasekaran and S.Sridevi, Generalized inverses, Group inverses and Revers order law of range quaternion Hermitian matrices, IOSR-JM, 12(4-II)(2016), 51-55.
- [8] K.Gunasekaran and S.Sridevi, On Bicomplex Representation Methods and Application of Range Quaternion Hermitian Matrices (q-Ep), IJMTT, 48(4)(2017), 250-259.
- [9] C.D.Meyer, Generalized inverses of block triangular matrices, SIAM J. Appl. Math., 19(1970), 741-750.
- [10] M.H.Pearl, On generalized inverses of matrices, Proc. Cambridge Phil. Soc., 62(1966), 673-677.
- [11] R.Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51(1955), 406-415.
- [12] C.R.Rao and S.K.Mitra, Generalized inverse of matrices and its applications, Wiley, New York, (1971).
- [13] P.Robert, On the group inerse of a linear transformation, J. Math. Anal. Appl., 22(1968), 658-669.
- [14] H.Schwerdtfeger, Introduction to linear algebra and the theory of matrices, Noordhoff, Groningen, (1950).