On Schur Complements in Range Quaternion Hermitian Matrices

S. Sridevi¹* and K. Gunasekaran¹

¹ PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India.

Abstract: It is established that under contain conditions a schur complement in a q-EP matrix is as well as q-EP matrix. As an application a decomposition of a partitioned matrix into a sum of q-EP matrices is given.

MSC: 15A57, 15A15, 15A09.

Keywords: q-EP matrix, Schur Complement in q-EP, Complementary summands of q-EP.

1. Introduction

Throughout we shall deal with $n \times n$ quaternion matrices: Let A^* denote the conjugate transpose of A. Any matrix $A \in H_{n \times n}$ is called q-EP. If $R(A) = R(A^*)$ and is called q-EP, if A is q-EP and $rk(A) = r$, where $N(A)$, $R(A)$ and $rk(A)$ denote the null space, range space and rank of A respectively. It is well known that sum and product of q-EP, Generalized Inverse Group Inverse and Reverse order law for q-EP and Bicomplex representation methods and application of q-EP matrices. In this section, Schur complements in a q-EP matrices.

Lemma 1.1. If X and Y are generalized inverse of A, then $CXB = CYB$ if and only if $N(A) \subseteq M(C)$ and $N(A^*) \subseteq N(B^*)$ or, equivalently if and only if

$$ C = CA^*A \text{ and } B = AA^*B \text{ for every } A^* $$

Throughout this paper, we are concerned with $n \times n$ quaternion matrices M partitioned in the form

$$ M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} $$

Where A and D are square matrices with respect to this partitioning a Schur complements of A in M is a matrix at the form $(M/A) = D - CA^*B$. For entries of Schur complements one may refer to [2, 3, 5]. On account of Lemma 1.1 it is obvious that under certain conditions (M/A) is independent of the choice of A^*. However in the sequel we shall always assume that (M/A) is given in terms of specific choice of A^*.

* E-mail: sridevimahendran21@gmail.com
In [9] necessary and sufficient conditions are derived for a matrix of the (2) with $B = 0$ and $C = 0$ to be q-EP. The results are
here extended for general matrices of the form (2). If a partitioned matrix of the form (2) is q-EP, then in general (M/A) is
not q-EP. Here we determine necessary and sufficient conditions for M/A to be q-EP. In particular, when \(rk(M) = rk(A) \)our
results include as special cases the results of paper [13]. In [5] we have given conditions for a sum of q-EP matrices to be
q-EP.

Theorem 1.2. Let M be a matrix of the form (2) with $N(A) \subseteq N(C)$ and $N(M/A) \subseteq N(B)$, then the following are
equivalent.

(1). M is a q-EP matrix

(2). A and M/A are q-EP, $N(A^*) \subseteq N(B^*)$ and $N((M/A)^*) \subseteq M(C^*)$;

(3). Both the matrices

\[
\begin{pmatrix}
A & 0 \\
C & M/A
\end{pmatrix}
\text{ and }
\begin{pmatrix}
A & B \\
0 & M/A
\end{pmatrix}
\]

are q-EP.

Proof.

(1)\Rightarrow(2) Let us consider the matrices

\[
p = \begin{pmatrix}
I & 0 \\
CA^* & I
\end{pmatrix},
Q = \begin{pmatrix}
I & B(M/A)^* \\
0 & I
\end{pmatrix},
L = \begin{pmatrix}
A & 0 \\
0 & M/A
\end{pmatrix}
\]

Clearly P and Q are non-singular. By assumption $N(A) \subseteq N(C)$ and $N(M/A) \subseteq N(B)$ and by using Lemma 1.1 it
is obvious that M can be factorized as $M = PQL$. Hence \(rk(M) = rk(L) \) and \(N(M) = N(L) \). But M is q-EP, e.g.,
$N(M^*) = N(M) = N(L)$. Therefore by using Lemma 1.1 again $M^* = M^*L^{-1}L$ holds for every L^-. One choice of L^- is

\[
L^- = \begin{pmatrix}
A^- & 0 \\
0 & (M/A)^-
\end{pmatrix},
\]

which gives

\[
M^* = \begin{pmatrix}
A^* & C^* \\
B^* & D^*
\end{pmatrix} = \begin{pmatrix}
A^* & C^* \\
B^* & D^*
\end{pmatrix}
\begin{pmatrix}
A^- & 0 \\
0 & (M/A)^-(M/A)
\end{pmatrix}
\]

$A^* = A^*A^-A$ implies $N(A^*) \supseteq N(A)$, and since \(rk(A^*) = rk(A) \) these imply $N(A^*) = N(A)$. Hence A is q-EP. From $B^* =
B^*A^-A$ it follows that $N(B) \supseteq N(A) = N(A^*)$. After substituting $D = M/A + BA^nhand using $C^* = C^*(M/A)^-(M/A)$
in $D^* = D^*(M/A)^-(M/A)$ we get $(M/A)^* = (M/A)^*(M/A)^-(M/A)$. This implies that $N((M/A)^*) \supseteq N(M/A)$ and since

\[
\text{we get } N((M/A)^*) = N(M/A).
\]

Thus (1) holds.

(1)\Rightarrow(2) Since $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(B^*)$, $N(M/A) \subseteq N(B)$ and $N((M/A)^*) \subseteq N(C^*)$ hold according to the assumption. So M^1 is given by the formula

\[
M^1 = \begin{pmatrix}
A^1 + A^1B(M/A)^1CA^1 & -A^1B(M/A)^1 \\
-(M/A)^1CA^1 & (M/A)^1
\end{pmatrix}
\]
According to Lemma 1.1 the assumptions \(N(A) \subseteq N(C) \) and \(N(A^*) \subseteq N(B^*) \) imply that \(M/A \) is invariant for every choice of \(A^* \). Hence \(M/A = D - CA^1B \). Further, using \(C = M/A(M/A)^!C \) and \(B = AA^1B \), \(MM^! \) is reduced to the form

\[
M^!M = \begin{pmatrix}
AA^! & 0 \\
0 & (M/A)(M/A)^!
\end{pmatrix}
\]

The relations \(AA^1 = A^1A \) and \((M/A)(M/A)^! = (M/A)^!(M/A) \) result \(MM^! = M^!M \), e.g., \(M \) is q-EP. Thus (1) holds. (2)⇒(3) By Corollary 8 in [9]

\[
\begin{pmatrix}
A & 0 \\
C & M/A
\end{pmatrix}
\]

is q-EP, iff \(A \) and \((M/A) \) are q-EP, further \(N(A) \subseteq N(C) \) and \(N((M/A)^*) \subseteq N(C^*) \)

Is q-EP iff \(A \) and \(M/A \) are q-EP, further \(N(A^*) \subseteq N(B^*) \) and \(N(M/A) \subseteq N(B) \). This proves the equivalence of (2) and (3). The proof is complete.

\[
M = \begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[\square\]

Theorem 1.3. Let \(M \) be a matrix of the form (2) with \(N(A^*) \subseteq N(B^*) \) and \(N((M/A)^*) \subseteq N(C^*) \), then the following are equivalent.

(1). \(M \) is an q-EP matrix

(2). \(A \) and \((M/A) \) are q-EP matrices.

(3). Both the matrices \(\begin{pmatrix}
A & 0 \\
C & M/A
\end{pmatrix} \) and \(\begin{pmatrix}
A & B \\
0 & M/A
\end{pmatrix} \) are q-EP.

Proof. Theorem 1.3 follows immediately from Theorem 1.2 and from the fact that \(M \) is q-EP iff \(M^* \) is q-EP. If and only if \(M^* \) is q-EP. \[\square\]

In this special case when \(B = C^* \) we get the following.

Corollary 1.4. Let \(M = \begin{pmatrix}
A & C^* \\
C & D
\end{pmatrix} \) with \(N(A) \subseteq N(C) \) and \(N(M/A) \subseteq N(C^*) \), then the following are equivalent.

(1). \(M \) is an q-EP matrix

(2). \(A \) and \((M/A) \) are q-EP matrices.

(3). the matrix \(\begin{pmatrix}
A & 0 \\
C & M/A
\end{pmatrix} \) is q-EP.
Remark 1.5. The conditions that taken on M in the previous theorems are essential. This is illustrated in the following example. Let

$$M = \begin{bmatrix}
1 & 1 & 1 & 1 + i + j + k \\
1 & 1 & 1 - i - j - k & 1 \\
1 & 1 + i + j + k & 1 & 1 \\
1 - i - j - k & 1 & 1 & 0
\end{bmatrix}$$

M is symmetric and

$$B = C = \begin{bmatrix}
1 & 1 + i + j + k \\
1 - i - j - k & 1
\end{bmatrix}$$

$$(M/A) = D - CA^1 B = \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}$$

Clearly A and (M/A) are q-EP, $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$, but $N(M/A) \subseteq N(B)$ and $N((M/A)^*) \nsubset N(C^*)$, further $(A \ 0)
\begin{bmatrix}
C & M/A
\end{bmatrix}$ and $(A \ B
\begin{bmatrix}
0 & M/A
\end{bmatrix}$) Or not q-EP. Thus Theorem 1.2 and 1.3 as well as Corollary 1.4 fail.

Remark 1.6. We conclude from Theorem 1.2 and Theorem 1.3 that for an q-EP matrix M of the form equation (2) the following are equivalent

$$N(A) \subseteq N(C), N(M/A) \subseteq N(B)$$

$$N(A^*) \subseteq N(B^*), N((M/A)^*) \nsubset N(C^*)$$

However this fails if we omit the condition that M is q-EP. For example Let

$$M = \begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

M is not q-EP. Here

$$A = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}, \quad B = C^* = \begin{bmatrix}
1 & 0 \\
1 & 0
\end{bmatrix}$$

A is q-EP, $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$. Hence (M/A) is independent of the choice of A^- and so

$$(M/A) = D - CA^1 B = \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}$$

(M/A) is not q-EP, $N((M/A)^*) \nsubset N(C^*)$, but $N(A) \subseteq N(B)$. Thus Equation (4) holds, while Equation (4) fails.

** Remark 1.7.** It has been proved is [2] that for any matrix Aits Moore-Penrose inverse. M^1 is given by the formula Equation (??) iff both Equation (3) and Equation (4) holds. However it is clear by the previous Remark 1.6 that for an q-EP matrix formula (??) gives M^1 iff either (3) or (4) holds.
Theorem 1.8. Let M be of the form Equation (2) with $rk(M) = rk(A) = r$. Then M is an q-EP, matrix if and only if A is q-EP, and $CA^1 = (A^1B)^*$.

Proof. Since $rk(M) = rk(A) = r$, we have by reason of the corollary of Theorem 1 in [3] that $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(B^*)$, and $M/A = D - CA^1B = 0$. According to Theorem 1.1 these relation are equivalent $C = CA^1A$, $B = AA^1B$ and $D = CA^1B$. Let us consider the matrices

$$P = \begin{pmatrix} 1 & 0 \\ CA^1 & I \end{pmatrix}, \quad Q = \begin{pmatrix} I & A^1B \\ 0 & I \end{pmatrix}, \quad L = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}.$$

P and Q are non-singular and by assumption $CA^1 = (A^1B)^*$ it holds $P = Q^*$. Therefore M can be factorized as $M = PLP^*$. Since A is q-EP, consequently L is as well q-EP. Hence $N(L) = N(L^*)$ and so we have according to Lemma 3 of [1] that $N(M) = N(PLP^*) = N(P^*L^*) = N(M^*)$. This shows that M is q-EP.

Conversely, let us assume that M is q-EP. Since $M = PLQ$, one choice of A^* is

$$M^- = Q^{-1} \begin{pmatrix} A^1 & 0 \\ 0 & 0 \end{pmatrix} P^{-1}.$$

We know that $N(M) = N(M^*)$, therefore by Lemma 1.1 $M^* = M^*M^-M$ holds, e.g

$$M^* = \begin{pmatrix} A^* & C^* \\ B^* & D^* \end{pmatrix} = \begin{pmatrix} A^* & C^* \\ B^* & D^* \end{pmatrix} \begin{pmatrix} A^1A & A^1B \\ 0 & 0 \end{pmatrix}$$

or equivalently, $A^* = A^*A^1A$ and $C^* = C^*A^1B$. From $A^* = A^*A^1A$ it follows $N(A^*) = N(A)$, i.e., A is q-EP, and therefore $AA^1 = A^1A$ taking into account $C^* = C^*A^1B$, we have

$$CA^1 = B^*(A^1)^*(A^1A) = B^*(A^1AA^1)^* = B^*(A^1)^* = (A^1B)^* \tag*{□}$$

Corollary 1.9. Let M of the form (2) with A non-singular matrix and $rk(M) = rk(A)$. Then M is q-EP if and only if $CA^1 = (A^1B)^*$.

Corollary 1.10. Let M be an $n \times n$ matrix of rank r. Then M is q-EP if and only if every principal submatrix of rank r is q-EP,.

Proof. Suppose M is an q-EP, matrix. Let A be any principal submatrix of M such that $rk(M) = rk(A) = r$. Then there exists a permutation matrix such that $\tilde{M} = PMP^T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and $rk(A) = r$. According to Lemma 3 in [1], is q-EP.

Now, we conclude from Theorem 1.3 that A q-EP as well. Since A was arbitrary, it follows that very principal submatrix of rank r is q-EP. The converse is obvious. \tag*{□}

Remark 1.11. Theorem 1.8 fails if we relax the condition on rank of M.

989
2. Application

We give conditions under which a partitioned matrix is decomposed into complementary summands of q-EP matrices. M_1 and M_2 are called complementary summand of M if $M = M_1 + M_2$ and $rk(M) = rk(M_1) + rk(M_2)$.

Theorem 2.1. Let M of the form (2) with $rk(M) = rk(A) = rk(M/A)$, where $(M/A) = D - CA^\dagger B$. If A and (M/A) are q-EP matrices such that $CA^\dagger = (A + B)^*$ and $B(M/A)^\dagger = ((M/A)^\dagger C^*)$ then M can be decomposed into complementary summands of q-EP matrices.

Proof. Let us consider the matrices

$$M_1 = \begin{pmatrix} A & AA^\dagger B \\ CA^\dagger A & CA^\dagger B \end{pmatrix}$$

and

$$M_2 = \begin{pmatrix} 0 & (I - AA^\dagger)B \\ C(I - A^\dagger A) & M/A \end{pmatrix}$$

Taking into account that $N(A) \subseteq N(CA^\dagger A)$, $N(A^*) \subseteq N(AA^\dagger B)^*$ and

$$M_1/A = CA^\dagger B - ((CA^\dagger A) - (AA^\dagger B) = CA^\dagger B - CA^\dagger B = 0$$

we obtain by the corollary after Theorem 1 in [5], that $rk(M_1) = rk(A)$. Since A is q-EP and $(CA^\dagger A)A^\dagger = CA^\dagger = (A^\dagger B)^* = (A^\dagger AA^\dagger B)^*$. We have from Theorem 1.8 that M_1 is q-EP. Since $rk(M) = rk(A) + rk(M/A)$, Theorem 1 of [5] gives $N(M/A) \subseteq N(I - AA^\dagger)B$, $N(M/A) \subseteq N((I - A^\dagger)C)^*$ and $(I - AA^\dagger)M(M/A)^\dagger C(I - A^\dagger A) = 0$. Thus by the corollary of the just applied Theorem 1.1 in [5], we have $rk(M_2) = rk(M/A)$. Further, using $AA^\dagger = A^\dagger A$, we obtain

$$(I - AA^\dagger)B(M/A)^\dagger = (I - AA^\dagger)((M/A)^\dagger)^*$$

$$= ((M/A)^\dagger C(I - AA^\dagger))^*$$

$$= ((M/A)^\dagger C(I - A^\dagger A))^*$$

Thus by Theorem 1.8, M_2 is also q-EP. Clearly $M = M_1 + M_2$, where both M_1 and M_2 are q-EP matrices and

$$rk(M) = rk(A) + rk(M/A) = rk(M_1) + rk(M_2).$$

Hence M_1 and M_2 are complementary summands of q-EP matrices.

Remark 2.2. Any matrix that is represented as the sum of complementary summands of q-EP matrices is itself q-EP. For if $M = \sum_{i=1}^k M_i$ such that each M_i is q-EP and $rk(M) = \sum rk(M_i)$, then

$$N(M) = \bigcap_{i=1}^k N(M_i) = \bigcap_{i=1}^k N(M_i^*) = N(M_i^*).$$

References

