1. Introduction

The concept of generalized closed sets plays a significant role in topology. In 1970, Levine [6] introduced the concept of generalized closed sets in topological spaces and a class of topological spaces called $T_{1/2}$ space. Extensive research on generalizing closedness was done in recent years by many Mathematicians. Arya and Nour [1], Maki [7], Dontchev and Ganster [3] Tong [11] and Veerakumar [12] introduced generalized semi-closed sets, α-generalized closed sets, δ-generalized closed sets and \tilde{g}-closed sets in topological spaces. The purpose of this present paper is to define a new class of generalized closed sets called $B\delta g$-closed sets and also we obtain the basic properties of $B\delta g$-closed sets in topological spaces. Applying this set, we obtain a new type of spaces called $B\delta g$-space.

2. Preliminaries

Throughout this paper (X, τ) (or simply X) represent topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, $cl(A)$, $int(A)$ and A^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

(1) a semi-open set [5] if $A \subseteq cl(int(A))$.
(2). a pre-open set [8] if \(A \subseteq \text{int}(\text{cl}(A)) \).

(3). an \(\alpha \)-open set [9] if \(A \subseteq \text{int}(\text{cl}(\text{int}(A))) \).

(4). a regular open set [10] if \(A = \text{int}(\text{cl}(A)) \).

The complement of a semi-open (respectively a pre-open, an \(\alpha \)-open, a regular) set is called semi-closed (respectively pre-closed, \(\alpha \)-closed, regular closed). The intersection of all semi-closed (respectively \(\alpha \)-closed) sets of \(X \) containing \(A \) is called the semi-closure [2] (respectively \(\alpha \)-closure [9]) of \(A \) and it is denoted by \(\text{scl}(A) \) (respectively \(\text{acl}(A) \)).

Definition 2.2. The \(\delta \)-interior [13] of a subset \(A \) of \(X \) is the union of all regular open sets of \(X \) contained in \(A \) and it is denoted by \(\text{Int}_\delta(A) \). A subset \(A \) is called \(\delta \)-open [13] if \(A = \text{Int}_\delta(A) \), i.e., a set is \(\delta \)-open if it is the union of regular open sets. The complement of a \(\delta \)-open set is called \(\delta \)-closed. Alternatively, a set \(A \subseteq (X, \tau) \) is called \(\delta \)-closed [13] if \(A = \text{cl}_\delta(A) \), where \(\text{cl}_\delta(A) = \{ x \in X : \text{int}(\text{cl}(U)) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U \} \).

Definition 2.3. A subset \(A \) of \((X, \tau)\) is called

(1). generalized closed (briefly \(g \)-closed) set [6] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau)\).

(2). generalized semi-closed (briefly \(gs \)-closed) set [1] if \(\text{scl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau)\).

(3). \(\alpha \)-generalized closed (briefly \(\alpha g \)-closed) set [7] if \(\text{acl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau)\).

(4). \(\delta \)-generalized closed (briefly \(\delta g \)-closed) set [3] if \(\text{cl}_\delta(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau)\).

(5). \(\hat{g} \)-closed set [12] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi-open in \((X, \tau)\).

(6). \(\hat{\delta} \hat{g} \)-closed (briefly \(\delta \hat{g} \)-closed) set [4] if \(\text{cl}_\delta(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\hat{\delta} \hat{g} \)-open in \((X, \tau)\).

The complement of a \(g \)-closed (respectively \(gs \)-closed, \(\alpha g \)-closed, \(\delta g \)-closed, \(\hat{g} \)-closed and \(\delta \hat{g} \)-closed) set is called \(g \)-open (respectively \(gs \)-open, \(\alpha g \)-open, \(\delta g \)-open, \(\hat{g} \)-open and \(\delta \hat{g} \)-open).

Definition 2.4 ([11]). A subset \(A \) of a space \((X, \tau)\) is called

(1). a \(t \)-set if \(\text{int}(A) = \text{int}(\text{cl}(A)) \).

(2). a \(B \)-set if \(A = G \cap F \) where \(G \) is open and \(F \) is a \(t \)-set in \(X \).

Definition 2.5. A space \((X, \tau)\) is called

(1). \(T_{1/2} \)-space [6] if every \(g \)-closed set in it is closed.

(2). \(T_{3/4} \)-space [3] if every \(\delta g \)-closed set in it is \(\delta \)-closed.

(3). \(\hat{T}_{3/4} \)-space [4] if every \(\delta \hat{g} \)-closed set in it is \(\delta \)-closed.

3. \(B\delta g \)-closed Sets

In this section we introduce \(B\delta g \)-closed sets in topological spaces and study some relations between \(B\delta g \)-closed sets and other existing closed sets.

Definition 3.1. A subset \(A \) of \((X, \tau)\) is called \(B\delta g \)-closed if \(\text{cl}_\delta(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is a \(B \)-set.
The complement of a $B\delta g$-closed set is called $B\delta g$-open.

Theorem 3.2. Every δ-closed set is $B\delta g$-closed.

Proof. Let A be a δ-closed set in X. Let U be any B-set such that $A \subseteq U$. Since A is δ-closed, $\text{cl}_\delta(A) = A$ for every subset A of (X, τ). Therefore $\text{cl}_\delta(A) \subseteq U$ and hence A is $B\delta g$-closed. \qed

Remark 3.3. The converse of Theorem 3.2 need not be true as shown by the following Example.

Example 3.4. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\{a, c\}$ is $B\delta g$-closed set but not δ-closed.

Theorem 3.5. Every $B\delta g$-closed set is δg-closed.

Proof. Let A be a $B\delta g$-closed set in X. Let U be any open set containing A in X. Since every open set is a B-set, U is a B-set of X. Since A is $B\delta g$-closed, $\text{cl}_\delta(A) \subseteq U$. Hence A is a δg-closed set of X. \qed

Remark 3.6. The converse of Theorem 3.5 need not be true as shown by the following Example.

Example 3.7. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{b, c\}, X\}$. Then $\{a, b\}$ is δg-closed set but not $B\delta g$-closed.

Theorem 3.8. Every $B\delta g$-closed set is g-closed.

Proof. Let A be a $B\delta g$-closed set and U be any open set containing A in X. Since every open set is a B-set, $\text{cl}_\delta(A) \subseteq U$ for every subset A of X. Since $\text{scl}(A) \subseteq \text{cl}_\delta(A) \subseteq U$, $\text{scl}(A) \subseteq U$ and hence A is g-closed. \qed

Remark 3.9. The converse of Theorem 3.8 need not be true as shown by the following Example.

Example 3.10. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. Then $\{b\}$ is g-closed set but not $B\delta g$-closed.

Theorem 3.11. Every $B\delta g$-closed set is $a g$-closed.

Proof. It is true that $\text{acl}(A) \subseteq \text{cl}_\delta(A)$ for every subset A of X. \qed

Remark 3.12. The converse of Theorem 3.11 need not be true as shown by the following Example.

Example 3.13. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{a, c\}, X\}$. Then $\{b, c\}$ is $a g$-closed set but not $B\delta g$-closed.

Theorem 3.14. Every $B\delta g$-closed set is $g s$-closed.

Proof. Let A be a $B\delta g$-closed set and U be any open set containing A in X. Since every open set is a B-set, $\text{cl}_\delta(A) \subseteq U$ for every subset A of X. Since $\text{scl}(A) \subseteq \text{cl}_\delta(A) \subseteq U$, $\text{scl}(A) \subseteq U$ and hence A is $g s$-closed. \qed

Remark 3.15. A $g s$-closed set need not be $B\delta g$-closed as shown by the following Example.

Example 3.16. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, X\}$. Then $\{b\}$ is $g s$-closed set but not $B\delta g$-closed.

Remark 3.17. From the above discussions we summarize the fundamental relationships between several types of generalized closed sets in the following diagram. None of the implications is reversible.
(1) $B\delta g$-closed set (2) αg-closed set (3) δg-closed set (4) gs-closed set (5) g-closed set (6) δ-closed set.

Remark 3.18. The following Examples show that the concepts of $B\delta g$-closed set and closed set (respectively semi-closed set, \hat{g}-closed set and $\delta \hat{g}$-closed set) are independent.

Example 3.19. Let $X = \{a, b, c\}$ with the topology $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then $\{a, b\}$ is $B\delta g$-closed set but it is neither closed nor semi-closed. Also $\{a, b\}$ is not $\delta \hat{g}$-closed.

Example 3.20. Let $X = \{a, b, c\}$ with the topology $\tau = \{\emptyset, \{a\}, X\}$. Then $\{b, c\}$ is closed, semi-closed and $\delta \hat{g}$-closed set. But it is not $B\delta g$-closed.

Example 3.21. Let $X = \{a, b, c\}$ with the topology $\tau = \{\emptyset, \{b\}, X\}$. Then $\{a, c\}$ is \hat{g}-closed set but not $B\delta g$-closed and $\{a, b\}$ is $B\delta g$-closed set but not \hat{g}-closed in.

Remark 3.22. From the above discussions we obtain the following diagram.

![Diagram](image)

4. Some Topological Properties

Theorem 4.1. If A is both B-set and $B\delta g$-closed set of (X, τ), then A is δ-closed.
Proof. Given A is both B-set and $B\delta g$-closed set of (X, τ). Then $cl_\delta(A) \subseteq A$ whenever A is a B-set and $A \subseteq A$. Therefore we obtain that $A = cl_\delta(A)$ and hence A is δ-closed.

Proposition 4.2. If A and B are $B\delta g$-closed sets, then $A \cup B$ is $B\delta g$-closed.

Proof. Let $A \cup B \subseteq U$, where U is a B-set. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $B\delta g$-closed sets, $cl_\delta(A) \subseteq U$ and $cl_\delta(B) \subseteq U$, whenever $A \subseteq U$, $B \subseteq U$ and U is a B-set. Therefore $cl_\delta(A \cup B) = cl_\delta(A) \cup cl_\delta(B) \subseteq U$. So we obtain that $A \cup B$ is $B\delta g$-closed set of (X, τ).

Remark 4.3. The intersection of two $B\delta g$-closed sets need not be a $B\delta g$-closed set.

Example 4.4. Let $X = \{a, b, c\}$ with the topology $\tau = \{\emptyset, \{a\}, X\}$. Then $\{a, b\}$ and $\{a, c\}$ are $B\delta g$-closed sets. But $\{a, b\} \cap \{a, c\} = \{a\}$ is not $B\delta g$-closed.

Proposition 4.5. If A is a $B\delta g$-closed set of (X, τ) such that $A \subseteq B \subseteq cl_\delta(A)$, then B is also a $B\delta g$-closed set of (X, τ).

Proof. Let U be a B-set of (X, τ) such that $B \subseteq U$. Since $A \subseteq B$, $A \subseteq U$. Since A is $B\delta g$-closed, we have $cl_\delta(A) \subseteq U$. Now $cl_\delta(B) \subseteq cl_\delta(cl_\delta(A)) = cl_\delta(A) \subseteq U$. Therefore B is also a $B\delta g$-closed set of (X, τ).

Proposition 4.6. Let A be a $B\delta g$-closed set of (X, τ), then $cl_\delta(A) - A$ does not contain a non-empty complement of a B-set.

Proof. Suppose that A is $B\delta g$-closed. Let F be the complement of a B-set and $F \subseteq cl_\delta(A) - A$. Since $F \subseteq cl_\delta(A) - A$, $F \subseteq X - A$, $A \subseteq X - F$ and $X - F$ is a B-set. Therefore $cl_\delta(A) \subseteq X - F$ and $F \subseteq X - cl_\delta(A)$. Also $F \subseteq cl_\delta(A)$. Therefore $F \subseteq (cl_\delta(A))^c \cap cl_\delta(A) = \emptyset$. Hence $F = \emptyset$.

Theorem 4.7. Let A be a $B\delta g$-closed set of X. Then A is δ-closed if and only if $cl_\delta(A) - A$ is the complement of a B-set.

Proof. Necessity: Let A be a δ-closed subset of (X, τ). Then $cl_\delta(A) = A$ and so $cl_\delta(A) - A = \emptyset$ which is the complement of a B-set.

Sufficiency: Let $cl_\delta(A) - A$ be the complement of a B-set. Since A is $B\delta g$-closed, by Proposition 4.6, $cl_\delta(A) - A$ does not contain a non-empty complement of a B-set which implies $cl_\delta(A) - A = \emptyset$. Therefore $cl_\delta(A) = A$. Hence A is δ-closed.

Proposition 4.8. For each $x \in X$ either $\{x\}$ is the complement of a B-set or $\{x\}^c$ is $B\delta g$-closed in X.

Proof. Suppose that $\{x\}$ is not the complement of a B-set in X, then $\{x\}^c$ is not a B-set and the only B-set containing $\{x\}^c$ is the space X itself. That is $\{x\}^c \subseteq X$. Therefore $cl_\delta(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $B\delta g$-closed.

Definition 4.9. The intersection of all B-sets of X containing A is called the B-kernel of A and is denoted by $B-ker(A)$.

Lemma 4.10. A subset A of (X, τ) is $B\delta g$-closed iff $cl_\delta(A) \subseteq B-ker(A)$.

Proof. Assume that A is $B\delta g$-closed in X. Then $cl_\delta(A) \subseteq U$ whenever $A \subseteq U$ and U is a B-set in X. Let $x \in cl_\delta(A)$. Suppose $x \notin B-ker(A)$, then there is a B-set U such that $x \notin U$. Since U is a B-set containing A, $x \notin cl_\delta(A)$ which is a contradiction. Hence $x \in B-ker(A)$. Conversely assume that $cl_\delta(A) \subseteq B-ker(A)$. If U is any B-set containing A, then $cl_\delta(A) \subseteq B-ker(A) \subseteq U$. Therefore A is $B\delta g$-closed.

The intersection of all $B\delta g$-closed sets of X containing A is called the $B\delta g$-closure of A and it is denoted by $B\delta g-cl(A)$.

Lemma 4.11. Let A and B be subsets of (X, τ). Then

1. $B\delta g-cl(\emptyset) = \emptyset$ and $B\delta g-cl(X) = X$.

(2). If \(A \subseteq B \), then \(B_{\delta g}-cl(A) \subseteq B_{\delta g}-cl(B) \).

(3). \(B_{\delta g}-cl(A) = B_{\delta g}-cl(B_{\delta g}-cl(A)) \).

(4). \(B_{\delta g}-cl(A \cup B) = B_{\delta g}-cl(A) \cup B_{\delta g}-cl(B) \).

(5). \(B_{\delta g}-cl(A \cap B) \subseteq B_{\delta g}-cl(A) \cap B_{\delta g}-cl(B) \).

Remark 4.12. If \(A \) is \(B_{\delta g} \)-closed in \((X, \tau) \), then \(B_{\delta g}-cl(A) = A \) but the converse need not be true as shown by the following Example.

Example 4.13. Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\phi, \{c\}, X\} \). Let \(A = \{c\} \) then \(B_{\delta g}-cl(A) = \{c\} \). But \(\{c\} \) is not a \(B_{\delta g} \)-closed set.

Remark 4.14. In general, \(B_{\delta g}-cl(A) \cap B_{\delta g}-cl(B) \not\subseteq B_{\delta g}-cl(A \cap B) \). This can be shown from the following Example.

Example 4.15. Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\} \). Let \(A = \{a, c\} \) and \(B = \{b, c\} \), then \(B_{\delta g}-cl(A) \cap B_{\delta g}-cl(B) = X \not\subseteq \{c\} = B_{\delta g}-cl(A \cap B) \).

5. \(B_{\delta g} \)-open Sets

Definition 5.1. A subset \(A \) of \((X, \tau) \) is called \(B_{\delta g} \)-open if its complement \(A^c \) is \(B_{\delta g} \)-closed in \((X, \tau) \).

Theorem 5.2. If a subset \(A \) of a topological space \((X, \tau) \) is \(\delta \)-open then it is \(B_{\delta g} \)-open in \(X \).

Proof. Let \(A \) be an \(\delta \)-open set in \(X \). Then \(A^c \) is \(\delta \)-closed. By Theorem 3.2, \(A^c \) is \(B_{\delta g} \)-closed in \((X, \tau) \). Hence \(A \) is \(B_{\delta g} \)-open in \(X \).

Remark 5.3. The converse of Theorem 5.2 need not be true as shown by the following Example.

Example 5.4. Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\phi, \{a\}, X\} \). Then \(\{b\} \) is \(B_{\delta g} \)-open set but not \(\delta \)-open in \((X, \tau) \).

Proposition 5.5. Every \(B_{\delta g} \)-open set is \(\delta \)-open (respectively \(g \)-open, \(\alpha g \)-open, \(g_s \)-open).

Proof. Let \(A \) be a \(B_{\delta g} \)-open set in \(X \). Then \(A^c \) is \(B_{\delta g} \)-closed. By Theorem 3.5, \(A^c \) is \(\delta \)-closed. Hence \(A \) is \(\delta \)-open in \(X \). (respectively By Theorem 3.8, \(A^c \) is \(g \)-closed. Hence \(A \) is \(g \)-open in \(X \). By Theorem 3.11, \(A^c \) is \(\alpha g \)-closed. Hence \(A \) is \(\alpha g \)-open in \(X \). By Theorem 3.14, \(A^c \) is \(g_s \)-closed. Hence \(A \) is \(g_s \)-open in \(X \).

Remark 5.6. For a subset \(A \) of \(X \), \(cl_{\delta}(X-A) = X - int_{\delta}(A) \).

Theorem 5.7. A subset \(A \) of a topological space \((X, \tau) \) is \(B_{\delta g} \)-open if and only if \(G \subseteq int_{\delta}(A) \) whenever \(X - G \) is a \(B \)-set and \(G \subseteq A \).

Proof. Necessity: Let \(A \) be \(B_{\delta g} \)-open. Let \(X - G \) be a \(B \)-set and \(G \subseteq A \). Then \(X - A \subseteq X - G \). Since \(X - A \) is \(B_{\delta g} \)-closed, \(cl_{\delta}(X-A) \subseteq X - G \). Hence \(G \subseteq int_{\delta}(A) \).

Sufficiency: Suppose \(X - G \) is a \(B \)-set and \(G \subseteq A \) imply that \(G \subseteq int_{\delta}(A) \). Let \(X - A \subseteq U \) where \(U \) is a \(B \)-set. Then \(X - U \subseteq A \) and \(X - (X - U) \) is a \(B \)-set. By hypothesis \(X - U \subseteq int_{\delta}(A) \). This implies \(X - int_{\delta}(A) \subseteq U \) and \(cl_{\delta}(X-A) \subseteq U \). So \(X - A \) is \(B_{\delta g} \)-closed. Hence \(A \) is \(B_{\delta g} \)-open.

Proposition 5.8. If \(A \) is a \(B_{\delta g} \)-open set in \((X, \tau) \) such that \(int_{\delta}(A) \subseteq B \subseteq A \), then \(B \) is also a \(B_{\delta g} \)-open set of \((X, \tau) \).
Proof. \(\text{ints}(A) \subseteq B \subseteq A \) implies that \(X - A \subseteq X - B \subseteq X - \text{ints}(A) \). By Remark 5.6, \(X - A \subseteq X - B \subseteq \text{cl}_{\delta}(X - A) \).

Since \(X - A \) is \(B\delta \)-closed, by Proposition 4.5, \(X - B \) is \(B\delta \)-closed and hence \(B \) is \(B\delta \)-open in \((X, \tau) \).

\[\square \]

Theorem 5.9. If a set \(A \) is \(B\delta \)-open in \(X \) then \(G = X \) whenever \(G \) is a \(B \)-set and \(\text{ints}(A) \cup A^c \subseteq G \).

Proof. Let \(A \) be a \(B\delta \)-open set, \(G \) be a \(B \)-set and \(\text{ints}(A) \cup A^c \subseteq G \). This implies \(G^c \subseteq \text{ints}(A) \cup A^c = \text{ints}(A) \cap A = \text{ints}(A)^c - A^c = \text{cl}_{\delta}(A^c) - A^c \). Since \(A^c \) is \(B\delta \)-closed and \(G^c \) is the complement of a \(B \)-set, it follows from Proposition 4.6 that \(G^c = \phi \). Hence \(G = X \).

\[\square \]

Lemma 5.10. Let \(A \) be a subset of \((X, \tau) \) and \(x \in X \). Then \(x \in \text{B\delta-cl}(A) \) if and only if \(V \cap A \neq \phi \) for every \(\text{B\delta-open} \) set \(V \) containing \(x \).

Proof. Suppose that there exists a \(\text{B\delta-open} \) set \(V \) containing \(x \) such that \(V \cap A = \phi \). Since \(A \subseteq X - V \), \(\text{B\delta-cl}(A) \subseteq X - V \) and then \(x \notin \text{B\delta-cl}(A) \). Conversely, assume that \(x \notin \text{B\delta-cl}(A) \). Then there exists a \(\text{B\delta-closed} \) set \(F \) containing \(A \) such that \(x \notin F \). Since \(x \in X - F \) and \(X - F \) is \(\text{B\delta-open} \), \((X - F) \cap A = \phi \).

\[\square \]

6. Applications

Definition 6.1. A space \(X \) is called a \(3T_{\delta g} \)-space if every \(B\delta \)-closed set in it is \(\delta \)-closed.

Theorem 6.2. Every \(3_{1/4} \)-space is \(3T_{\delta g} \)-space.

Proof. Let \(A \) be a \(B\delta \)-closed set in \(X \). Since every \(B\delta \)-set is \(\delta \)-closed by Theorem 3.5, \(A \) is \(\delta \)-closed. Since \(X \) is \(3_{1/4} \)-space, \(A \) is \(\delta \)-closed. Hence \(X \) is \(3T_{\delta g} \)-space.

\[\square \]

Remark 6.3. The converse of Theorem 6.2 need not be true as shown by the following Example.

Example 6.4. Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} \). Then \((X, \tau) \) is \(3T_{\delta g} \)-space but not \(3_{1/4} \)-space.

Remark 6.5. The concepts of \(3T_{\delta g} \)-space and \(\tilde{3}_{1/4} \)-space are independent of each another as shown by the following Examples.

Example 6.6. Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\phi, \{a\}, \{b, c\}, X\} \). Then \((X, \tau) \) is \(\tilde{3}_{1/4} \)-space but not \(3T_{\delta g} \)-space.

Example 6.7. Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\} \). Then \((X, \tau) \) is \(3T_{\delta g} \)-space but not \(\tilde{3}_{1/4} \)-space.

Theorem 6.8. For a topological space \((X, \tau) \), the following conditions are equivalent.

(1). \((X, \tau) \) is a \(3T_{\delta g} \)-space.

(2). Every singleton of \(X \) is either \(\delta \)-open or \(X - \{x\} \) is a \(B \)-set.

Proof. (1) \(\Rightarrow \) (2) Let \(x \in X \). Suppose that \(X - \{x\} \) is not a \(B \)-set of \((X, \tau) \). Then \(X - \{x\} \) is a \(B\delta \)-closed set of \((X, \tau) \).

Since \((X, \tau) \) is \(3T_{\delta g} \)-space, \(X - \{x\} \) is an \(\delta \)-closed set of \((X, \tau) \), i.e., \(\{x\} \) is an \(\delta \)-open set of \((X, \tau) \).

(2) \(\Rightarrow \) (1) Let \(A \) be an \(B\delta \)-closed set of \((X, \tau) \). Let \(x \in \text{cl}_{\delta}(A) \). By (ii), \(\{x\} \) is either \(\delta \)-open or \(X - \{x\} \) is a \(B \)-set.

Case(a) : Let \(\{x\} \) be \(\delta \)-open. Since \(x \in \text{cl}_{\delta}(A) \), then \(\{x\} \cap A \neq \phi \). This shows that \(x \in A \).

Case(b) : Suppose that \(X - \{x\} \) is a \(B \)-set. If we assume that \(x \notin A \), then we would have \(x \in \text{cl}_{\delta}(A) - A \), which cannot happen according to Proposition 4.6. Hence \(x \in A \). So in both cases we have \(\text{cl}_{\delta}(A) \subseteq A \). Trivially \(A \subseteq \text{cl}_{\delta}(A) \). Therefore \(A = \text{cl}_{\delta}(A) \) or equivalently \(A \) is \(\delta \)-closed. Hence \((X, \tau) \) is a \(3T_{\delta g} \)-space.

\[\square \]
References