On $(\alpha,\beta)$-Class (Q) Operators

Wanjala Victor1 and A. M. Nyongesa1


1Department of Mathematics and Computing, Kibabii University, Bungoma, Kenya.

Abstract: In this paper, we introduce a new class of operator, the class of $(\alpha,\beta)$-Class (Q) operator acting on a complex Hilbert space $H$. An operator $T \in B(H)$ is said to be $(\alpha,\beta)$-Class (Q) if $\alpha^{2}T^{*2}T^{2}\leq (T^{*}T)^{2}\leq \beta^{2}T^{*2}T^{2}$ for $ 0 \leq \alpha\leq 1 \leq \beta$. We look at some properties that this class are priviledged to enjoy.
Keywords: Class (Q), Normal, $(\alpha,\beta)$-normal, Hypernormal and $(\alpha,\beta)$-Class (Q) operators.


Cite this article as: Wanjala Victor and A. M. Nyongesa, On $(\alpha,\beta)$-Class (Q) Operators, Int. J. Math. And Appl., vol. 9, no. 2, 2021, pp. 111-113.

References
  1. D. Senthilkumar, On p-$(\alpha,\beta)$-Normal Operators, Applied Mathematical Sciences, 8(2014), 2041-2052.
  2. Hongliang Zuo and Fei Zuo, A note on n-perinormal operators, Acta Mathematica Scientia, 34B(2014), 194-198.
  3. A. A. Jibril, On n-power normal operators, The Arabian Journal for Science and Engineering, 33(2008), 247-251.
  4. E. Rasoul, M. Farzollah and Ali Morassaei, More on $(\alpha,\beta)$-Normal operators in Hilbert spaces, Abstract and Applied Analysis, 2012(2012).
  5. S. A. Alzuraiqi and A. B. Patel, On n-Normal Operators, General mathematics Notes, 1(2)(2010), 61-73.

Back