Spectral Properties of M-class A_k^* Operator

P. Shanmugapriya1,* and P. Maheswari Naik1

1 Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.

Abstract: The Banach algebra on a non-zero complex Hilbert space H of all bounded linear operators are denoted by $B(H)$. An operator T is defined as an element in $B(H)$. If T belongs to $B(H)$, then T^* means the adjoint of T in $B(H)$. An operator T is called class $A(k)$ if $|T|^2 \leq (T^*|T|^{2k}T)^{\frac{k}{k+1}}$ for $k > 0$. An operator T is called A_k if $|T|^2 \leq (|T|^{k+1})^{\frac{k}{k+1}}$ for some positive integer k. S. Panayappan [11] introduced class A_k^* operator as “an operator T is called class A_k^* if $|T^k|^2 \geq |T^s|^2$ where k is a positive integer” and studied Weyl and Weyl type theorems for the operator [9]. In this paper we introduced extended class A_k^* operator and studied some of its spectral properties. We also show that extended class A_k^* operators are closed under tensor product.

MSC: 47A63, 47B37.

Keywords: Class A_k^*, Quasi Class A_k^*, Weyl’s theorem.

© JS Publication.

1. Introduction

An operator T is defined in $B(H)$ is an element in $B(H)$. Weyl and Weyl type theorems where studied for the following class of operators. Furuta et al introduced class $A(k), k > 0$ as a class of operators including p-hyponormal and log-hyponormal operators and studied Weyl type theorems. L.A.Coburn studied Weyl’s theorem for non normal operators [3] then M. Berkani studied generalized Weyl’s theorem for hyponormal operators [1, 2]. Panayappan extended this concept and introduced class A_k operators and verified Weyl’s theorem [11]. In 2016, D. Senthil Kumar studied aluthge transformation for N-class A_k operators [10]. In 2013, Panayappan et al introduced a new class of operators in a different manner called class A_k^* operator, quasi class A_k^* operators and studied Weyl and Weyl type theorems and also proved tensor product of two quasi class A_k^* operators is closed [9]. An operator T is called class A_k^* if $|T^k|^2 \geq |T^s|^2$ where k is a positive integer.

If $k = 1$ then class A_k^* operator coincides with hyponormal operator [9]. In this paper, we extended class A_k^* operator as a new class of operator named M-class A_k^* operators and studied some of its spectral properties.

Definition 1.1. An operator $T \in B(H)$ is said to be M-Class A_k^* operator if there exists positive real numbers M, k such that $|T^s|^2 \leq M \left(|T^k|^\frac{k}{k+1}\right)$.

Proposition 1.2. If $M = 1$, then M-Class A_k^* operator coincides with class A_k^* operator. If $M = 1$ and $k = 1$, then M-Class A_k^* operator coincides with hyponormal operator. Hence, Hyponormal operator \Rightarrow class A_k^* operator \Rightarrow M-Class A_k^* operator.

* E-mail: prsrinithin@gmail.com
2. Spectral Properties of M-Class A^*_k Operators

In this section, first we prove using matrix representation that the restriction of M-Class A^*_k operators to an invariant subspace is also M-Class A^*_k, and if T is M-Class A^*_k operator, then Weyl’s theorem hold for T, T^* and $f(T)$ for $f \in H(\sigma(T))$ and if T^* has SVEP, then a-Weyl’s theorem hold for T, T^* and $f(T)$ for $f \in H(\sigma(T))$.

Theorem 2.1. If T is M-Class A^*_k operator for positive real numbers M and k, then $T|_N$ is also M-Class A^*_k operator where N is an invariant subspace of T.

Proof. Let $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ be the orthogonal projection of H onto N and $T|_N = T_1 = (PTP)|_N$ and $TP = PTP$. Since T is M-class A^*_k operator and P is a projection on N, $P \left(M \left| T^k \right|^2 - |T^*|^2 \right) P \geq 0$. By Hansen’s Inequality [4, 10],

$$P \left(M \left| T^k \right|^2 \right) P \leq M \left(P \left| T^k \right|^2 \right) \frac{1}{k} = \begin{pmatrix} M \left| T^k_1 \right|^2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} M \left| T^k_1 \right|^2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence,

$$M \begin{pmatrix} \left| T^k_1 \right|^2 & 0 \\ 0 & 0 \end{pmatrix} \geq P(M \left| T^k \right|^2)P \geq P|T^*|^2 P = \begin{pmatrix} |T^k_1|^2 + |T^k_2|^2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence $M \left| T^k_1 \right|^2 - |T^k_1|^2 \geq |T^k_2|^2 \geq 0$. Hence $T|_N$ is M-Class A^*_k operator on an invariant subspace N of T. □

Theorem 2.2. If T is M-Class A^*_k operator for positive real numbers M and k, $\lambda \in \sigma_T(T)$ where $\lambda \neq 0$ and T is of the form $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $Ker(T - \lambda) \oplus \text{ran}(T - \lambda)^*$, then T_3 is M-Class A^*_k operator and $T_2 = 0$.

Proof. Let P be the orthogonal projection of H onto $Ker(T - \lambda)$. Since T is M-Class A^*_k operator, $M \left| T^k \right|^2 - |T^*|^2 \geq 0$ this implies that $0 \leq P \left(M \left| T^k \right|^2 - |T^*|^2 \right) P$, where $P|T^*|^2 P = \begin{pmatrix} |\lambda|^2 & T_2^* T_2 \\ 0 & 0 \end{pmatrix}$ and $P|T^k|^2 P = \begin{pmatrix} |\lambda|^{2k} & 0 \\ 0 & 0 \end{pmatrix}$. Therefore,

$$P \left(M \left| T^k \right|^2 \right) P = \begin{pmatrix} |\lambda|^2 & 0 \\ 0 & 0 \end{pmatrix} \geq P|T^*|^2 P = \begin{pmatrix} |\lambda|^2 & T_2^* T_2 \\ 0 & 0 \end{pmatrix}.$$

Hence $T_2 T_2^* = 0$ implies that $T_2 = 0$. Therefore,

$$0 \leq M \left| T^k \right|^2 - TT^* = \begin{pmatrix} 0 & 0 \\ 0 & M \left| T^k_3 \right|^2 - |T^*_3|^2 \end{pmatrix}.$$

Hence T_3 is M-Class A^*_k operator. □
Theorem 2.3. If T is M-Class A_k^* operator for positive real numbers M and k and $(T - \lambda)x = 0$ for all $\lambda \neq 0$ and $x \in H$ then $(T - \lambda)^*x = 0$.

Proof. Using Schwarz’s and Holder McCarthy inequalities,

$$\|\lambda\|^2 \|x\|^2 = \|Tx\|^2$$

$$= f(\sigma(T)) - \pi_{00}(T)$$

$$= \langle T^*Tx, x \rangle$$

$$= \langle (T^*T)x, x \rangle$$

$$= \langle |T|^2x, x \rangle$$

$$\leq \left\langle M \left(|T|^k \right)^{2/k} x, x \right\rangle$$

$$\leq \left\langle M \left(|T|^k x, T^k x \right) \right\rangle^{2/k} \|x\|^{2(1-2/k)}$$

$$\leq \left\langle M \left(|T|^k x, T^k x \right) \right\rangle^{2/k} \|x\|^{2((k-2)/k)}$$

$$= M \|\lambda\|^2 \|x\|^2.$$

Hence $|\lambda|^2 \langle x, x \rangle = \langle T^*Tx, x \rangle = \left\langle M \left(|T|^k \right)^{2/k} x, x \right\rangle$. Since, $\left\langle M \left(|T|^k \right)^{2/k} x \right\rangle$ and x are linearly independent. Therefore,

$$M \left(|T|^k \right)^{2/k} x = |\lambda|^2 x$$

$$\left\| \left(M |T|^k \right)^{2/k} x, x \right\|^2 = \left\| \left(M |T|^k \right)^{2/k} - \langle T^*T \rangle x, x \right\| = 0.$$

Therefore, $(TT^*)x = M \left(|T|^k \right)^{2/k} x = |\lambda|^2 x = 0 \Rightarrow (T - \lambda)^*x = 0.$

Corollary 2.4. If T is M-Class A_k^* operator for positive real numbers M and k, $0 \neq \lambda \in \sigma_T(T)$ then T is of the form $T = \begin{pmatrix} \lambda & 0 \\ 0 & T_3 \end{pmatrix}$ on $\text{Ker}(T - \lambda) \oplus \text{ran}(T - \lambda)^*$, where T_3 is M-Class A_k^* and $\text{Ker}(T_3 - \lambda) = \{0\}$.

An operator T is called normaloid if $r(T) = \|T\|$, where $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$. An operator T is called hereditarily normaloid, if every part of it is normaloid. If $0 = \mu = \sup\{|\lambda| : \lambda \in \sigma(T)\}$. An operator T is called polaroid where $\pi(T)$ is the set of poles of the resolvent of T and $\sigma(T)$ is the set of all isolated points of $\sigma(T)$. An operator T is said to be isolid if every isolated point of $\sigma(T)$ is an eigenvalue of T. An operator T is said to be reguloid if for every isolated point λ of $\sigma(T)$, $\lambda - T$ is relatively regular. An operator T is known as relatively regular if and only if $\text{ker} T$ and $(T(X))$ are complemented. Hence, we can say that Polaroid\RightarrowReguloid\RightarrowIsolid.

Theorem 2.5. If T is M-Class A_k^* operator for positive real numbers M and k, then for $\lambda \in C$, if $\sigma(T) = \lambda$ then $T = \lambda$.

Proof.

Case (A): Let $\lambda = 0$. It is obvious that, Hynonormal operator $\subset k$-paranormal \subset normaloid [11]. Therefore M-Class A_k^* operator is also normaloid. Therefore $T = 0$.

Case (B): Let $\lambda \neq 0$. Since T is M-Class A_k^* operator then T is invertible, so is also M-Class A_k^*. Hence it is also normaloid. We know that, if $\lambda \in T$ then $\frac{1}{\lambda} \in T^{-1}$. Hence $\|T\| \ |T^{-1}| = |\lambda| \ |\frac{1}{\lambda}| = 1 \Rightarrow T$ is covexoid (i.e) $w(T) = \{\lambda\} \Rightarrow T = \lambda$. Since class A_k^* operator are k^* paranormal, by [8] class A_k^* operators are normaloid by the inclusion property M-class A_k^* operators are also normaloid and by [7] we have the following results.

Theorem 2.6. If T is M-Class A_k^* operator for positive real numbers M and k, then
(1). T is Polaroid.

(2). T is isoloid.

(3). If \(\lambda \in \sigma(T) \) is a isolated point then \(E_\lambda H = \text{Ker}(T - \lambda) \) and hence \(\lambda \) is an eigen value of \(T \).

(4). If \(\lambda \neq 0 \) be an isolated point in \(\sigma(T) \), then \(E_\lambda \) is self adjoint and satisfies

\[E_\lambda H = \text{Ker}(T - \lambda) = \text{Ker}(T - \lambda)^* \]

(5). \(T \) has SVEP, \(P(\lambda I - T) \leq 1 \) for every \(\lambda \in C \) and \(T^* \) is reguloid.

(6). Weyl’s theorem holds for \(T \) and \(T^* \). In addition, \(T^* \) has SVEP, then a-Weyl’s theorem holds for both \(T \) and \(T^* \) and for \(f(T) \) for every \(f \in H(\sigma(T)) \).

Theorem 2.7. If \(T \) is M-Class \(A_k \) operator for positive real numbers \(M \) and \(k \) then \((T - \lambda) \) has finite ascent for \(\lambda \in C \).

Proof. By Theorem 2.5, for \(\lambda \neq 0 \)

\[\text{Ker}(T - \lambda) \subseteq \text{Ker}(T - \lambda)^* \]

Hence if \(x \in \text{ker}(T - \lambda)^2 \), then \((T - \lambda)^2(T - \lambda)x = 0 \) for \(\lambda \neq 0 \). Hence \(\|T - \lambda\|x\|^2 = 0 \) implies \(x \in \text{ker}(T - \lambda) \). Hence \(\ker(T - \lambda)^2 = \ker(T - \lambda) \). If \(\lambda = 0 \), it is sufficient to prove \(\ker T^{2k} \subseteq \ker T^k \). Let \(x \in \ker T^{2k} \) and \(x \neq 0 \). By holder MC Carthy inequality,

\[
0 = \|T^{2k}\|^2 = \langle \|T^{2k}\|^2 x, x \rangle \\
\geq \langle \|T^{2k}\|^{2/k} x, x \rangle^k \\
\geq \langle \|T^{2k}\|^2 x, x \rangle^k \|x\|^{2k} \\
= \|Tx\|^{2/k} \|x\|^{2k}
\]

Hence \(x \in \ker T \subseteq \ker T^k \Rightarrow T \) has finite ascent.

Theorem 2.8. If \(T \) is M-Class \(A_k \) operator for positive real numbers \(M \) and \(k \) then \(f(w(T)) = w(f(T)) \forall f \in (\sigma(T)) \).

Proof. If \(T \) is M-Class \(A_k \) operator for positive real numbers \(M \) and \(k \) then \(T \) is of finite Ascent (by Theorem 2.9) by [5], Proposition 38.5 ind\((T - \lambda) \neq 0 \) for all complex numbers \(\lambda \). Therefore by Theorem 5 of [13] \(f(w(T)) = w(f(T)) \forall f \in (\sigma(T)) \).

Theorem 2.9. If \(T \) is M-Class \(A_k \) operator for positive real numbers \(M \) and \(k \), then Weyl’s theorem holds for \(f(T) \) for every \(f \in (\sigma(T)) \).

Proof. By Theorem 2.7, \(T \) is isoloid and Weyl’s theorem holds for \(T \). By lemma of [6],

\[f(\sigma(T) - \pi_{00}(T)) = \sigma(f(T)) - \pi_{00}(f(T)), \text{ for every } f \in H(\sigma(T)). \]

By Theorem 2.8,

\[f(w(T)) = w(f(T)) \forall f \in (\sigma(T)). \]

Hence, \(\sigma(f(T)) - \pi_{00}(f(T)) = f(\sigma(T)) - \pi_{00}(T) = f(w(T)) = w(f(T)) \). Hence, Weyl’s theorem holds for \(f(T) \) \forall f \in H(\sigma(T)) \).
3. Tensor Product of M-Class A_k^* Operators

In this section, we proved that M-Class A_k^* operators are closed under tensor product.

Theorem 3.1. If $T \in B(H)$ and $S \in B(K)$ are non-zero operators, then $T \otimes S$ is M-Class A_k^* operator if and only if T and S are M-Class A_k^* operators. $|T^*|^2 \leq M |T^k|^2/k$.

Proof. Assume that T and S are M-Class A_k^* operators. Then

$$M \left| (T \otimes S)^k \right|^{2/k} = M |T^k|^{2/k} \otimes M |S^k|^{2/k} \geq |T^*|^2 \otimes |S^*|^2 = |T^* \otimes S^*|^2$$

Hence, $T \otimes S$ is M-Class A_k^* operator.

Conversely, assume that $T \otimes S$ is M-Class A_k^* operator. Without loss of generality, it is enough to show that T is M-Class A_k^* operator. Since $|T^* \otimes S^*|^2 \leq M \left| (T \otimes S)^k \right|^{2/k}$. We have $|T^*|^2 \otimes |S^*|^2 \leq M |T^k|^{2/k} \otimes M |S^k|^{2/k}$. Therefore,

$$\|T^*\|^2 = \sup \left\{ \left| \langle T^* x, x \rangle \right| : x \in H \text{ and } \|x\| = 1 \right\} \leq \sup \left\{ \left| M |T^k|^{2/k} x, x \right| : x \in H \text{ and } \|x\| = 1 \right\} \leq M \sup \left\{ \left| (T^k)^{1/k} x \right|^2 : x \in H \text{ and } \|x\| = 1 \right\} \leq M \|T^k\|^2$$

Similarly, $\|S^*\|^2 \leq M \|S^*\|^2$. Hence both T and S are M-Class A_k^* operators.

References

