A Study on Multi Server Queuing Model to Optimize the Performance of a Toll Plaza

S. Vijay Prasad1,∗, Rakesh Kumar Verma2, Anjali Srivastava2 and Deepti Gupta3

1 Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India.
2 School of Studies in Mathematics, Ujjain, Madhya Pradesh, India.
3 Moradabad Institute of Technology, Moradabad, Uttar Pradesh, India.

Abstract: In this paper we studied multi server queuing model and analyze the performance of toll plaza which is located at Khalghat, Agra-Bombay road (on NH 3). The results of the analysis showed that average queue length, waiting time of vehicle at toll plaza. In particular, we present the optimal number of toll booths to reduce the queue length and waiting time of vehicles.

Keywords: Toll plaza, queue length, waiting time, Queuing model.

1. Introduction

Increasing traffic volume causes congestions commonly around the toll gate of highways [1]. When the first road covered with a layer of crushed stone was built in 1792 in Pennsylvania, the boom in road construction began. Over the years, the roads were built all over the country, and because of the decreasing federal support of existing and new freeways toll roads now begin to play an important role in the traffic system. The US transportation trust fund is rapidly shrinking and state departments of transportation around the US are facing budget shortages. In the last two rounds of federal highway program reauthorization, the use of toll roads have expanded and now is becoming more popular. Toll roads, in general, can generate funds for repayment of toll revenue bonds, thus the state can collect enough money to finance the operation, maintenance, improvement and construction of new facilities. By the end of year 2006, there were a total of 4917 miles of toll roads built in the United States, including 223 miles of urban toll roads and 2695 miles of rural (Toll Facilities in the United States). A toll plaza is the essential part of toll roads where the toll is collected. There are three difference basic options for tolling: Manual Toll Collection, which has been the most common approach for collecting tolls. In this option, drivers are required to stop and pay a toll collector sitting or standing in a tollbooth [2]. Toll plaza system increasing traffic volume makes congestion commonly around the tollgates of Highway. So, reform measure of congestion around the tollgates is urgently required. The current system for collecting toll is on the basis of manual transaction. In this each vehicle has to stop at the toll plaza for payment. It causes traffic congestion, increase in pollution, and wasting time of people. The goal is to implement the reliable system that leads to:

∗ E-mail: indorevijay@gmail.com
A Study on Multi Server Queuing Model to Optimize the Performance of a Toll Plaza

- Saving the time at toll plaza for toll collection.
- Reducing traffic congestion and increases security concerns [3].

National Highway 3 (NH 3) commonly referred to as the Mumbai-Agra Highway is a major Indian National Highway that connects the states of Uttar Pradesh, Rajasthan, Madhya Pradesh and Maharashtra in India. The highway originates in Agra in Uttar Pradesh, generally travels southwest through Dhaulpur in Rajasthan, Morena, Gwalior, Shivpuri, Guna, Biaora, Maksi, Dewas and Indore in Madhya Pradesh, and Dhule, Nashik, Thane and terminates at Mumbai in Maharashtra. NH 3 runs for a distance of 1,190 km. The aim of this paper is to study multi server queuing model and analyze the performance of toll plaza which is located at Khalghat, Agra-Bombay road (on NH 3). The results of the analysis showed that average queue length, waiting time of vehicle at toll plaza. In particular, we present the optimal number of toll booths to reduce the queue length and waiting time of vehicles.

2. Queuing System and Mathematical Model Analysis

2.1. The basic indexes of the queuing systems

\[ n \] = Number of customers in the system

\[ \lambda \] = Mean arrival rate

\[ \mu \] = Mean service rate per busy server

\[ \rho \] = Expected fraction of time for which server is busy

\[ P_n \] = Steady state probability of exactly \( n \) customers in the system

\[ L_q \] = Expected number of customers waiting in the queue (i.e. queue length)

\[ L_s \] = Expected number of customers in the system (waiting + being served)

\[ w_q \] = Expected waiting time for a customer in the queue

\[ W_s \] = Expected waiting time for a customer in the system (waiting + being served)

2.2. \( M/M/S \) Model (Multi server queuing system)

For this queuing system, it is assumed that arrivals follow a Poisson probability distribution at an average rate of \( \lambda \) customers per unit of time and are served on a first come first served basis by any of the servers. The service times are distributed exponentially with an average of \( \mu \) customers per unit of time. It is further assumed that only one queue is formed. If there are \( n \) customers in the queuing system at any point in time, then following two cases may arise:

1. If \( n < s \) (number of customers in the system is less than the number of servers), then there will be no queue. However, \((s - n)\) numbers of servers are not busy. The combined service rate will then be: \( \mu_n = n\mu; \quad n < s \).

2. If \( n \geq s \) (number of customers in the system is more than or equal to the number of servers) then all servers will be busy and the maximum number of customers in the queue will be \((n - s)\). The combined service rate will be \( \mu_n = s\mu; \quad n \geq s \).

Thus to derive the result for this model, we have

\[ \lambda_n = \lambda \quad \text{forall} \quad n \geq 0 \]

\[ \mu_n = \begin{cases} n\mu; & n < s \\ \mu_n = s\mu; & n \geq s \end{cases} \]
The probability of \(n\) customers in the queuing system is given by

\[
P_n = \begin{cases} 
\frac{\rho^n P_0}{n!}; & n \leq s \\
\frac{\rho^n s!}{s!(n-s)!} P_0; & n > s
\end{cases}
\]

\[P_0 = \left[ \sum_{n=0}^{s-1} \frac{1}{n!} \left( \frac{\lambda}{\mu} \right)^n + \frac{1}{s!} \left( \frac{\lambda}{\mu} \right)^s \left( \frac{s\mu}{s\mu - \lambda} \right) \right]^{-1}
\]

Expected number of customers waiting in the queue (i.e. queue length)

\[L_q = \left[ \frac{1}{(s-1)!} \left( \frac{\lambda}{\mu} \right)^s \left( \frac{s\mu}{s\mu - \lambda} \right) \right] P_0
\]

Expected number of customers in the system

\[L_s = L_q + \frac{\lambda}{\mu}
\]

Expected waiting time of a customer in the queue

\[W_q = \frac{L_q}{\lambda}
\]

Expected waiting time that a customer spends in the system

\[W_s = W_q + \frac{1}{\mu}
\]

3. Analysis of Data

The data were obtained from Khalghat toll plaza, A. B road (on NH 3) Khalghat, M.P., India through Personal Observation on toll plaza. We use TORA software to compute the performance measures of the multi-server queuing model system at Khalghat toll plaza using data

<table>
<thead>
<tr>
<th>Time</th>
<th>Server 1</th>
<th>Server 2</th>
<th>Server 3</th>
<th>Server 4</th>
<th>Server 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival rate</td>
<td>Service rate</td>
<td>Arrival rate</td>
<td>Service rate</td>
<td>Arrival rate</td>
<td>Service rate</td>
</tr>
<tr>
<td>9-10 AM</td>
<td>62</td>
<td>40</td>
<td>78</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>10-11 AM</td>
<td>58</td>
<td>40</td>
<td>70</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>11-12 Noon</td>
<td>58</td>
<td>40</td>
<td>70</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>12-1 PM</td>
<td>64</td>
<td>40</td>
<td>66</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td>1-2 PM</td>
<td>96</td>
<td>56</td>
<td>90</td>
<td>59</td>
<td>78</td>
</tr>
<tr>
<td>2-3 PM</td>
<td>142</td>
<td>92</td>
<td>132</td>
<td>99</td>
<td>110</td>
</tr>
<tr>
<td>480</td>
<td>308</td>
<td>506</td>
<td>352</td>
<td>404</td>
<td>274</td>
</tr>
</tbody>
</table>

Table 1. Summary of the data server 1 to server 5

Total number of vehicles arrived in six hours is 1746 (291 per hour)

Total number of vehicles served in six hours is 1560 (260 per hour)

Average arrival rate \(\lambda = 291\) per hour

Average service rate \(\mu = 260/5 = 52\) per hour

\[\rho < 1 \quad \text{i.e.,} \quad \frac{\lambda}{S\mu} < 1, \quad \frac{291}{S(52)} < 1, \quad S > 5.59 \approx 6
\]

Here the minimum no. of toll booths are required more than five \((S > 5)\)
Table 2. Summary of the performance measures of queuing model

<table>
<thead>
<tr>
<th>Time</th>
<th>Server 6</th>
<th>Server 7</th>
<th>Server 8</th>
<th>Server 9</th>
<th>Server 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arrival</td>
<td>Service</td>
<td>Arrival</td>
<td>Service</td>
<td>Arrival</td>
</tr>
<tr>
<td>9-10 AM</td>
<td>106</td>
<td>96</td>
<td>62</td>
<td>58</td>
<td>72</td>
</tr>
<tr>
<td>10-11 AM</td>
<td>98</td>
<td>90</td>
<td>64</td>
<td>60</td>
<td>76</td>
</tr>
<tr>
<td>11-12 Noon</td>
<td>84</td>
<td>76</td>
<td>68</td>
<td>64</td>
<td>76</td>
</tr>
<tr>
<td>12-1 PM</td>
<td>78</td>
<td>72</td>
<td>76</td>
<td>68</td>
<td>84</td>
</tr>
<tr>
<td>1-2 PM</td>
<td>58</td>
<td>56</td>
<td>52</td>
<td>28</td>
<td>68</td>
</tr>
<tr>
<td>2-3 PM</td>
<td>78</td>
<td>70</td>
<td>92</td>
<td>76</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>502</td>
<td>460</td>
<td>414</td>
<td>354</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 3. Summary of the data server 6 to server 10

The average waiting time of the vehicle in the system is 0.05833 hrs (3.5 min.) and the average waiting time of the vehicle in the queue is 0.0391 hrs (2.34 min.) when six toll booths are available.

Total number of vehicles arrived in six hours is 2544 (424 per hour).

Total number of vehicles served in six hours is 2160 (360 per hour).

Average arrival rate \( \lambda = 424 \) per hour.

Average service rate \( \mu = 360/5 = 72 \) per hour.

\[ \rho < 1 \quad i.e., \quad \frac{\lambda}{\mu} < 1, \quad \frac{424}{S(72)} < 1, \quad S > 5.88 \geq 6 \]

Here the minimum no. of toll booths are required more than five (\( S > 5 \)).

Table 4. Summary of the performance measures of queuing model
The average waiting time of the vehicle in the system is 0.13254 hrs (7.9 min.) and the average waiting time of the vehicle in the queue is 0.11865 hrs (7.12 min.) when six tool booths are available.

4. Conclusion

From the Table 2 the average waiting time of the vehicle in the system is 0.05833 hrs (3.5 min.) and the average waiting time of the vehicle in the queue is 0.0391 hrs (2.34 min.) when six tool booths are available. From the table 4 the average waiting time of the vehicle in the system is 0.13254 hrs (7.9 min.) and the average waiting time of the vehicle in the queue is 0.11865 hrs (7.12 min.) when six tool booths are available. After studying and analyzing the data the average waiting time of the vehicle in system is exceeds three minutes this is leads to inconvenience and dissatisfaction to the customers. This paper strongly recommends that to increase the number of toll booths instead of five to at least six on the both sides to avoid inconvenience and dissatisfaction to the customers.

References


