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Abstract: This paper is mainly connected with the investigation of fractional order stage-structured predator-prey system with time

delay. By analyzing the corresponding characteristic equations, the local stability of the equilibria is investigated and

conditions at which the existence of Hopf bifurcation are derived at positive equilibrium by employing Routh Hurwitz
criterion. Both fractional order and time delay are chosen as bifurcation parameters. Further, it is concluded that, if

the values of fractional order and time delay exceeds the derived critical value then the solutions of addressed system

exhibits oscillatory behavior. Moreover, Lyapunov global stability, complex dynamics of the predator-prey systems are also
investigated with or without delay for the incommensurate fractional order. Finally, numerical illustrations are provided

to validate the effectiveness of derived analytical results.
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1. Introduction

Fractional calculus is considered as one of old mathematical concepts, it has been always thought of as a pure mathematical

problem for nearly three centuries [1, 2, 3]. The investigation of fractional order integral and derivative operators over real or

complex domains is known as fractional calculus. In the recent years, the studies on fractional calculus (includes fractional

differential equations) have drawn much attentions due to its more precise descriptions for real world problems. In the fields

of continuous-time modeling, the fractional calculus plays a vital role in describing linear viscoelasticity, acoustics, rheology,

polymeric chemistry, and so forth. Fractional calculus is nonlocal in nature. Hence it lies in the fact that it has a memory.

It had been proved to be a very suitable tool for the description of memory and hereditary properties of various materials

and processes.

An increasing interest has currently turned towards fractional order differential equations(FODEs). Recently, many re-

searchers, have demonstrated that FODEs are used as an effective tool to describe complex dynamics in the field of physical,

biological, and engineering problems. Material and energy cannot be instantaneously transmitted to almost all the natural

systems hence the existence of time delays cannot be ignored. Delay differential equation (DDE) is a differential equation in

delay in the model will enrich its dynamics and provide exact definition of real life phenomena. In DDE, one has to provide
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history of the system over the delay interval [−τ, 0] as the initial condition. Dynamical analysis of systems with time delay is

more complex due to the non-deterministic polynomial time hard (NP-hard) nature of the stability problem [4]. Fractional

order systems describe behavior of real physical systems more truthfully than the differential equations which are involved

only integer order derivatives [5, 6]. Stability of linear fractional order systems has been exhaustively studied [7, 8]. The

time delay in the fractional order systems causes some difficulties for stability analysis because their characteristics equation

involves exponential type transcendental terms as well as non-integer orders.

Fractional delay systems of related types are the bounded-input bounded-output (BIBO) stable if and only if all the roots

of the characteristics equation lie in the left of the imaginary axis in the complex plane. For more details sec [9, 13, 15]. By

employing a generalized form of Hassard’s theorem, an analytical criterion is derived to determine the number of unstable

roots of the characteristics equation for each given constant value of the delay [14].

In [10], authors addressed the location of characteristics roots of the scalar system that can be determined by using the

Lambert W function. In [11], the authors investigated the delay margin of fractional delay system of retarded type by

using the Orlando formula. In [12], the authors proposed a numerical algorithm based on Cauchy’s integral theorem to

investigate the stability of fractional delay systems with a constant delay. The combination of fractional calculus and delay

was successfully applied into many areas of engineering as well as science, especially when one can model the phenomena to

describe the complex systems with memory effects. The bifurcations can be analyzed entirely through changes in the local

stability properties of equilibrium, periodic orbits as parameters cross through critical thresholds. There are different types

of bifurcations which occurs in nature.

In the work, we consider Hopf type bifurcation causes the appearance or the disappearance of a periodic orbit when there

is a small change in the stability properties of equilibrium. Hopf bifurcation analysis plays a vital role in modeling the

effects of real world situations. Mathematical modeling through differential equations and simulation via computers play a

significant role in the study of multi species populations interactions. Lot of works had been already done on these species

interaction (predator-prey) based on both ordinary differential equations (ODEs) and delay differential equations 9DDEs.

Based on the literature review, there may be few works available on multi-species interactions by considering the fractional

differential equations (FDEs) with time delay. FDE models for interactions between species are the more important of the

classical applications of mathematics biology.

In [16] have discussed the stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure.

While the global stability and Hopf bifurcation of a predator-prey model with stage structure and discrete type delayed

predator response was investigated in [17]. The authors have analyzed the Hopf bifurcation for a ratio-dependent predator-

prey system along with two different types of delay and considered the stage structure for the predator. Improvements

of above models will provide a new modeling which describes the significance of fractional differential equations in the

interaction of multiple species. When comparing the integer order differential equations, FODEs have ability to provide

precise description of the modeled mathematical problems. Predator-prey models are significant in the modeling of multi-

species populations interactions and these interactions through integer order models have been studied by many authors.

In this work, we oppose a fractional order multi-species interaction model along with time delay. The authors of [17], have

studied the global stability and entire Hopf bifurcation by considering the stage structure for predator. Also, the time delay

in the predator response is consider in the system the integer order prey-predator model is given as

dx

dt
= x (t)

(
r − ax (t)− a1y2 (t)

1 +mx (t)

)
dy1
dt

=
a2x (t− τ) y2 (t− τ)

1 +mx (t− τ)
− r1y1 (t)−Dy1 (t)
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dy2
dt

= Dy1 (t)− r2y2 (t)

In the above integer order system x(t) represents the density of the prey with respect to time t. y1 and y2 denote the

densities of the immature and mature predator with respect to time respectively. The parameters a, a1, a2,m, r, r1, r2 and

D are positive constants in which a is the intra-specific constant of the prey, r is intrinsic growth rate of the prey r1 and r2

are the death rates of the immature and the mature predator respectively. The response function of the mature predator is

denoted by a1x
1+mx

. The capturing rate of mature predator is represented by. a1.
a1
a2

is the rate of conversing prey into a new

immature predator. The rate of immature predator becomes mature predator is denoted by non-negative parameter D and

this rate is proportional to the density of the immature predator. The time delay due to the gestation of mature predator

is considered by the constant τ ≥ 0. It is assumed that mature adult predator can only contribute to the reproduction of

predator biomass. In this work, we investigate a fractional order prey-predator interaction along with time delay is described

by

dα1x

dt
= x (t)

(
r − ap1 (t)− a1y2 (t)

1 +mx (t)

)
dα2y1
dt

=
a2x (t) y2 (t− τ)

1 +mx (t− τ)
− r1y1 (t)− βy1(t)

dα3y2
dt

= βy1 (t)− r2y2 (t)

(1)

With the following initial conditions x (0), y1 (0) > 0 and y2 (t) = ϕ (t), ϕ ∈ [−τ, 0), α ∈ (0, 1], φ(t) is a smooth function.

The parameter descriptions are same as in the integer order system. The organization of this paper is as follows: in the

following section, we represent the basic definitions that could utilized in the analysis of the proposed system (1). In

subsection 3.1, we investigate the stability and existence of Hopf bifurcation of fractional order predator prey system by

choosing the fractional orders to be commensurate. The Lyapunov global stability of the fractional order system with

incommensurate fractional orders is presented in the subsection 3.2. Finally, the numerical simulations are provided in the

section 4 validate the derived theoretical predictions. Main results and discussion are presented in the section 5.

2. Basic Tools

In this section, we present three oftenly used definitions of fractional derivatives, that is, Riemann–Liouville (R-L) fractional

derivative, Caputo fractional derivative, Grunwald Letnikov fractional derivative. Among these Caputo fractional derivative

definition is most commonly used definition because of its accuracy in solutions of real world problems.

Definition 2.1. The Riemann-Liouville (R-L) fractional integral operator of order α > 0, of function f ∈ (R+) is defined

as

dαf(t)

dtα
=

1

Γ(n− a)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1 dτ

where Γ(.) is the Euler gamma function.

Definition 2.2. An equilibrium point is a saddle point at which the linearized fractional model has atleast one eigenvalue

in the stable region and one in the unstable region.

Definition 2.3. A saddle point is called a saddle point of index 1 if one of the eigenvalues is unstable and the others are

stable. A saddle point of index 2 is a saddle point with one stable eigenvalue and two unstable ones.

Now, we provide the stability theorem on FODEs and their results.
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Theorem 2.4. Let the following autonomous system

dαx

dtα
= Ax, x (0) = x0

With 0 < α ≤ 1, x ∈ Rn and A ∈ Rnxn is asymptotically, stable if and only if |arg(λ)| > απ
2

is satisfied or all eigenvalues of

matrix A. Also, this system is stable if and only |arg(λ)| > απ is satisfied for all eigenvalues of matrix A with these critical

eigenvalues satisfying |arg(λ)| ≥ απ having geometric multiplicity of one. The geometric multiplicity of an eigenvalue λ of

the matrix A is the dimension of the subspace of vectors v for which Av = λv.

3. Dynamics in a Fractional Order Predator-Prey System

3.1. Stability Analysis

In this section we proceed with stability analysis of commensurate fractional order system α = α1 = α2 = α3.

Stability of the Equilibrium Points

In this section, we analyzed the local stability of each of feasible equilibria of the system (1) and the existence of Hopf

bifurcation at the coexistence equilibrium. Equating the derivatives to the zeros and solving the system (1), one can get

three distinct types of equilibria.

• E0 (0, 0, 0) represents the trivial equilibrium of the system.

• E1

(
r
a
, 0, 0

)
the predator extinction equilibrium.

• Further, if the condition, (H1) a2rβ − r2 (a+mr) (β + r) > 0, holds then the system (1) has a unique coexistence

equilibrium E2 (x, y1, y2) where

x =
r2 (β + r1)

α2β −mr2 (β + r1)

y1 =
r2
β
y2

y2 =
a2β[a2rβ − r2 (a+mr) (β + r1)]

a1[a2β −mr2 (β + r1)]2

The local stability analysis of the system (1) can be done based upon the standard linearization technique and using Jacobian

matrix of the system (1).∣∣∣∣∣∣∣∣∣∣
λα −

([
−ax+ a1y2xm

(1+mx)2

]
+ r − ax− a1y2

(1+mx)

)
0 a1xe

−λτ

(1+mx)

− a2y2
(1+mx)2

λα + r1 + β a2xe
−λτ

(1+mx)

0 −β λα + r2

∣∣∣∣∣∣∣∣∣∣
= 0

The characteristic polynomial of the system (1) at trivial equilibrium is

P (λα) = (λα + r2) (λα − r) (λα + β + r) = 0

Hence, from the definition 4, trivial equilibrium point is saddle point of index 1 because it contains one positive root λα = r

which is unstable. Let the characteristic polynomial of the system at predator extinction equilibrium is of the form

P (λα) = (λα + r)
(
λ2α + λα(r1 + β + r2

)
+ r2(r1 + β)− a2rβ

a+mr
= 0
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It is obvious that the characteristic polynomial (2) has one negative real root λα = −r. And the remaining roots are

determined by the following equation

λ2α + λαP1 + P0 = 0 (2)

where P1 = r1 + β+ r2, P0 = r2(r1 + β)− a2rβ
a+mr

. Let f (λα) = λ2α +λαP1 +P0. If the condition (H1) holds, it is clear that,

for λα real,

f (0) =
−a2rβ − r2 (a+mr) (r1 + β)

(a+mr)
< 0

lim
n→∞

f (λα) = +∞,

Hence, f (λα) = 0 has atleast one positive real root. Therefore, if (H1) holds the equilibrium is E1 unstable. If a2rβ <

r2 (a+mr) (r1 + β), then from equation (2), we arrive that E1 is locally asymptotically stable.

Proposition 3.1. Consider the following three dimensional commensurate fractional order system Dαu = f(u, µ∗) where

α ∈ (0, 1), u ∈ R3 and let u∗ is an equilibrium point of the above system, then its characteristic polynomial is given as

P (λ) = λ3α + P1λ
2α

+ P2λ
α + P3 = 0

And its discriminant is defined as

K (P ) = 18p1p2p3 + (p1p2)2 − 4p3(p1)3 − 4(p2)3 − 27(p3)3

P1
2 − 2P0 = (r1 + β)2 + r2 > 0 and P0

2 > 0.

We know that if a2rβ < r2(a + mr)(β + r1), then E1 is globally asymptotically stable. The characteristic polynomial of

systems (1) at the coexistence equilibrium E2 is of the form

λ3α + p2λ
2α + p1λ

α + p0 = 0 (3)

where

p2 =
r1 + r2 + β − r + 2ax+ ay2

(1 +mx)2

p1 = (r1 + r2 + β)
(2ax− r) + a1y2

(1 +mx)2
+ ( r1 + β)r2 −

a2βx

1 +mx

p0 =
( r1 + β)r2 (2ax− r) + (( r1 + β)r2+a1y2)

(1 +mx)2
− a2βx (2ax− r)

1 +mx

Theorem 3.2. The equilibrium E2 of the fractional order predator prey system (1) is locally asymptotically stable if and

only if min
1≤i≤3

|arg(λi)| > απ
2

.

Remark 3.3. Based on Theorem 3.4., the equilibrium E of fractional order system (1) unstable, if the following condition

holds

min
1≤i≤3

|arg(λi)| >
απ

2

Hence, it is clear that min |arg(λi)|, i = 1, 2, 3 depends on the roots of the characteristics polynomial (3). Thus the local

stability of the equilibrium E depends on the characteristic polynomial (3) with the discriminate K(P ) and condition of

fractional order Routh-Hurwitz criterion are defined as above.
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3.2. Condition for Hopf Bifurication in Fractional Order System

In the section, we present the general condition to be satisfied for the existence of Hopf bifurcation in the fractional-order

predator-prey interaction. Consider the following three dimensional fractional-order predator prey system

Dαu = f(u, µ∗)

where α ∈ (0, 1), u ∈ R3 the critical value of the bifurcation parameter µ is µ− and E2 is an equilibrium of the system. In

integer order case (when α = 1), the stability of E2 is related to the sign of Re (λi), i = 1, 2, 3 . . . where λi are the eigenvalues

of the Jacobian matrix ∂f
∂u
|E2 if Re (λi) < 0, i = 1, 2, 3 . . . , then E2 is locally asymptotically stable. If there exists i such

that Re (λi) > 0, then E2 is unstable. The conditions to be satisfied by the system (1) to undergo a Hopf bifurcation at

µ = µ∗ and α = 1 are given as the Jacobian matrix has two complex-conjugate eigenvalues λα12 = θ (µ) + iω (µ) one real

λα12 (µ) that is K(PE (µ∗)).

− θ (µ∗) = 0 and λα3 (µ∗) = 0

− ω (µ∗) = 0

But in the fractional case, the stability of E2 is related to the sign of F (α) = απ
2
− min

1≤i≤3
|arg(λi)|. If Fiθ (α, µ) < 0 for

all i = 1, 2, 3, . . . then E2 is locally asymptotically stable. If there exist such that Fiθ (α, µ) > 0 then E2 is unstable. So

the function Fi(α, µ) has a similar effect as the real part of eigenvalue in integer systems. Therefore, we extend the Hopf

bifurcation conditions to the fractional order systems by replacing Re(λi) instead of Fiθ (α, µ) as given below,

• K(PE (µ∗)) < 0

• −F 1,2 (α, µ) = 0 and λα3 (µ∗) = 0

• ∂f
∂u
|µ = µ∗ = 0

Hopf bifurcation analysis verses fractional order α

Based on the above discussions, it is found clear that the fractional order α has an effect on stability of fractional order

system. Hence, the perturbing parameter α can be chosen as a bifurcation parameter. In this section, we will analyse the

existence of Hopf Bifurcation by fixing the fractional order α as the bifurcation parameter. Let us define the function with

respect to a.

F (α) =
απ

2
min

1≤i≤3
|arg(λi)| (4)

From Theorem 3.1 and the discussions above, if F (α) < 0, then the equilibrium point is locally asymptotically stable,

otherwise unstable. Now, the function F (a) is used to analyse the existence of Hopf bifurcation in the fractional order in

the non-delayed predator-prey system (1) verses the fractional order α.

Hopf bifurcation analysis verses the parameter

The characteristic polynomial of delayed fractional order predator-prey system (1) at the co-existence equilibrium E2 is of

the form

λ3α + p2λ
2α + p1λ

α + p0 + (q1λ
α + q0) e−λτ = 0 (5)

where

p2 =
r1 + r2 + β − r + 2ax+ ay2

(1 +mx)2
,
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p1 =
(2ax− r) (r1 + r2 + β) + ( r1 + β)r2 + a1y2 (r1 + r2 + β)

(1 +mx)2
,

p0 =
(r1 + β)r2 (2ax− r) + ((r1 + β)r2+a1y2)

(1 +mx)2
,

q1 = − a2βx

1 +mx
and

q0 = −a2βx (2ax− r)
1 +mx

The equilibrium E2 of the fractional order predator-prey system (1) at τ = 0 is locally asymptotically stable is already

proved in the Section 4.1.

Suppose λα = iω ω > 0 is a solution of (5). Separating real and imaginary parts by substituting λα = iω we have

−ω3α + p1ω
α = q0 sinωτ − q1ωα cosωτ,

p2ω
2α − p0 = q0 cosωτ − q1ωα sinωτ. (6)

Squaring and adding the two equations of the (6), it follows that

ω6α + (p2 − 2p1)ω4α + (p2 − 2p0p2 − q2)ω2α − p2 − q2 = 0. (7)

Hence, if p0 > q0, (7) has no positive real roots. If p0 < q0, then (7) has a unique positive root denoted by ω0 and the

characteristic polynomial (6) has a pair of conjugate roots for α1 = α2 = α3 = α. From (6), we have

τ∗ =
1

ω0
arccos(((

(ω0 − p2ω0) q2ω0 + q0(q2p2ω0 − p0)

q2ω2α
+ 2jαπ, where j = 1, 2, 3 . . . . (8)

Nothing that the condition (i) of Theorem 3.2 holds, E2 is locally stable when τ = 0 according to the general theory on

delay differential, E2 will remains stable for τ < τ∗. Also, E2 will undergoes a Hopf bifurcation when τ = τ∗ and becomes

unstable when τ > τ∗. Finally, we summarize the above findings as

Theorem 3.4. For system (1) we have the following:

(1). The equilibrium E0 (0, 0, 0) is always unstable.

(2). if a2rβ − r2 (a+mr) (β + r) < 0 then the predator extinction equilibrium E1

(
r
a
, 0, 0

)
is locally asymptotically stable,

if a2rβ − r2 (a+mr) (β + r) > 0 then E1 is unstable.

(3). Let (H1) and condition (i) of Theorem 3.2 hold. If p0 − q0 < 0 then there exists a positive roots and critical value τ∗

such that E2 is locally asymptotically stable if 0 < τ < τ∗ and is unstable if τ > τ∗. Further, system undergoes a Hopf

bifurcation for a fixed α at E2 when τ = τ∗.

4. Numerical Simulation

In this section, we provide the stability and existence of Hopf bifurcation for commensurate fractional order predator prey

systems through Section 4.1 and Section 4.2 the Lyapunov global stability of incommensurate fractional order system is

provided in the Section 4.3. The parameter values chosen for the numerical simulations are a = 16, a1 = 5, a2 = 3, m = 0.1,

β = 1, r = 1
8
, r1 = 1

8
, r2 = 1

8
and the initial conditions of the populations are x(0) = 0.2, y1 (0) = 0.2, y2 (0) = 0.2.
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Equilibrium Eigenvalues Discriminant Nature Index

E0 (0, 0, 0) 8, -0.125, -1.125 5496.8 Saddle 1

E1 (0.812, 0, 0) -8, 0.6706, -1.92 18656 Saddle 1

E2 (0.047, 0.18, 1.45) −1.78,−0.092 ± 0.748i -26.202 A. Saddle -

Table 1. Stable nature for r = 8 and commensurate fractional order α = 1

Figure 1. Solutions of the system (1) converges to the equilibrium E2.

Hence, the equilibrium E2 is asymptotically stable for τ = 0.

4.1. Commensurate fractional order (α1 = α2 = α3 = α) and τ = 0

In this subsection, we analyse the non-delayed predator-prey system by considering the commensurate fractional order

(α1 = α2 = α3 = α) and varying the value of the growth rate r of prey. The equilibrium points of the system (1) and the

eigenvalues of the corresponding Jacobian matrix are give in Table 1 and Table 2. From Table 1, it can seen that E0, E1

are saddle points of index 1 and E2 is asymptotically stable for r = 8. The theoretical results are proved through pictorial

representation of Figure 1. If the growth rate of prey is increased that r = 15 then the corresponding equilibrium E0, E1,

E2 and their respective eigenvalues are given in Table 2. It can be seen that E0, E1 are saddle points of index 1 and E2

is saddle point of index 2. For the equilibrium point E2 of Table 2, we have the ω0 = 0.6828, and two pair of complex

conjugates 0.2733.

Equilibrium Eigenvalues Discriminant Nature Index

E0(0, 0, 0) 15, -0.125, -1.125 59483 Saddle 1

E1(0.812, 0, 0) -15, 1.0547, -2.304 468830 Saddle 1

E2(0.047, 0.18, 1.45) −2.005,−0.034 ± 0.996i -105.39 Saddle 2

Table 2.

Figure 2. Equilibrium E2 is asymptotically stable when α = 0.96, τ = 0 and growth rate r = 15. If the commensurate fractional order is
increased that is α = 0.98 then solutions of the system (1) shows oscillatory.
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Hence it is clear that for the given parameter values and the fixed r the system (1) will converge to a fixed point for α < α

and the system shows oscillatory behaviour when α > α which is shown in the Figure 2. For a given set of parameter values

the stability of the commensurate fractional order system can be perturbed by α.

4.2. Dynamics for different τ and fixed commensurate α

In this section, we analyse the effect of time delay in the stability of the delayed predator prey system (1) by choosing that

α to be fixed. In numerical simulations, the parameters and the initial values are considered as a = 16, a1 = 5, a2 = 3,

m = 0.1, r = 8, β = 1, r1 = 1
8
, r2 = 1

8
and x(0) = 0.2, y1 (0) = 0.2, y2 (0) = 0.2. For α = 0.98, the critical value of time

delay is calculated as τ∗ = 0.4882 with unique positive root 0.2733 ± 1.1187i, −0.3444 ± 1.0989i with one satisfying the

condition for existence of Hopf bifurcation that is 0.2733 > 0. If the value of time delay τ exceeds the critical value τ∗ then

the system undergoes Hopf bifurcation at τ = τ∗ which is shown in the Figure 3 and 4. Figure 5 shows that decrease in the

fractional order derivative α = 0.96 will increase the value of critical time delay τ∗ = 1.1.

Figure 3. Equilibrium E2 is asymptotically stable for fixed τ and various α.

Figure 4. Solutions of the system (1) undergoes Hopf bifurcation when the value of time delay exceeds its critical value that is, τ = 0.7 >
0.4882(τ∗) and become stable for decreasing the fractional order α = 0.95, 0.8.

4.3. Dynamics for Incommensurate Fractional Order with Fixed τ

In this section, we do not provide explicit expression for critical magnitude of τ for stability but we provide information

about the existence of such value. Figure 7 depicts the stability and periodic solutions of incommensurate fractional order

by considering the time delay to be constant.
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Figure 5. Solution of the incommensurate fractional order system is globally asymptotically stable for α1 = 0.6, and becomes unstable for
α2 = α3 = 1. Also the solutions will exhibit oscillatory behavior when α1 = 0.94, α2 = α3 = 1.

5. Results and Discussions

In this work, we have developed a theoretical framework that includes sufficient biological; complexity to accurately describe

the dynamics of multi-species interaction. The complex dynamics of a proposed fractional order stage structured predator-

prey system with and without time delay have been investigated in detail via numerical simulations. We studied the stability

of trivial equilibrium predator extinction equilibrium, co-existence equilibrium through the roots of the characteristics

polynomial and fractional order Routh-Hurwitz criterion. The significance of incorporating the delay into the system has

been explored, and it has been shown that an appropriate time delay will destabilize the system when it exceeds its derived

critical value. In the present work we discussed the fractional order predator-prey system with stage structure for the

predator and time delay. This work may be extended to further investigation by considering the stage structure for both

prey and predator. The Crowley-Martin functional response will be considered in the interaction of predator-prey species

along with multiple time delays.
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