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1. Introduction

Integral and integro-differential equations emerge normally in numerous applications in different fields of science and engi-

neering and furthermore have been concentrated broadly both at the hypothetical and functional level. Specific applications

of integral and integro-differential equations can be found in the mathematical modelling of spatiotemporal developments,

epidemic modelling [1] and various biological and physical problems. Analytical solutions of integral and integro-differential

equations, however, either do not exist or it is often hard to find. It is precisely due to this fact that several numerical

methods have been developed for finding approximate solutions of integral and integro-differential equations [2–4].

Multigrid method is well known among the fastest solution method. Particularly, for elliptic problems, they have been

proved to be highly accurate. In classical multigrid method pioneered by Brandt [10], a solution to

Lu = f

is sought, where L is self-adjoint operator on a fine grid Ωh (with grid spacing h) by using standard relaxation (such as

GaussSeidel) method, to approximate errors on the coarse grids Ω2h, Ω4h,. . . , a hierarchy of grids with grid spacing that

is increased by a factor of two. The details of the various cycles are not important, for our discussion, except to say

that, it is the residue that is passed from the fine grids to the coarser grids. Vectors from fine grids are transferred to

∗ E-mail: rkmundewadi@gmail.com
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coarser grids with Restriction operator, while vectors are transferred from coarse grids to the finer grids with a Prolongation

operator. An introduction of multigrid method is found in Wesseling [5]. Multigrid Tutorial (Briggs [6] and Trottenberg et

al. [7]), is helpful to get the basic ideas of multigrid techniques. The multigrid method is largely applicable in increasing

the efficiency of iterative methods used to solve large system of algebraic equations resulted from discretization of the

differential equations and integral equations are applicable to solve numerically. Most importantly, differential equations

produce sparse matrix equation upon discretization, while integral equations typically result in dense matrices yielding more

expensive numerical solution. Multigrid method was initially developed to solve differential equations more efficiently than

other existing numerical techniques [8–11]. Multigrid method has been applied for the numerical solution of different types

of integral equations. Hackbusch [12, 13] given the multigrid techniques and the integral equations from both theoretical

and computational points of views. Schippers [14, 15] used multigrid methods for boundary integral equations. Gspr [16]

has given a new approach a fast multigrid solution of boundary integral equations. Lee [17] has solved multigrid method

for nonlinear integral equations. Paul [18], applied the multigrid algorithm for solving integral equations. In the historical

three decades the development of effective iterative solvers for nonlinear systems of algebraic equations has been a significant

research topic in numerical analysis, computational science and engineering. Brandt [10] was one of the first to introduce

nonlinear multigrid method, which seeks to use concepts from the linear multigrid iteration and apply them directly in

the nonlinear setting. Applying multigrid method directly to the nonlinear problems by employing the method so-called

Full Approximation Scheme (FAS). In FAS, a nonlinear iteration, such as the nonlinear Gauss-Seidel method is applied to

smooth the error and the residual is passed from the fine grids to the coarser grids. For a detailed treatment of FAS is given

in Briggs et al. [6]. An introduction of FAS is found in Hackbusch and Trottenberg [19], Wesseling [5] and Trottenberg et al.

[7]. Many authors applied the FAS for some class of differential equations. The full-approximation scheme (FAS) is largely

applicable in increasing the efficiency of the iterative methods used to solve nonlinear system of algebraic equations. FAS

are a well-founded numerical method for solving nonlinear system of equations for approximating given differential equation.

Subsequently, the development of multiresolution analysis and the fast wavelet transforms by Avudainayagam and Vani [20]

led to extensive research in wavelet multigrid schemes to solve certain differential equations arising in fluid dynamics. Lee

[21] has introduced a multigrid method for solving the nonlinear Urysohn integral equations.

Wavelet analysis is a new branch of mathematics and widely applied in signal analysis, image processing and numerical

analysis etc. The wavelet methods have proved to be very effective and efficient tool for solving problems of mathematical

calculus. In recent years, these methods have attracted the interest of researchers of structural mechanics and many papers

in this field are published. In most of the papers the Daubechies wavelets are applied. These wavelets are orthogonal,

sufficiently smooth and have a compact support. Their shortcoming is that an explicit expression is lacking. This obstacle

makes the differentiation and integration of these wavelets very complicated. For evaluation of such integrals the connection

coefficients are introduced, but this complicates the course of the solution to a great extent [22]. Biorthogonal wavelet basis

were introduced by Cohen-Daubechies-Feauveau in order to obtain wavelet pairs that are symmetric, regular and compactly

supported. Unfortunately, this is incompatible with the orthogonality requirement that has to be dropped altogether.

Biorthogonal wavelets build with splines are especially attractive because of their short support and regularity. So it is

called a Biorthogonal Spline Wavelets [23]. In the biorthogonal case, rather than having one scaling and wavelet function,

there are two scaling functions, that may generate different multiresolution analysis, and accordingly two different wavelet

functions. But biorthogonal wavelet based multigrid schemes are found to be effective [24]. Biorthogonal wavelet based

multigrid schemes provide some remedy in such challenging cases. Sweldens [25] highlights effectively the construction

of biorthogonal wavelet filters for the solution of large class of ill-conditioned system. In this paper, we developed the

biorthogonal spline wavelet full-approximation transform method (BSWFATM) for the numerical solution of nonlinear
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integral and integro-differential equations using discrete biorthogonal spline wavelet transform (DBSWT) matrix. This

matrix designed and implemented by Ruch and Fleet [26, 27] for decomposition and reconstruction of the given signals

and images. Using these decomposition and reconstruction matrices we introduced restriction and prolongation operators

respectively in the implementation of biorthogonal spline wavelet full-approximation transform method (BSWFATM).

2. Properties of Biorthogonal Wavelets

Discrete Biorthogonal Spline wavelet transform (DBSWT) matrix:

Let us consider the (5, 3) biorthogonal spline wavelet filter pair, We have

c̃ = (c̃−1, c̃0, c̃1) =

(√
2

4
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√
2

2
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√
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4
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)
To form the highpass filters, We have

dk = (−1)k c̃1−k and d̃k = (−1)kc1−k

The highpass filter pair d and for the (5, 3) biorthogonal spline filter pair.

d0 =

√
2

4
, d1 =

−
√

2

2
, d2 =

√
2

4
and d̃−1 =

√
2

8
, d̃0 =

√
2

4
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4
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2

4
, d̃3 =

√
2
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In this paper, we use the filter coefficients which are, low pass filter coefficients: c−2, c−1, c0, c1, c2 and High pass filter

coefficients: d0, d1, d2 for decomposition matrix.

Low pass filter coefficients: c̃−1 = d2, c̃0 = −d1, c̃1 = d0 and High pass filter coefficients: d̃−1 = −c2, d̃0 = c1, d̃1 = −c0, d̃2 =

c−1, d̃3 = −c−2 for reconstruction matrix.

The matrix formulation of the discrete biorthogonal spline wavelet transforms (DBSWT) plays an important role in both

biorthogonal spline wavelet transforms method (BSWTM) and biorthogonal Spline wavelet full-approximation transform

method (BSWFATM) for the numerical computations. As we already know about the DBSWT matrix and its applications

in the wavelet method and is given in [26] as,

Decomposition matrix:

DW =



c−1 c0 c1 c2 0 0 · · · 0 0 c−2

d1 d2 0 0 0 0 · · · 0 0 d0

0 c−2 c−1 c0 c1 c2 · · · 0 0 0

0 d0 d1 d2 0 0 · · · 0 0 0

...
. . .

. . .
. . . · · · · · · · · · 0 0 0

c1 c2 0 0 · · · · · · 0 c−2 c−1 c0

0 0 0 0 · · · · · · 0 d0 d1 d2


N×N
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Reconstruction matrix:

RW =



c̃0 c̃1 0 0 0 0 · · · 0 0 c̃−1

d̃0 d̃1 d̃2 d̃3 0 0 · · · 0 0 d̃−1

0 c̃−1 c̃0 c̃1 0 0 · · · 0 0 0

0 d̃−1 d̃0 d̃1 d̃2 d̃3 · · · 0 0 0

...
. . .

. . .
. . . · · · · · · · · · 0 0 0

0 0 0 0 · · · · · · 0 c̃−1 c̃0 c̃1

d̃2 d̃3 0 0 · · · · · · 0 d̃−1 d̃0 d̃1


N×N

Biorthogonal Spline Wavelet operators: Using the above matrices, we introduced biorthogonal spline wavelet restriction and

biorthogonal spline wavelet prolongation operators respectively. i.e.,

Biorthogonal spline wavelet restriction operator:

BSWTR =



c−1 c0 c1 c2 0 0 · · · 0 0 c−2

d1 d2 0 0 0 0 · · · 0 0 d0

0 c−2 c−1 c0 c1 c2 · · · 0 0 0

0 d0 d1 d2 0 0 · · · 0 0 0

...
. . .

. . .
. . . · · · · · · · · · 0 0 0

0 0 · · · 0 d0 d1 d2 0 · · · 0


N

2
×N

Biorthogonal spline wavelet prolongation operator:

BSWTP =



c̃0 c̃1 0 0 0 0 · · · 0 0 c̃−1

d̃0 d̃1 d̃2 d̃3 0 0 · · · 0 0 d̃−1

0 c̃−1 c̃0 c̃1 0 0 · · · 0 0 0

0 d̃−1 d̃0 d̃1 d̃2 d̃3 · · · 0 0 0

...
. . .

. . .
. . . · · · · · · · · · 0 0 0

0 · · · 0 c̃−1 c̃0 c̃1 0 · · · 0 0

0 · · · d̃−1 d̃0 d̃1 d̃2 d̃3 0 · · · 0


N

2
×N

Modified Discrete Biorthogonal Spline wavelet transform (MDBSWT) matrix:

Here, we developed MDBSWT matrix from DBSWT matrix in which by adding rows and columns consecutively with

diagonal element as 1, which is built as,

New decomposition matrix:

MDW =



c−1 0 c0 0 c1 0 c2 0 · · · 0 0 0 c−2 0

0 1 0 0 · · · · · · · · · · · · · · · 0 0 0 0 0

d1 0 d2 0 · · · · · · · · · 0 0 0 0 0 d0 0

0 0 0 1 0 0 · · · · · · · · · 0 0 0 0 0

...
. . .

. . .
. . . · · · · · · · · · · · · · · · · · · · · ·

. . .
. . .

...

c1 0 c2 0 · · · 0 0 0 c−2 0 c−1 0 c0 0

0 0 0 0 · · · · · · · · · · · · · · · 0 0 1 0 0

0 0 0 0 · · · · · · 0 0 d0 0 d1 0 d2 0

0 0 0 0 · · · · · · · · · · · · · · · 0 0 0 0 1


N×N
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New reconstruction matrix:

MRW =



c̃0 0 c̃1 0 0 0 0 0 · · · 0 c̃−1 0

0 1 0 0 · · · · · · · · · · · · · · · 0 0 0

d̃0 0 d̃1 0 d̃2 0 d̃3 · · · 0 0 d̃−1 0

0 0 0 1 0 0 · · · · · · · · · 0 0 0

...
. . .

. . .
. . . · · · · · · · · · · · · · · ·

. . .
. . .

...

0 0 0 · · · · · · 0 c̃−1 0 c̃0 0 c̃1 0

0 0 0 · · · · · · · · · · · · 0 0 1 0 0

d̃2 0 d̃3 · · · 0 0 d̃−1 0 d̃0 0 d̃1 0

0 0 0 · · · · · · · · · · · · 0 0 0 0 1


N×N

Modified Biorthogonal Spline wavelet operators:

Using the above matrices, we introduced a new biorthogonal spline wavelet restriction and prolongation operators

respectively as,

New biorthogonal spline wavelet restriction operator:

MBSWTR =



c−1 0 c0 0 c1 0 c2 0 · · · 0 0 0 c−2 0

0 1 0 0 · · · · · · · · · · · · · · · 0 0 0 0 0

d1 0 d2 0 · · · · · · · · · 0 0 0 0 0 d0 0

0 0 0 1 0 0 · · · · · · · · · 0 0 0 0 0

0 0 c−2 0 c−1 0 c0 0 c1 0 c2 0 · · · 0

0 0 d0 0 d1 0 d2 0 0 · · · · · · 0 0 0

...
. . .

. . .
. . . · · · · · · · · · · · · · · · · · · · · ·

. . .
. . .

...

0 0 · · · 0 d0 0 d1 0 d2 0 0 · · · 0 0


N

2
×N

New biorthogonal spline wavelet prolongation operator:

MBSWTP =



c̃0 0 c̃1 0 0 0 0 0 · · · 0 c̃−1 0

0 1 0 0 · · · · · · · · · · · · · · · 0 0 0

d̃0 0 d̃1 0 d̃2 0 d̃3 · · · 0 0 d̃−1 0

0 0 0 1 0 0 · · · · · · · · · 0 0 0

0 0 c̃−1 0 c̃0 0 c̃1 0 0 · · · 0 0

...
. . .

. . .
. . . · · · · · · · · · · · · · · ·

. . .
. . .

...

0 · · · d̃−1 0 d̃0 0 d̃1 0 d̃2 d̃3 · · · 0


N

2
×N

3. Biothogonal Spline Wavelet Transform Method of Solution

In the computation of numerical analysis obtain approximate solution containing some error. In this section, we have two

cases to solve for the numerical solution of linear and nonlinear integral and integro-differential equations.

Case 1: Multigrid (MG) Method

In this case, we solve linear problems to approximate solution containing some error. There are many approaches to minimize

the error. Some of them are multigrid (MG) method, biorthogonal spline wavelet transform method (BSWTM) and modified

11
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biorthogonal spline wavelet transform method (MBSWTM). Multigrid method is explained in the [17]. Now, we discuss

about BSWTM and MBSWTM using the Biorthogonal Spline Wavelet operators and as given in section 2, instead of

multigrid R and P operators. Now we are discussing about the method of solution as follows:

Biorthogonal Spline Wavelet Transform Method (BSWTM): Consider the Volterra integral equations of the second

kind,

u(t) = f(t) +

∫ t

0

k(t, s)u(s))ds0 ≤ t, s ≤ 1, (1)

Consider the Fredholm integral equation of the second kind,

u(t) = f(t) +

∫ 1

0

k(t, s)u(s))ds0 ≤ t, s ≤ 1, (2)

where f(t) and the kernels k(t,s) are assumed to be in L2(R) on the interval 0 ≤ t, s ≤ 1. After discretizing the integral

equation through the trapezoidal discretization method (TDM) [28], we get system of algebraic equations. Through this

system we can write the system as

Au = b (3)

where A is N ×N coefficient matrix, b is N × 1 matrix and is matrix to be determined. Solving the system of equation (3)

through the iterative method, we get the approximate solution v of u. i.e., u = e+ v ⇒ v = u− e , where e is N × 1 matrix

error to be determined. From equation (3), we get the approximate solution v of u. Now we find the residual as

rN×1 = [b]N×1 − [A]N×N [v]N×1 (4)

We reduce the matrices in the finer
(
N th = 2J

)
level to coarsest level using Biorthogonal spline wavelet restriction operator

(BSWTR) and then construct the matrices back to finer level from the coarsest level using Biorthogonal spline wavelet

prolongation operator(BSWTP ). From (4),

rN/2×1 = [BSWTR]N/2×N [r]N×1 (5)

and

[A]N/2×N/2 = [BSWTR]N/2×N [A]N×N [BSWTP ]N×N/2 (6)

Residual equation becomes,

[A]N/2×N/2 [e]N/2×1 = [r]N/2×1

where eN/2×1 is to be determined. Solve eN/2×1 with initial guess ′0′. From (5),

rN/4×1 = [BSWTR]N/4×N/2 [r]N/2×1 (7)

and

[A]N/4×N/4 = [BSWTR]N/4×N/2 [A]N/2×N/2 [BSWTP ]N/2×N/4

Then residual equation becomes,

[A]N/4×N/4 [e]N/4×1 = [r]N/4×1

12
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Solve eN/4×1 with initial guess ′0′. Continue the procedure up to the coarsest level, we have,

r1×1 = [BSWTR]1×2 [r]2×1 (8)

and

[A]1×1 = [BSWTR]1×2 [A]2×2 [BSWTP ]2×1

Residual equation is,

[A]1×1 [e]1×1 = [r]1×1

Solve e1×1 exactly. Now correct the solution

u2×1 = [e]2×1 + [BSWTP ]2×1 [e]1×1

Solve [A]2×2 [u]2×1 = [r]2×1 with initial guess u2×1. Correct the solution

u4×1 = [e]4×1 + [BSWTP ]4×2 [u]2×1

Solve [A]4×4 [u]4×1 = [r]4×1 with initial guess u4×1. Continue the procedure up to the finer level. Correct the solution

uN×1 = [v]N×1 + [BSWTP ]N×N/2 [u]N/2×1

Solve [A]N×N [u]N×1 = [b]N×1 with initial guess uN×1. uN×1 is the required solution of system (3).

Modified Biorthogonal Spline Wavelet Transform Method (MBSWTM): As explained in the above, the same

procedure is applied for modified biorthogonal spline wavelet transform method (MBSWTM). Here, we use the modified

biorthogonal spline wavelet operators and as given in section 2, instead of multigrid R and P operators.

Case 2: Full-Approximation Scheme (FAS)

In this case, we solve Nonlinear problems to approximate solution containing some error. There are many approaches to

minimize the error. Some of them are Full-Approximation Scheme (FAS), Biorthogonal Spline Wavelet Full-Approximation

transform method (BSWFATM) and modified Biorthogonal Spline Wavelet Full-Approximation transform method (MB-

SWFATM). Full-Approximation Scheme is explained in the [19]. Here, we use the Biorthogonal Spline Wavelet operators

and as given in section 2, instead of multigrid R and P operators.

Biorthogonal Spline Wavelet Full-Approximation Transform Method (BSWFATM): Consider the Nonlinear

Fredholm integral equation of the second kind,

u(t) = f(t) +

∫ 1

0

k(t, s, u(s))ds0 ≤ t, s ≤ 1, (9)

Consider the Nonlinear Volterra integral equation of the second kind,

u(t) = f(t) +

∫ t

0

k(t, s, u(s))ds0 ≤ t, s ≤ 1, (10)

where k(t, s, u(s)) is a nonlinear function defined on [0, 1] × [0, 1]. The known function k(t, s, u(s)) is called the kernel of

the integral equation, while the unknown function u(t) represents the solution of the integral equation. After discretizing

13



Numerical Solution of Linear and Nonlinear Integral and Integro-Differential Equations using Biorthogonal Spline Wavelet Transform Method

the integral equation through the trapezoidal discretization method (TDM) [28], we get the system of nonlinear equations

of the form,

i.e., A(u) = b (11)

where A is N×N coefficient matrix, I is the identity matrix, b is N×1 matrix and u is N×1 matrix to be determined. This

has N equations with N unknowns. Solving the system of Equation (11) through the iterative method that is Gauss Seidel

(GS), we get approximate solution v of u. i.e., u = e + v ⇒ v = u − e, where e is (N × 1) matrix error to be determined.

Now, we are deliberating about the Biorthogonal Spline Wavelet Full-Approximation Transform Method (BSWFATM) of

solutions given by Briggs et. al [6] is as follows the procedure. From the system Equation (11), we get the approximate

solution v for u. Now we find the residual as

rN×1 = bN×1 −A(v)N×1 (12)

Reduce the matrices in the finer level to coarsest level using Biorthogonal Spline Wavelet Restriction operator and then

construct the matrices back to finer level from the coarsest level using Biorthogonal Spline Wavelet Prolongation operator

as given in section 2. Next,

rN/2×1 = [BSWTR]N/2×N [r]N×1 (13)

Similarly,

vN/2×1 = [BSWTR]N/2×N [v]N×1 (14)

and

A
(
vN/2×1 + eN/2×1

)
+ A

(
vN/2×1

)
= rN/2×1 (15)

Solve Equation (15) with initial guess 0, we get eN/2×1. Next,

rN/4×1 = [BSWTR]N/4×N/2[r]N/2×1

Similarly,

vN/4×1 = [BSWTR]N/4×N/2[v]N/2×1

and

A(vN/4×1 + eN/4×1) + A(vN/4×1) = rN/4×1 (16)

Solve Equation (16) with initial guess 0, we get eN/4×1. Next, the procedure is continue up to the coarsest level, we have,

r1×1 = [BSWTR]1×2[r]2×1.

Similarly,

v1×1 = [BSWTR]1×2[v]2×1.

and

A(v1×1 + e1×1) + A(v1×1) = r1×1. (17)

Solve Equation (17) we get, e1×1. Next, Interpolate error up to the finer level, i.e.

e2×1 = [BSWTP ]2×1[e]1×1,

14
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e4×1 = [BSWTP ]4×2[e]2×1,

and so on we have,

eN×1 = [BSWTP ]N×N/2[e]N/2×1.

Lastly, Correct the solution with error, uN×1 = [v]N×1 + [e]N×1. This is the required solution of the given integral equation.

Modified Biorthogonal Spline Wavelet Full-Approximation Transform Method (MBSWFATM): As explained

in the above, the same procedure is applied for modified biorthogonal spline wavelet full-approximation transform method

(MBSWFATM). Here, we use the modified biorthogonal spline wavelet operators MBSWTR and MBSWTP as given in

section 2, instead of multigrid R and P operators.

4. Method of Implementation

In this section, we implemented MG, BSWTM, MBSWTM, FAS, BSWFATM and MBSWFATM for the numerical solution

of linear and nonlinear integral and integro-differential equations and subsequently presented in tables and figures, here error

analysis is considered as Emax = max|ue − ua|, where ue and ua are exact and approximate solutions respectively.

Test Problem 4.1. Let us consider the linear Volterra integral equation [29],

u(t) = sin(t)−
∫ t

0

k(t− s)u(s))ds0 ≤ t, s ≤ 1, (18)

which has the exact solution u(t) =
1

2
(sin(t) + sinh(t)). After discretizing the Equation (18) through the trapezoidal dis-

cretization method (TDM), we get a system of linear algebraic equations of the form, (for N = 8).

[A]8×8[u]8×1 = [b]8×1 (19)

Solving Equation (19) through the iterative method, we get the approximate solution v of u. i.e., u = e + v → v = u − e,

where e is (8× 1 matrix) error to be determined. The implementation of the problem is given as the BSWTM is discussed

in section 3, as follows, From Equation (19), we find the residual as

r8×1 = [b]8×1 − [A]8×8[v]8×1

We get r8×1 = [ 0 7.75e− 09 2.84e− 09 −7.59e− 09 −3.90e− 09 1.03e− 08 −5.74e− 09 1.06e− 09 ]. We reduce the

matrices in the finer level to coarsest level using Restriction operator ′BSWTR
′ and then construct the matrices back to

finer level from the coarsest level using Prolongation operator ′BSWTP
′. From Equation (20),

r4×1 = [BSWTR]4×8[r]8×1 (20)

and

[A]4×4 = [BSWTR]4×8 [A]8×8 [BSWTP ]8×4

Residual equation becomes,

[A]4×4[e]4×1 = [r]4×1,

15
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where e4×1 to be determine. Solve with initial guess 0. We get e4×1 = [ 1.25e− 09 7.71e− 09 6.25e− 09 −7.33e− 09 ].

From Equation (21),

r2×1 = [BSWTR]2×4[r]4×1 (21)

and

[A]2×2 = [BSWTR]2×4 [A]4×4 [BSWTP ]4×2

Then residual equation becomes,

[A]2×2[e]2×1 = [r]2×1.

Solve e2×1 with initial guess 0. We get e2×1 = [ 5.20e− 09 7.72e− 09 ]. From Equation (22),

r1×1 = [BSWTR]1×2[r]2×1 (22)

and

[A]1×1 = [BSWTR]1×2 [A]2×2 [BSWTP ]2×1

and Residual equation is,

[A]1×1[e]1×1 = [r]1×1.

Solve e1×1 exactly. We get e1×1 = 1.56e− 08. From e1×1, now correct the solution

u2×1 = [e]2×1 + [BSWTP ]2×1[e]1×1

Solve [A]2×2[u]2×1 = [r]2×1 with initial guess u2×1. We get u2×1 = [ 5.20e− 09 7.72e− 09 ]. Correct the solution from

u2×1,

u4×1 = [e]4×1 + [BSWTP ]4×2[u]2×1

Solve [A]4×4[u]4×1 = [r]4×1 with initial guess u4×1. We get u4×1 = [ 1.25e− 09 7.71e− 09 6.25e− 09 −7.33e− 09 ]. From

u4×1 correct the solution,

u8×1 = [v]8×1 + [BSWTP ]8×4[u]4×1

Solve [A]8×8[u]8×1 = [f ]8×1 with initial guess u8×1, where u8×1 is the required solution of Equation (18). The numerical

solutions of Equation (18) is obtained through the method as explained in section 3 compared with the exact and existing

method are shown in table 1 and in the figure 1 for N = 64. Maximum error and CPU time are shown in table 2.

Figure 1. Comparison of numerical solutions with exact solution of test problem 4.1, for N=64.
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t MG BSWTM MBSWTM Exact

0 0.0000 0.0000 0.0000 0

0.1428 0.1423 0.1423 0.1423 0.1428

0.2857 0.2847 0.2847 0.2847 0.2857

0.4285 0.4271 0.4271 0.4271 0.4286

0.5714 0.5698 0.5698 0.5698 0.5719

0.7142 0.7132 0.7132 0.7132 0.7158

0.8571 0.8577 0.8577 0.8577 0.8609

1 1.0043 1.0043 1.0043 1.0083

Table 1. Numerical results of the test problem 4.1, for N = 8

N Method Emax Setup time Running time Total time

MG 8.72e-04 0.2599 0.0296 0.2895

16 BSWTM 8.72e-04 0.0470 0.0107 0.0578

MBSWTM 8.72e-04 0.0462 0.0030 0.0492

MG 2.04e-04 0.1722 0.0321 0.2043

32 BSWTM 2.04e-04 0.0975 0.0098 0.1073

MBSWTM 2.04e-04 0.0648 0.0029 0.0677

MG 4.95e-05 0.1848 0.0334 0.2182

64 BSWTM 4.95e-05 0.1385 0.0109 0.1494

MBSWTM 4.95e-05 0.0894 0.0032 0.0926

MG 1.21e-05 0.3431 0.0117 0.3548

128 BSWTM 1.21e-05 0.2226 0.0310 0.2536

MBSWTM 1.21e-05 0.1798 0.0041 0.1839

Table 2. Maximum error and CPU time (in seconds) of the test problem 4.1

Test Problem 4.2. Next, consider the linear Fredholm integral equation [30],

u(t) = 0.9t2 +

∫ 1

0

0.5t2s2u(s)ds0 ≤ t, s ≤ 1, (23)

which has the exact solution u(t) = t2. The numerical solutions of Equation (24) is obtained through the method as explained

in section 3 compared with the exact and existing method are shown in table 3 and in the figure 2 for N = 64. Maximum

error and CPU time are shown in table 4.

Figure 2. Comparison of numerical solutions with exact solution of test problem 4.2, for N=64.

17



Numerical Solution of Linear and Nonlinear Integral and Integro-Differential Equations using Biorthogonal Spline Wavelet Transform Method

t MG BSWTM MBSWTM Exact

0 0.0000 0.0000 0.0000 0

0.0666 0.0044 0.0044 0.0044 0.0044

0.1333 0.0177 0.0177 0.0177 0.0177

0.2000 0.0400 0.0400 0.0400 0.0400

0.2666 0.0711 0.0711 0.0711 0.0711

0.3333 0.1112 0.1112 0.1112 0.1111

0.4000 0.1601 0.1601 0.1601 0.1600

0.4666 0.2179 0.2179 0.2179 0.2177

0.5333 0.2846 0.2846 0.2846 0.2844

0.6000 0.3602 0.3602 0.3602 0.3600

0.6666 0.4448 0.4448 0.4448 0.4444

0.7333 0.5382 0.5382 0.5382 0.5377

0.8000 0.6405 0.6405 0.6405 0.6400

0.8666 0.7517 0.7517 0.7517 0.7511

0.9333 0.8718 0.8718 0.8718 0.8711

1 1.0008 1.0008 1.0008 1

Table 3. Numerical results of the test problem 4.2, for N = 16

N Method Emax Setup time Running time Total time

MG 8.23e-04 0.2650 0.0290 0.2939

16 BSWTM 8.23e-04 0.0521 0.0089 0.0611

MBSWTM 8.23e-04 0.0476 0.0047 0.0523

MG 1.92e-04 0.1890 0.0303 0.2193

32 BSWTM 1.92e-04 0.0680 0.0095 0.0774

MBSWTM 1.92e-04 0.0571 0.0031 0.0602

MG 4.66e-05 0.2028 0.0309 0.2337

64 BSWTM 4.66e-05 0.1504 0.0104 0.1608

MBSWTM 4.66e-05 0.0953 0.0037 0.0991

MG 1.14e-05 0.3496 0.0128 0.3624

128 BSWTM 1.14e-05 0.2404 0.0324 0.2728

MBSWTM 1.14e-05 0.2150 0.0043 0.2192

Table 4. Maximum error and CPU time (in seconds) of the test problem 4.2

Test Problem 4.3. Next, consider the linear Volterra-Fredholm integral equation [31],

u(t) = t− 2exp(t) + exp(−t) + 1 +

∫ t

0

sexp(t)u(s))ds +

∫ 1

0

exp(t + s)u(s))ds0 ≤ t, s ≤ 1, (24)

which has the exact solution u(t) = exp(−t). After discretizing the Equation (25) through the trapezoidal discretization

method (TDM), we get a system of linear algebraic equations of the form, (for N = 8).

[A]8×8[u]8×1 = [b]8×1 (25)

Solving Equation (26) through the iterative method, we get the approximate solution v of u. i.e., u = e + v → v = u − e,

where e is (8 × 1 matrix) error to be determined. The implementation of the problem is given as the BSWTM method is

discussed in section 3, as follows, From Equation (26), we find the residual as

r8×1 = [b]8×1 − [A]8×8[v]8×1 (26)

We get r8×1 = [ −2.67e− 07 1.82e− 07 8.04e− 07 −1.36e− 06 9.50e− 07 −3.31e− 07 4.64e− 08 −1.15e− 08 ]. We

reduce the matrices in the finer level to coarsest level using Restriction operator ′BSWT ′R and then construct the matrices
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back to finer level from the coarsest level using Prolongation operator ′BSWT ′P . From Equation (27),

r4×1 = [BSWTR]4×8[r]8×1 (27)

and

[A]4×4 = [BSWTR]4×8 [A]8×8 [BSWTP ]8×4

Residual equation becomes,

[A]4×4[e]4×1 = [r]4×1

where e4×1 to be determine. Solve with initial guess 0. We get e4×1 = [ 8.70e− 08 9.01e− 09 1.21e− 06 −1.54e− 06 ].

From Equation (28),

r2×1 = [BSWTR]2×4[r]4×1 (28)

and

[A]2×2 = [BSWTR]2×4 [A]4×4 [BSWTP ]4×2

Then residual equation becomes,

[A]2×2[e]2×1 = [r]2×1.

Solve e2×1 with initial guess 0. We get e2×1 = [ 4.18e− 07 3.71e− 07 ]. From Equation (29),

r1×1 = [BSWTR]1×2[r]2×1 (29)

and

[A]1×1 = [BSWTR]1×2 [A]2×2 [BSWTP ]2×1

and Residual equation is,

[A]1×1[e]1×1 = [r]1×1.

Solve e1×1 exactly. We get e1×1 = 1.36e− 06. From e1×1 , now correct the solution

u2×1 = [e]2×1 + [BSWTP ]2×1[e]1×1

Solve [A]2×2[u]2×1 = [r]2×1 with initial guess u2×1. We get u2×1 = [ 4.18e− 07 3.71e− 07 ]. Correct the solution from

u2×1,

u4×1 = [e]4×1 + [BSWTP ]4×2[u]2×1

Solve [A]4×4[u]4×1 = [r]4×1 with initial guess u4×1. We get u4×1 = [ 8.70e− 08 9.01e− 09 1.21e− 06 −1.54e− 06 ]. From

u4×1 correct the solution,

u8×1 = [v]8×1 + [BSWTP ]8×4[u]4×1

Solve [A]8×8[u]8×1 = [f ]8×1 with initial guess u8×1 where u8×1 is the required solution of Equation (25). The numerical

solutions of Equation (25) is obtained through the method as explained in section 3 compared with the exact and existing

method are shown in table 5 and in the figure 3 for N = 64. Maximum error and CPU time are shown in table 6.
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Figure 3. Comparison of numerical solutions with exact solution of test problem 4.3, for N=64.

t MG BSWTM MBSWTM Exact

0 1.0274 1.0274 1.0274 1

0.1428 0.8984 0.8984 0.8984 0.8668

0.2857 0.7644 0.7644 0.7644 0.7514

0.4285 0.6587 0.6587 0.6587 0.6514

0.5714 0.5673 0.5673 0.5673 0.5647

0.7142 0.4881 0.4881 0.4881 0.4895

0.8571 0.4195 0.4195 0.4195 0.4243

1 0.4586 0.4586 0.4586 0.3678

Table 5. Numerical results of the test problem 4.3, for N = 8

N Method Emax Setup time Running time Total time

MG 4.46e-02 0.2630 0.0294 0.2924

16 BSWTM 4.46e-02 0.0516 0.0109 0.0625

MBSWTM 4.46e-02 0.0493 0.0051 0.0544

MG 2.16e-02 0.1717 0.0305 0.2022

32 BSWTM 2.16e-02 0.0717 0.0083 0.0800

MBSWTM 2.16e-02 0.0618 0.0059 0.0677

MG 1.05e-02 0.2494 0.0313 0.2807

64 BSWTM 1.05e-02 0.1890 0.0225 0.2115

MBSWTM 1.05e-02 0.1154 0.0045 0.1198

MG 5.23e-03 0.3877 0.0096 0.3973

128 BSWTM 5.23e-03 0.2529 0.0345 0.2874

MBSWTM 5.23e-03 0.1911 0.0054 0.1965

Table 6. Maximum error and CPU time (in seconds) of the test problem 4.3

Test Problem 4.4. Next, consider the Nonlinear Fredholm integral equations [32],

u(t) = −sin(4t)− t3
(
−367

4096
cos(4)sin(4) +

11357

98304
− 2095

32768
cos2(4)

)
+

∫ 1

0

t3s5u2(s))ds, 0 ≤ t ≤ 1, (30)

which has the exact solution u(t) = sin(−4t). After discretizing the Equation (31) through the trapezoidal discretization

method (TDM), we get a system of nonlinear algebraic equations of the form, (for N = 8).

[A]8×8[u]8×1 = [b]8×1 (31)

Solving Equation (32) through the iterative method, we get the approximate solution v of u. i.e., u = e + v → v = u − e,

where e is (8× 1 matrix) error to be determined. The implementation of MBSWFATM is discussed in section 3 as follows,

From Equation (32), we find the residual as

r8×1 = [b]8×1 − [A]8×8[v]8×1 (32)
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We get r8×1 = [ 0 0 −3.98e− 09 −3.69e− 07 −5.75e− 06 −1.50e− 05 8.31e− 05 6.44e− 04 ]. We reduce the matrices

in the finer level to coarsest level using Restriction operator MBSWTR and then construct the matrices back to finer level

from the coarsest level using Prolongation operator MBSWTT
P . From Equation (33),

r4×1 = [MBSWTR]4×8[r]8×1 (33)

Similarly, v4×1 = [MBSWTR]4×8][v]8×1 and

A(v4×1 + e4×1) + A(v4×1 = r4×1.) (34)

Solve Equation (35) with initial guess 0, we get e4×1. From Equation (34),

r2×1 = [MBSWTR]2×4[r]4×1 (35)

Similarly, v2×1 = [MBSWTR]2×4][v]4×1 and

A(v2×1 + e2×1) + A(v2×1 = r2×1.) (36)

Solve Equation (37) with initial guess 0, we get e2×1. From Equation (36),

r1×1 = [MBSWTR]1×2[r]2×1 (37)

Similarly, v1×1 = [MBSWTR]1×2][v]2×1 and

A(v1×1 + e1×1) + A(v1×1 = r1×1.) (38)

Solve Equation (39) we get, e1×1. From e1×1 , Interpolate error up to the finer level, i.e.

e2×1 = [MBSWTT
P ]2×1[e]1×1

e4×1 = [MBSWTT
P ]4×2[e]2×1

and lastly we have,

e8×1 = [MBSWTT
P ]8×4[e]4×1. (39)

We get e8×1 = [ 1.43e− 06 7.32e− 11 3.56e− 05 −3.67e− 07 1.03e− 05 0 −7.15e− 07 0 ]. From Equation (40) cor-

rect the solution with error u8×1 = v8×1 +e8×1. Lastly, we get u8×1 is the required solution of Equation (31). The numerical

solutions of the given equation is obtained through the present method as explained in section 3 and are presented in com-

parison with the exact solution are shown in the table 7 and the figure 4, for N = 64. Maximum error analysis and CPU

time are shown in table 8.
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Figure 4. Comparison of numerical solutions with exact solution of test problem 4.4, for N=64.

N Method Emax Setup time Running time Total time

FAS 2.45e-03 0.0161 0.0915 0.1075

16 BSWFATM 1.98e-03 0.0245 0.0753 0.0999

MBSWFATM 1.98e-03 0.0102 0.0701 0.0803

FAS 5.54e-04 0.0285 0.4081 0.4366

32 BSWFATM 3.17e-04 0.0148 0.3372 0.3520

MBSWFATM 3.17e-04 0.0080 0.3222 0.3302

FAS 1.28e-04 0.2280 3.0487 3.2767

64 BSWFATM 8.45e-05 0.0148 2.7879 2.8027

MBSWFATM 8.45e-05 0.0075 1.8799 1.8873

Table 7. Maximum error and CPU time (in seconds) of the test problem 4.4

t FAS BSWFATM MBSWFATM EXACT

0 0.0000 0.0000 0.0000 0

0.0666 -0.2635 -0.2631 -0.2635 -0.2635

0.1333 -0.5084 -0.5083 -0.5081 -0.5084

0.2000 -0.7173 -0.7173 -0.7173 -0.7173

0.2666 -0.8755 -0.8755 -0.8754 -0.8756

0.3333 -0.9718 -0.9718 -0.9718 -0.9719

0.4000 -0.9994 -0.9994 -0.9994 -0.9995

0.4666 -0.9562 -0.9562 -0.9562 -0.9565

0.5333 -0.8454 -0.8454 -0.8454 -0.8459

0.6000 -0.6748 -0.6748 -0.6748 -0.6754

0.6666 -0.4564 -0.4564 -0.4564 -0.4572

0.7333 -0.2056 -0.2056 -0.2056 -0.2067

0.8000 0.0598 0.0597 0.0597 0.0583

0.8666 0.3212 0.3210 0.3210 0.3193

0.9333 0.5598 0.5595 0.5595 0.5578

1 0.7592 0.7587 0.7587 0.7568

Table 8. Numerical results of the test problem 4.4, for N = 16

Test Problem 4.5. Next, consider the Nonlinear Fredholm-Hammerstein integral equations [33],

u(t) = tln(t + 1)− 55

108
t +

1

3
ln2

(
8

3
t + 2− tln2

)
− 241

576
+

1

2

∫ 1

0

(t− s)u2(s))ds, 0 ≤ t ≤ 1, (40)

which has the exact solution u(t) = tln(t + 1). The numerical solutions of Equation (41) is obtained through the present

method as explained in section 3 and are presented in comparison with the exact solution are shown in the table 9 and the

figure 5, for N = 64. Maximum error analysis and CPU time are shown in table 10.
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t FAS BSWFATM MBSWFATM EXACT

0 -0.0003 -0.0003 -0.0003 0

0.0666 0.0039 0.0039 0.0039 0.0043

0.1333 0.0163 0.0163 0.0163 0.0166

0.2000 0.0361 0.0361 0.0361 0.0364

0.2666 0.0627 0.0627 0.0627 0.0630

0.3333 0.0956 0.0956 0.0956 0.0958

0.4000 0.1343 0.1343 0.1343 0.1345

0.4666 0.1784 0.1784 0.1784 0.1787

0.5333 0.2277 0.2277 0.2277 0.2279

0.6000 0.2817 0.2817 0.2817 0.2820

0.6666 0.3403 0.3403 0.3403 0.3405

0.7333 0.4031 0.4031 0.4031 0.4033

0.8000 0.4700 0.4700 0.4700 0.4702

0.8666 0.5407 0.5407 0.5407 0.5409

0.9333 0.6151 0.6151 0.6151 0.6152

1 0.6930 0.6930 0.6930 0.6931

Table 9. Numerical results of the test problem 4.5, for N = 16

Figure 5. Comparison of numerical solutions with exact solution of test problem 4.5, for N=64.

N Method Emax Setup time Running time Total time

FAS 3.66e-04 0.0274 0.0462 0.0736

16 BSWFATM 3.66e-04 0.0178 0.0314 0.0492

MBSWFATM 3.66e-04 0.0100 0.0289 0.0389

FAS 8.57e-05 0.0252 0.0483 0.0735

32 BSWFATM 8.57e-05 0.0148 0.0447 0.0594

MBSWFATM 8.57e-05 0.0100 0.0399 0.0500

FAS 2.07e-05 0.0806 0.1031 0.1836

64 BSWFATM 2.07e-05 0.0148 0.0993 0.1141

MBSWFATM 2.07e-05 0.0103 0.0954 0.1057

FAS 5.10e-06 0.1789 0.2082 0.3871

128 BSWFATM 5.10e-06 0.0093 0.2195 0.2288

MBSWFATM 5.10e-06 0.0063 0.1904 0.1966

Table 10. Maximum error and CPU time (in seconds) of the test problem 4.5

Test Problem 4.6. Next, consider the Nonlinear Fredholm-Hammerstein integro-differential equation [34],

u′(t) = 1− 1

3
t +

∫ 1

0

tu2(s))ds, u(0) = 0, 0 ≤ t ≤ 1, (41)

which has the exact solution u(t) = t. Integrating the Equation (42) w.r.t t and using the initial condition, we get

u(t) = t− t2

6
+

t2

2

∫ 1

0

u2(s)ds, (42)
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Solving this equation, we obtain the numerical solution through the present method as explained in section 3 and are

presented in comparison with the exact solution are shown in the table 11 and the figure 6, for N = 64. Maximum error

analysis and CPU time are shown in table 12.

Figure 6. Comparison of numerical solutions with exact solution of test problem 4.6, for N=64.

t FAS BSWFATM MBSWFATM EXACT

0 0.0000 0.0000 0.0000 0

0.0666 0.0666 0.0666 0.0666 0.0666

0.1333 0.1333 0.1333 0.1333 0.1333

0.2000 0.2000 0.2000 0.2000 0.2000

0.2666 0.2666 0.2666 0.2666 0.2666

0.3333 0.3333 0.3333 0.3333 0.3333

0.4000 0.4000 0.4000 0.4000 0.4000

0.4666 0.4666 0.4666 0.4666 0.4666

0.5333 0.5333 0.5333 0.5333 0.5333

0.6000 0.6000 0.6000 0.6000 0.6000

0.6666 0.6666 0.6666 0.6666 0.6666

0.7333 0.7333 0.7333 0.7333 0.7333

0.8000 0.7998 0.7998 0.7998 0.8000

0.8666 0.8665 0.8665 0.8665 0.8666

0.9333 0.9332 0.9332 0.9332 0.9333

1 0.9998 0.9998 0.9998 1

Table 11. Numerical results of the test problem 4.6, for N = 16

N Method Emax Setup time Running time Total time

FAS 1.70e-03 0.0157 0.1053 0.1210

16 BSWFATM 1.70e-03 0.0205 0.0797 0.1002

MBSWFATM 1.70e-03 0.0104 0.0668 0.0772

FAS 9.71e-04 0.0286 0.4099 0.4385

32 BSWFATM 9.71e-04 0.0148 0.4074 0.4222

MBSWFATM 9.71e-04 0.0100 0.4010 0.4110

FAS 5.13e-04 0.0633 2.8380 2.9012

64 BSWFATM 5.13e-04 0.0150 2.4331 2.4481

MBSWFATM 5.13e-04 0.006 1.5218 1.5281

Table 12. Maximum error and CPU time (in seconds) of the test problem 4.6.

Test Problem 4.7. Next, consider the Nonlinear Volterra integral equations [35],

u(t) = f(t) +

∫ t

0

ts2u2(s)ds, 0 ≤ t ≤ 1, (43)
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where f(t) =

(
1− 11

9
t +

2

3
t2 − 1

3
t3 +

2

9
t4
)
ln(t+1)− 1

3
(t+t3)(ln(t+1))2− 11

9
t2+

5

18
t3− 2

27
t4. which has the exact solution

u(t) = ln(t+ 1). After discretizing the Equation (44) through the trapezoidal discretization method (TDM), we get system of

nonlinear algebraic equations of the form (for N = 8),

[A]8×8[u]8×1 = [b]8×1 (44)

Solving Equation (45) through the iterative method, we get the approximate solution v of u. i.e., u = e + v → v = u − e,

where e is (8 × 1 matrix) error to be determined. The implementation of the problem is given as the MBSWFATM is

discussed in section 3, as follows, From Equation (45), we find the residual as

r8×1 = [b]8×1 − [A]8×8[v]8×1 (45)

We get r8×1 = [ [0 0 3.52e− 07 1.14e− 05 1.29e− 04 8.29e− 04 3.66e− 03 4.29e− 03 ]. We reduce the matrices in

the finer level to coarsest level using Restriction operator MBSWTR and then construct the matrices back to finer level

from the coarsest level using Prolongation operator MBSWTT
P . From Equation (46),

r4×1 = [MBSWTR]4×8[r]8×1 (46)

Similarly,

v4×1 = [MBSWTR]4×8[v]8×1

and

A(v4×1 + e4×1) + A(v4×1) = r4×1. (47)

Solve Equation (48) with initial guess ’0’, we get e4×1. From Equation (47),

r2×1 = [MBSWTR]2×4[r]4×1 (48)

similarly,

v2×1 = [MBSWTR]2×4[v]4×1

and

A(v2×1 + e2×1) + A(v2×1) = r2×1. (49)

Solve Equation (50) with initial guess ’0’, we get e2×1. From Equation (49),

r1×1 = [MBSWTR]1×2 = [r]2×1 (50)

similarly,

v1×1 = [MBSWTR]1×2[v]2×1

and

A(v1×1 + e1×1) + A(v1×1) = r1×1. (51)

Solve Equation (52) we get, e1×1. From e1×1. Interpolate error up to the finer level, i.e.

e2×1 = [MBSWTT
P ]2×1[e]1×1, e4×1 = [MBSWTT

P ]4×2[e]2×1,
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and lastly we have,

e8×1 = [MBSWTT
P ]8×4[e]4×1. (52)

We get e8×1 = [ 1.50e− 05 0 1.75e− 03 7.95e− 06 5.03e− 04 0 −7.53e− 06 0 ]. From Equation (53) Correct the

solution with error u8×1 = v8×1 + e8×1. Lastly, we get u8×1 is the required approximate solution of Equation (44) are

presented in comparison with the exact solution are shown in the table 13 and the figure 7 for N = 64. Maximum error

analysis and CPU time is shown in table 14.

Figure 7. Comparison of numerical solutions with exact solution of test problem 4.7, for N=64.

t FAS BSWFATM MBSWFATM EXACT

0 0.0000 0.0000 0.0000 0

0.0666 0.0645 0.0650 0.0645 0.0645

0.1333 0.1251 0.1253 0.1259 0.1251

0.2000 0.1823 0.1822 0.1823 0.1823

0.2666 0.2364 0.2364 0.2366 0.2363

0.3333 0.2877 0.2877 0.2877 0.2876

0.4000 0.3367 0.3367 0.3366 0.3364

0.4666 0.3835 0.3835 0.3835 0.3829

0.5333 0.4284 0.4284 0.4284 0.4274

0.6000 0.4717 0.4716 0.4716 0.4700

0.6666 0.5137 0.5135 0.5135 0.5108

0.7333 0.5544 0.5542 0.5542 0.5500

0.8000 0.5946 0.5940 0.5940 0.5877

0.8666 0.6341 0.6331 0.6331 0.6241

0.9333 0.6729 0.6718 0.6718 0.6592

1 0.6958 0.6947 0.6947 0.6931

Table 13. Numerical results of the test problem 4.7, for N = 16

N Method Emax Setup time Running time Total time

FAS 1.36e-02 0.0158 0.0750 0.0908

16 BSWFATM 1.26e-02 0.0147 0.0733 0.0880

MBSWFATM 1.26e-02 0.0101 0.0676 0.0778

FAS 7.86e-03 0.0284 0.4068 0.4352

32 BSWFATM 7.50e-03 0.0148 0.4064 0.4211

MBSWFATM 7.50e-03 0.0100 0.3366 0.3467

FAS 4.19e-03 0.0833 3.2563 3.3396

64 BSWFATM 4.09e-03 0.0149 3.0753 3.0903

MBSWFATM 4.09e-03 0.0102 2.2629 2.2732

Table 14. Maximum error and CPU time (in seconds) of the test problem 4.7.
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Test Problem 4.8. Next, consider the Nonlinear Volterra-Hammerstein integral equation [36],

u(t) =
−15

56
t8 +

13

14
t7 − 11

10
t6 +

9

20
t5 + t2 − t +

∫ t

0

(t + s)u3(s)ds, 0 ≤ t ≤ 1, (53)

which has the exact solution u(t) = t2 − t. The numerical solutions of Equation (54) is obtained through the present method

as explained in section 3 and are presented in comparison with the exact solution are shown in the table 16 and the figure 5,

for N = 64. Maximum error analysis and CPU time are shown in table 15.

Figure 8. Comparison of numerical solutions with exact solution of test problem 4.8, for N=64.

N Method Emax Setup time Running time Total time

FAS 5.72e-04 0.0144 0.0949 0.1093

16 BSWFATM 5.59e-04 0.0135 0.0915 0.1050

MBSWFATM 5.57e-04 0.0100 0.0737 0.0837

FAS 2.81e-04 0.0208 0.4138 0.4346

32 BSWFATM 2.77e-04 0.0083 0.3506 0.3588

MBSWFATM 2.77e-04 0.0060 0.3348 0.3408

FAS 1.38e-04 0.0688 0.1026 0.1714

64 BSWFATM 1.37e-04 0.0098 0.0948 0.1045

MBSWFATM 1.37e-04 0.0072 0.0962 0.1034

FAS 6.87e-05 0.3143 0.4560 0.7703

128 BSWFATM 6.85e-05 0.0100 0.4471 0.4571

MBSWFATM 6.85e-05 0.0137 0.4430 0.4567

Table 15. Maximum error and CPU time (in seconds) of the test problem 4.8

t FAS BSWFATM MBSWFATM EXACT

0 0.0000 0.0000 0.0000 0

0.0666 -0.0622 -0.0622 -0.0622 -0.0622

0.1333 -0.1155 -0.1155 -0.1155 -0.1155

0.2000 -0.1600 -0.1600 -0.1600 -0.1600

0.2666 -0.1957 -0.1957 -0.1957 -0.1955

0.3333 -0.2224 -0.2224 -0.2224 -0.2222

0.4000 -0.2403 -0.2404 -0.2403 -0.2400

0.4666 -0.2493 -0.2493 -0.2493 -0.2488

0.5333 -0.2494 -0.2494 -0.2494 -0.2488

0.6000 -0.2405 -0.2405 -0.2405 -0.2400

0.6666 -0.2227 -0.2227 -0.2227 -0.2222

0.7333 -0.1959 -0.1959 -0.1959 -0.1955

0.8000 -0.1602 -0.1602 -0.1602 -0.1600

0.8666 -0.1156 -0.1156 -0.1156 -0.1155
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t FAS BSWFATM MBSWFATM EXACT

0.9333 -0.0622 -0.0622 -0.0622 -0.0622

1 -0.0000 -0.0000 -0.0000 0

Table 16. Numerical results of the test problem 4.8, for N = 16

Test Problem 4.9. Next, consider the Nonlinear Volterra integro-differential equation [37],

u′(t) = −1 +

∫ t

0

u2(s)ds, 0 ≤ t ≤ 1, (54)

which has the exact solution u(t) = −t +
t4

12
− t7

252
+

t10

6048
− t13

157248
.

We convert the Volterra integro-differential equation to equivalent Volterra integral equation by using the well-known formula,

which converts multiple integrals into a single integral i.e.,

∫ t

0

∫ t

0

...

∫ t

0

u(t)dtn =
1

n− 1
!

∫ t

0

(t− s)n−1u(s)ds (55)

Integrating Equation (55) on both sides from 0 to t and using the initial condition and also converting the double integral

to the single integral, we obtain,

u(t) = f(t) +

∫ t

0

k(t, s)u2(s)ds, (56)

where k(t, s) = (t− s) and f(t) = −t. The numerical solutions of Equation (57) is obtained through the present method as

explained in section 3 and presented in table 17 for N = 16 and in figure 9 for N = 64. Maximum error analysis and CPU

time is shown in table 18.

Figure 9. Comparison of numerical solutions with exact solution of test problem 4.9, for N = 64.

t FAS BSWFATM MBSWFATM EXACT

0 0.0000 0.0000 0.0000 0

0.0666 -0.0666 -0.0666 -0.0666 -0.0666

0.1333 -0.1333 -0.1333 -0.1333 -0.1333

0.2000 -0.1998 -0.1998 -0.1998 -0.1998

0.2666 -0.2662 -0.2662 -0.2662 -0.2662

0.3333 -0.3323 -0.3323 -0.3323 -0.3323

0.4000 -0.3979 -0.3979 -0.3979 -0.3978

0.4666 -0.4628 -0.4628 -0.4628 -0.4627

0.5333 -0.5267 -0.5267 -0.5267 -0.5266

0.6000 -0.5894 -0.5894 -0.5894 -0.5893

0.6666 -0.6505 -0.6505 -0.6505 -0.6504

0.7333 -0.7098 -0.7098 -0.7098 -0.7096
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t FAS BSWFATM MBSWFATM EXACT

0.8000 -0.7668 -0.7668 -0.7668 -0.7666

0.8666 -0.8213 -0.8213 -0.8213 -0.8210

0.9333 -0.8727 -0.8727 -0.8727 -0.8724

1 -0.9207 -0.9207 -0.9207 -0.9204

Table 17. Numerical results of the test problem 4.9, for N = 16

N Method Emax Setup time Running time Total time

FAS 2.81e-04 0.0159 0.0349 0.0508

16 BSWFATM 2.81e-04 0.0148 0.0317 0.0465

MBSWFATM 2.81e-04 0.0130 0.0275 0.0404

FAS 6.56e-05 0.0233 0.0385 0.0618

32 BSWFATM 6.56e-05 0.0117 0.0356 0.0474

MBSWFATM 6.56e-05 0.0080 0.0318 0.0398

FAS 1.57e-05 0.0595 0.0763 0.1358

64 BSWFATM 1.57e-05 0.0107 0.0719 0.0825

MBSWFATM 1.57e-05 0.0072 0.0689 0.0761

FAS 3.69e-06 0.2930 0.3258 0.6188

128 BSWFATM 3.69e-06 0.0149 0.3280 0.3430

MBSWFATM 3.69e-06 0.0102 0.3207 0.3309

Table 18. Maximum error and CPU time (in seconds) of the test problem 4.9

Test Problem 4.10. Next, consider the Nonlinear Volterra-Fredholm Hammerstein integral equation [38],

u′(t) = 1 + sin2(t) +

∫ 1

0

u2(s)ds, 0 ≤ t ≤ 1, (57)

K(t, s) =

 −3sin(t− s), 0 ≤ s ≤ t

0, t ≤ s ≤ 1

which has the exact solution u(t) = cost. The numerical solutions of Equation (58) is obtained through the present method

as explained in section 3 and presented in comparison with the exact solution are shown in the table 19 and in the figure 10,

for N = 64. Maximum error analysis and CPU time are shown in table 20.

Figure 10. Comparison of numerical solutions with exact solution of test problem 4.10, for N = 64.

t FAS BSWFATM MBSWFATM EXACT

0 1.0000 1.0000 1.0000 1

0.0666 0.9977 0.9977 0.9977 0.9977

0.1333 0.9911 0.9911 0.9911 0.9911

0.2000 0.9800 0.9800 0.9800 0.9800
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t FAS BSWFATM MBSWFATM EXACT

0.2666 0.9646 0.9646 0.9646 0.9646

0.3333 0.9449 0.9449 0.9449 0.9449

0.4000 0.9209 0.9209 0.9209 0.9210

0.4666 0.8929 0.8929 0.8929 0.8930

0.5333 0.8610 0.8610 0.8610 0.8611

0.6000 0.8252 0.8252 0.8252 0.8253

0.6666 0.7857 0.7857 0.7857 0.7858

0.7333 0.7427 0.7427 0.7427 0.7429

0.8000 0.6965 0.6965 0.6965 0.6967

0.8666 0.6472 0.6472 0.6472 0.6473

0.9333 0.5950 0.5950 0.5950 0.5951

1 0.5401 0.5401 0.5401 0.5403

Table 19. Numerical results of the test problem 4.10, for N = 16

N Method Emax Setup time Running time Total time

FAS 1.60e-04 0.0160 0.0350 0.0510

16 BSWFATM 1.60e-04 0.0148 0.0312 0.0460

MBSWFATM 1.60e-04 0.0100 0.0280 0.0380

FAS 3.75e-05 0.0286 0.0485 0.0771

32 BSWFATM 3.75e-05 0.0149 0.0448 0.0597

MBSWFATM 3.75e-05 0.0101 0.0400 0.0501

FAS 9.10e-06 0.0790 0.1030 0.1820

64 BSWFATM 9.10e-06 0.0149 0.0994 0.1143

MBSWFATM 9.10e-06 0.0101 0.0953 0.1054

FAS 2.23e-06 0.2856 0.3512 0.6368

128 BSWFATM 2.23e-06 0.0167 0.3224 0.3391

MBSWFATM 2.23e-06 0.0103 0.3268 0.3371

Table 20. Maximum error and CPU time (in seconds) of the test problem 4.10
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