Generalized Method to Find the Generators of Matrix Algebras when its Dimension 2 and 3

Ram Milan Singh1,*

1 Department of mathematics, Govt. P. G. College, Tikamgarh, Madhya Pradesh, India.

Abstract: Let A be an algebraically closed field of characteristic zero and consider a set of 2×2 or 3×3 matrices. Using a theorem of Shemesh, we give conditions for when the matrices in the set generate the full matrix algebra.

Keywords: Generator, Matrix, Common left eigen vector, Sub Algebra.

1. Introduction

Let A be an algebraically closed field of characteristic zero, and let $N_m = N_m(A)$ be the algebra of $m \times m$ matrices over A. Given a set $K = \{B_1, \ldots, B_t\}$ of $m \times m$ matrices, we would like to have conditions for when the A_i generate the algebra M_n. In other words, determine whether every matrix in N_m can be written in the form $T(B_1, \ldots, B_t)$, where T is a non-commutative polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar matrices.)

The case $m = 1$ is of course trivial, and when $t = 1$, the single matrix B_1 generates a commutative sub algebra. We therefore assume that $m, t \geq 2$. This question has been studied by many authors, see for example the extensive bibliography in [7]. We will give some generalize in the case of $m = 2$ or 3.

2. General Observations

Let G be the algebra generated by K. If we could show that the dimension of G as a vector space is m^2, it would follow that $G = N_m$. This can sometimes be done when we know a linear spanning set $H = \{H_1, \ldots, H_q\}$ of G. Let N be the $m^2 \times q$ matrix obtained by writing the matrices in H as column vectors. We would like to show that rank $N = m^2$. Since N is an $m^2 \times m^2$ matrix and rank $N = \text{rank}(NN^*)$, it sufficient to show that $\text{det}(NN^*) \neq 0$. Unfortunately, the size of H may be big [4]. In this paper we will combine this method with results of Shemesh and Spencer, Rivlin, Aslaksen and Sletsjoe to get some simple results for $m = 2$ or 3.

Lemma 2.1. Let $\{B_1, \ldots, B_t\}$ be a set of matrices in N_m where $m = 2$ or 3. The b_i’s generate N_m if and only if they do not have a common eigenvector.

We can therefore use the following theorem due to Shemesh [5].

* E-mail: rrammilansinghlig@gmail.com
Theorem 2.2. Two $m \times m$ matrices, B and H, have a common eigenvector if and only if

$$\sum_{u,v=1}^{m-1} [B^u, H^v]^* [B^u, H^v]$$

is singular.

Adding scalar matrices to the B_i's does not change the subalgebra they generate, so we sometimes assume that our matrices lie in $W_M = \{ N \in N_m | \text{trace } N = 0 \}$. We also sometimes identify matrices in N_m with vectors in A_m^2, and if $M_1, \ldots, M_m \in N_m$, then $\det(M_1, \ldots, M_m)$ denotes the determinant of the $m^2 \times m^2$ matrix whose j^{th} column is M_j, written as $(M_{j1}, \ldots, M_{jn})^t$, where M_{jk} is the k^{th} row of M_j for $k = 1, 2, \ldots, n$. We write the scalar matrix aI as a. When we say that a set of matrices generate N_m, we are talking about N_m as an algebra, while when we say that a set of matrices form a basis of N_m, we are talking about N_m as a vector space.

3. The 2×2 Case

The following theorem is well-known, but we include a proof since it illustrated a technique we will use in the 3×3 case. Notice that the proof gives us an explicit basis for N_2.

Theorem 3.1. Let $B, H \in N_2$. B and H generate N_2 if and only if $[B, H]$ is invertible.

Proof. We know that in matrix $BH = -HB$, then a direct computation shows that

$$\det(I, B, H, BH) = -\det(I, B, H, HB) = \det[B, H].$$

Hence

$$\det(I, B, H, [B, H]) = 2 \det[B, H]$$

(1)

But if $I, B, H, [B, H]$ are linearly independent, then the dimension of G as a vector space is 4, so B and H generate N_2. We call $[N, M, T] = [N, [M, T]]$ a double commutator. The characteristic polynomial of A can be written as

$$\lambda^2 - (\text{trace } B)\lambda + ((\text{trace } B)^2 - \text{trace } B^2)/2.$$

It follows that the discriminant of the characteristic polynomial of A can be written as discriminant $(B) = 2 \text{ trace } B^2 - (\text{trace } B)^2$. □

Lemma 3.2. Let $B, H, G \in N_2$ and suppose that no two of them generate N_2. Then B, H, G generate N_2 if and only if the double commutator $[B, H, G] = [B, [H, G]]$ is invertible.

Proof. A direct computation shows that

$$\det(I, B, H, G)^2 = -\det[B, [H, G]] - \text{discriminant}(B) \det[H, G]$$

(2)

But if I, B, H, G are linearly independent, then B, H and G generate N_2. □

Notice that the above proof gives us an explicit basis for N_2. We can now give a complete solution for the case $m = 2$.

Theorem 3.3. The matrices $B_1, \ldots, B_t \in N_2$ generate N_2 if and only if at least one of the commutators $[B_i, B_j]$ or double commutators $[B_i, B_j, B_k] = [B_i, [B_j, B_k]]$ is invertible.
Proof. If \(t > 4 \), the matrices are linearly dependent, so we can assume that \(t \leq 4 \). Suppose that \(B_1, B_2, B_3, B_4 \) generate \(N_2 \), but that no proper subset of them generates \(N_2 \). Then the four matrices are linearly independent, and we can write the identity \(I \) as a linear combination of them. If the coefficient of \(B_4 \) in this expression is nonzero, then \(B_1, B_2, B_3 \) span and therefore generate \(N_2 \), so \(B_1, B_2, B_3 \) generate \(N_2 \). Thus, if \(B_1, \ldots, B_t \) generate \(N_2 \), we can always find a subset of three of these matrices that generate \(N_2 \). \(\square \)

4. Two \(3 \times 3 \) Matrices

In the case of two \(3 \times 3 \) matrices, we have the following well-known theorem.

Theorem 4.1. Let \(B, H \in N_3 \). If \([B, H]\) is invertible, then \(B \) and \(H \) generate \(N_3 \).

For \(N \in N_3 \), we define \(L(N) \) to be the linear term in the characteristic polynomial of \(N \). Hence \(L(N) = ((\text{trace } N)^2 - \text{trace } N^2)/2 \), which is equal to the sum of the three principal minors of degree two of \(N \). Notice that \(L(N) \) is invariant under conjugation, and that if \([B, H]\) is singular, then \([B, H]\) is nilpotent if and only if \(L([B, H]) = 0 \). The following theorem shows that if \([B, H]\) is invertible and \(L([B, H]) \neq 0 \), then we can give an explicit basis for \(N_3 \).

Theorem 4.2. Let \(B, H \in N_3 \). Then

\[
\]

so if \(\det[B, H] \neq 0 \) and \(L([B, H]) \neq 0 \), then \(\{I, B, B^2, H, H^2, BH, HB, [B, [B, H]], [H, [H, B]]\} \) form a basis for \(N_3 \).

The proof of (3) is by direct computation. Notice that this can be thought of as a generalization of (1) and (2). We can also use Shemesh’s Theorem to characterize pairs of generators for \(N_3 \).

Theorem 4.3. The two \(3 \times 3 \) matrices \(B \) and \(H \) generate \(N_3 \) if and only if both

\[
\sum_{u, v=1}^{m-1} [B^u, H^v][B^u, H^v]^* \quad \text{and} \quad \sum_{u, v=1}^{m-1} [B^u, H^v][B^u, H^v]^*
\]

are invertible.

5. Three or More \(3 \times 3 \) Matrices

We start with the following theorem due to Laffey [6].

Theorem 5.1. Let \(K \) be a set of generators for \(N_3 \). If \(K \) has more than four elements, then \(N_3 \) can be generated by a proper subset of \(K \).

It is therefore sufficient to consider the cases \(t = 3 \) or 4. Following the approach outlined earlier, we start by finding a linear spanning set. Using the polarized Cayley-Hamilton Theorem, Spencer and Rivlin [1, 2] deduced the following theorem.

Theorem 5.2. Let \(B, H, G \in N_3 \). Define

\[
K(B) = \{B, B^2\} \\
K(B_1, B_2) = S(B_1, B_2) \cup S(B_2, B_1)
\]
From this we deduce the following theorem.

The matrices

\[W = B_1 B_2 B_3 \]

We next give a version of Shemesh’s Theorem for three 3 \times 3 words of length \(m \).

These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that \(N_3 \) can be generated by words of length \(\lfloor m^2 + 2 \rfloor / 3 \). For \(N_3 \) this gives words of length 4. The general bound has been improved by Pappacena [4].

We next give a version of Shemesh’s Theorem for three 3 \times 3 matrices.

Theorem 5.3. The matrices \(B, H, G \in N_3 \) have a common eigenvector if and only the matrix

\[
N(B, H, G) = \sum_{N \in K(B), M \in K(H)} [N, M]^*[N, M] + \sum_{N \in K(B), M \in K(G)} [N, M]^*[N, M] + \sum_{N \in K(H), M \in K(G)} [N, M]^*[N, M] + \sum_{N \in K(B, H), M \in K(G)} [N, M]^*[N, M]
\]

is singular.

Proof. Let \(G \) be the algebra generated by \(B, H, G \). Set

\[
X = \bigcap_{N \in K(B), M \in K(H)} \ker[N, M] \bigcap_{N \in K(B), M \in K(G)} \ker[N, M] \bigcap_{N \in K(H), M \in K(G)} \ker[N, M]
\]

We claim that \(X \) is invariant under \(G \). Let \(x \in X \) and consider \(Gx \). We know from Theorem 5.1 that any element of \(G \) is a linear combination of terms of the form \(t(B, H)G^i u(B, H)G^j v(B, H) \) with \(t(B, H), u(B, H), v(B, H) \in I \cup K(B) \cup K(H) \cup K(B, H) \). Since \(x \in \ker[N(B, H), K(G)] \cap \ker[N(B), K(G)] \cap \ker[N(H), K(G)] \), we get

\[
t(B, H)G^i u(B, H)G^j v(B, H) x = t(B, H)G^i u(B, H) v(B, H)G^j x
\]

\[
= t(B, H)G^{i+j} u(B, H) v(B, H) x
\]

\[
= t(B, H)u(B, H) v(B, H)G^{i+j} x
\]

\[
= G^{i+j} t(B, H) u(B, H) v(B, H) x.
\]

In the same way we use the fact that \(x \in [K(B), K(H)] \) to sort the terms of the form \(t(B, H)u(B, H)v(B, H)x \), so that we finally get

\[
G x = \{ a_{ijk} G^i H^j B^k x | 0 \leq i, j, k \leq 2, a_{ijk} \in A \}
\]

Using the above technique, it follows easily that \(Gx \subset X \) and that \(X \) is \(G \) invariant. Hence we can restrict \(G \) to \(X \), but since the elements of \(G \) commute on \(X \), they have a common eigenvector, and we can finish as in the proof of Theorem 2.2.

From this we deduce the following theorem.

Theorem 5.4. Let \(B, H, G \in N_3 \). Then \(B, H, G \) generate \(N_3 \) if and only if both \(N(B, H, G) \) and \(N(B^i, H^i, G^i) \) are invertible.

For the case of four matrices, we can prove the following theorem.
Theorem 5.5. The matrices $B_1, B_2, B_3, B_4 \in N_3$ have a common eigenvector if and only the matrix

$$N(B_1, B_2, B_3, B_4) = \sum_{i,j=1}^{4} \left(\sum_{N \in K(B_i)} [N, M]^* [N, M] \right) + \sum_{i,j=1}^{3} \left(\sum_{N \in K(B_i, B_j)} [N, M]^* [N, M] \right) + \sum_{N \in K(B_1, B_2)} [N, M]^* [N, M] + \sum_{N \in K(B_1, B_2, B_3)} [N, M]^* [N, M]$$

is singular.

Proof. Similar to the proof of Theorem 5.3.

From this we deduce the following theorem.

Theorem 5.6. Let $B, H, G, J \in M_3$. Then B, H, G, J generate N_3 if and only if both $N(B, H, G, J)$ and $N(B^t, H^t, G^t, J^t)$ are invertible.

References

