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Abstract: The present paper deals with cylindrically symmetric metric in the form of Marder (1958) with Saez-Ballester theory of

gravitation in the presence of perfect fluid and dark energy. In order to obtain the deterministic solution of the field

equations we have assumed that the expansion scalar in the model is proportional to the Eigen value of the shear tensor.
We have also assumed that the two sources, here the perfect fluid and dark energy interact minimally with separate

conservative parts of their energy momentum tensors together with the constant EoS parameter of the perfect fluid. The

role of the dark energy in the present model with variable equation of state parameter is studied more in detail. Some
physical properties of model are also discussed.
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1. Introduction

The most remarkable astrophysical observations in the modern cosmology have revolutionized our understanding about

cosmology. According to the cosmologists our current universe is not only expanding but also accelerating. The direct

evidence comes from distance measurements and analysis of type Ia supernovae (SN Ia), measurements of cosmic microwave

background as well as large scale structure strongly suggest that present universe is dominated by the standard candle

known as dark energy and it is due to because of cosmic accelerated expansion of the universe [1–9]. According to Einsteins

general theory of relativity in order to have such type of accelerated expansion of the universe, it is required to introduce new

component to matter or the perfect fluid distribution of the universe with a large negative pressure. This new component

most commonly known as dark energy. Thus from the recent observations obtained by the cosmologists it has been realized

that without dark energy we can not explain the universe. The exact nature of the dark energy is known to be very

homogeneous and not interact with any other fundamental forces except gravity. The form of the dark energy is not very

dense so it is difficult to detect in the laboratory for the cosmologists. As the nature of dark energy and dark matter

is unknown many radically different models have been proposed such as quintessence, tachyon, chaplygin gas, as well as

generalized chaplygin gas etc [10–15]. Having some limitations in Einstein theory of general relativity since it does not

seems to resolve some of the important problems in the cosmology such as dark matter or the missing matter problems

many researchers attracted towards the alternative theories of gravitation. Brans Dicke theory, Barbers self creation theory,
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Saez-Ballester theory of gravitation are some of the alternative theories of gravitations [16–25]. Also,different two fluid

models discussed by some researchers [26–29].

The present paper deals with Saez-Ballester theory of gravitation. In Saez-Ballester theory of gravitation metric is coupled

with a dimensionless scalar field φ in a simple manner. This φ-coupling gives a satisfactory description of the weak fields.

Inspite of the dimensionless character of the scalar field, an antigravity regime appears in this theory [30–35]. In order to

obtain the deterministic solution we have assumed that two sources of the perfect fluid and dark energy interact minimally

with independent conservation of their energy momentum tensors with constant EoS parameter of the perfect fluid.. We

have investigated cylindrically symmetric cosmological model in the form of Marder (1958). We have obtained some physical

parameters and also discussed their physical behaviors [36–39].

2. Model and Field Equations

We consider cylindrically symmetric metric in the form of Marder (1958) given by

ds2 = A2
1(dx2 − dt2) +A2

2dy
2 +A2

3dz
2 (1)

Where the metric potentials A1, A2, A3 are the functions of cosmic time. Here it is important to note that by using the

co-ordinate transformations t→
∫
A1(t)dt metric given by equation (1) can turned into Bianchi type I. But for the sake of

simplicity in the present paper we retain the metric given by Equation (1). The field equations of the Saez- Ballester scalar

tensor theory are

Rij −
1

2
Rgij −$φn

(
φ,iφ,j −

1

2
gijφ,kφ

,k

)
= −Tij (2)

Where the scalar field φ satisfying the equation

2φnφ,i,i + nφn−1φ,kφ
,k = 0 (3)

and Tij = T
(m)
ij + T

(de)
ij (4)

is the overall energy momentum tensors with T
(m)
ij as the energy momentum tensor of the ordinary matter or the perfect

fluid and T
(de)
ij as the energy momentum tensor of the dark energy component. These are respectively given by

T
(m)j
i = [T 4

4 , T
1
1 , T

2
2 , T

3
3 ] = diag[−ρ(m), p(m), p(m), p(m)] (5)

= diag[−1, ω(m), ω(m), ω(m)]ρ(m),

T
(de)j
i = [T 4

4 , T
1
1 , T

2
2 , T

3
3 ] = diag[−ρ(de), p(de), p(de), p(de)] (6)

= diag[−1, ω(de), ω(de), ω(de)]ρ(de).

Where ρ(m), p(m) are the energy density and pressure of the perfect fluid component respt. Whileρ(de), p(de) are the energy

density and pressure of the DE component respectively where as ω(m) = p(m)

ρ(m) and ω(de) = p(de)

ρ(de)
. Also in Equation (2)$

and n are constants. Now, the Saez-Ballester field Equations (2) and (3) for the metric (1) with the help of Equations (5)

and (6) yield the following system of equations

1

(A1)2

(
Ä2

A2
+
Ä3

A3
− Ȧ1Ȧ2

A1A2
+
Ȧ2Ȧ3

A2A3
− Ȧ1Ȧ3

A1A3

)
− $φnφ̇2

2(A1)2
= −ω(m)ρ(m) − ω(de)ρ(de), (7)
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1

(A1)2

(
Ä1

A1
+
Ä3

A3
− (Ȧ1)2

(A1)2

)
− $φnφ̇2

2(A1)2
= −ω(m)ρ(m) − ω(de)ρ(de), (8)

1

(A1)2

(
Ä1

A1
+
Ä2

A2
− (Ȧ1)2

(A1)2

)
− $φnφ̇2

2(A1)2
= −ω(m)ρ(m) − ω(de)ρ(de), (9)

1

(A1)2

(
Ȧ1Ȧ2

A1A2
+
Ȧ2Ȧ3

A2A3
+
Ȧ1Ȧ3

A1A3

)
+
$φnφ̇2

2(A1)2
= ρ(m) + ρ(de), (10)

φ̈+

(
Ȧ2

A2
+
Ȧ3

A3

)
φ̇+

nφ̇2

2φ
= 0. (11)

Also the energy conservation equationT ij;j = 0 yields

ρ̇(m) + 3[1 + ω(m)]Hρ(m) + ρ̇(de) + 3[1 + ω(de)]Hρ(de) = 0, (12)

3. Solution of the Field Equations

The field Equations (7) to (11) is a system of five independent equations in eight unknowns A1, A2, A3, φ, ω
(m), ρ(m), ω(de)

and ρ(de). Therefore in order to obtain an explicit solution of the system we require three more suitable assumptions relating

these three unknowns. Let us first assume the condition that the expansion scalar in the model is proportional to the shear

scalar which leads to

A1 = (A2A3)m,m 6= 1 (13)

Differentiating equation (13) and with some little manipulation we have

Ȧ1

A1
= m

(
Ȧ2

A2
+
Ȧ3

A3

)
(14)

and

Ä1

A1
= m

[
Ä2

A2
+
Ä3

A3
− Ȧ2

2

A2
2

− Ȧ3
2

A2
3

]
+m2

(
Ȧ2

A2
+
Ȧ3

A3

)2

(15)

Now comparing Equation (8) and (9) we get

Ä2

A2
− Ä3

A3
= 0. (16)

Subtracting Equation (9) from equation (7) we get

Ä2

A2
− Ä1

A1
+

(Ȧ1)2

(A1)2
− Ȧ1Ȧ2

A1A2
+
Ȧ2Ȧ3

A2A3
− Ȧ1Ȧ3

A1A3
= 0. (17)

Equation (17) with the Equations (14) and (15) gives

Ä2

A2
+
Ȧ2Ȧ3

A2A3
= 0. (18)

For the sake of simplicity by setting the relation we have used the substitutions

A2A3 = λ and
A2

A3
= γ. (19)

So that

(A2)2 = λγ and (A3)2 =
λ

γ
. (20)
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Then the Equations (16) and (18) respectively takes the form

d

dt
(
λγ̇

γ
) = 0 (21)

and

d

dt

[(
λ̇

λ
+
γ̇

γ

)
λ

]
= 0 (22)

Integrating Equations (21) and (22), we get

λ = c2t+ c3 i.e. A2A3 = c2t+ c3. (23)

Where c2 and c3 are the constants of integrations. Thus from Equations (13) and (23) we get a metric potential

A1 = (c2t+ c3)m. (24)

Equation (21) using Equation (23), we get

γ = c4(c2t+ c3)b. (25)

Where b and c4 are the constants. From Equation (20) with the Equations (23) and (25) we get the remaining metric

potentials

A2 = c(c2t+ c3)(
b+1
2

) and A3 = D(c2t+ c3)(
1−b
2

) (26)

Where b, c, D are the constants. Thus our required cosmological model for the metric (1) is given by

ds2 = (c2t+ c3)2m(dx2 − dt2) + c2(c2t+ c3)(b+1)dy2 +D2(c2t+ c3)(1−b)dz2. (27)

Scalar field φ from equation (11) with the help of the equations (24), and (26) for the model (27) is given by

φ =
[
log(c2t+ c3)k0

] 2
n+2

(28)

Where k0 is constant. To determine the energy density of the perfect fluid and DE components as well EoS parameters of

the perfect fluid and DE components we have to assume following two more additional constraints. As per the proposed

assumption according to Akarsu and Kininc [11] let us suppose that the two sources of perfect fluid and dark energy interact

minimally. Therefore energy conservation equation given by (12) can be split up into two separately additive conserved

components which are given by

ρ̇(m) + 3[1 + ω(m)]Hρ(m) = 0, (29)

ρ̇(de) + 3[1 + ω(de)]Hρ(de) = 0. (30)

Finally we have assumed that the EoS parameter of the perfect fluid to be constant, i.e. ω(m) = p(m)

ρ(m) = constant. While

ω(de) is allowed to be a function of cosmic time since the current observational cosmological data from SN Ia, CMB and

large scale structures mildly favor dynamically evolving dark energy crossing the phantom divide line (PDL).
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3.1. Some Physical Parameter

The directional Hubble parameters of the model (27) are defined as

Hx =
Ȧ1

A1
=

mc2
(c2t+ c3)

, Hy =
Ȧ2

A2
=

c2(b+ 1)

2(c2t+ c3)
, Hz =

Ȧ3

A3
=

c2(1− b)
2(c2t+ c3)

.

Therefore mean Hubble parameter for the model is found to be

H =
1

3
(Hx +Hy +Hz) =

(m+ 1)c2
3(c2t+ c3)

(31)

The mean anisotropy parameter ∆ of the expansion for the model is obtained as

∆ =
1

3

∑[
Hi −H
H

]2
=

(2m− 1)2 + 3b2

2(m+ 1)2
(32)

By the definition shear scalar and expansion scalar for the model (27) are respectively found to be

σ2 =
(4m2 − 4m+ 1 + 3b2)c22

6(c2t+ c3)2
(33)

θ =
c2(2m+ 1)

c2t+ c3
(34)

Integrating Equation (29) by using assumption of EoS parameter ω(m) of the perfect fluid to be constant we get

ρm =
k2

(c2t+ c3)(m+1)[1 + ω(m)]
(35)

Where k2 being constant of integration. Equation (10) with the help of the Equations (24), (26) and (35) gives the energy

density of the DE component as

ρ(de) =
c22[(n+ 2)2(4m+ 1− b2) + 8$k20]

4(n+ 2)2(c2t+ c3)2(m+1)
− k2

(c2t+ c3)(m+1)[1 + ω(m)]
(36)

Equation (8) with the help of the Equations (24), (26), (35) and (36) gives EoS parameter of the DE component as

ω(de) = − 1

ρ(de)

[
c22[(n+ 2)2(b2 − 4m− 1)− 8$k20]

4(n+ 2)2(c2t+ c3)2(m+1)
+

ω(m)k2
(c2t+ c3)(m+1)[1 + ω(m)]

]
(37)

4. Discussion and Conclusion

The metric potentials A1, A2, A3 all are finite at the initial moment but vanish when t = − c3
c2

and increases with increase

in cosmic time. Thus model have point type singularity at the initial epoch. Similarly the directional Hubbles parameters

as well as mean Hubble parameter are the functions of cosmic time t. All these parameters are finite at the early time of

universe and diverge at initial singularity t = − c3
c2

but vanish when cosmic time is infinite. The mean anisotropy parameter

of the model is constant throughout the evolution of the universe. The shear scalar as well as expansion scalar having the

same behavior as that of the Hubble parameters. The energy density of the perfect fluid is constant when cosmic time is

zero and decreases with the expansion of the universe. In the present model EoS parameter of dark energy is a function

of cosmic time. The nature of the dark energy depends on constants involved in the expression of ω(de). Also lim σ2

θ2
6= 0

when t→∞. In the present paper we have investigated cylindrically symmetric metric in the form of Marder by assuming

that the two sources of the perfect fluid and dark energy interact minimally with EoS parameter of the perfect fluid to

be constant. Also we have assumed the present paper is that current universe is dominated by the dark energy which can

describe that the current universe is accelerating and consistent with observations.
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