Neutrosophic Micro Ideal Topological Structure

S. Ganesan1, C. Alexander1, A. Pandi2 and F. Smarandache3


1PG \& Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India).
2Department of Mathematics, Rathinam Technical Campus, Coimbatore, Tamil Nadu, India.
3Mathematics \& Science Department, University of New Maxico, 705 Gurley Ave, Gallup, NM 87301, USA.

Abstract: This article addressed the concept of neutrosophic micro ideal topology which is induced by the two litereture, they are ideal topological spaces and micro topology. We defined its local function, closed set and also defined and give new dimnesion to codense ideal by incorporating it to ideal topological structures. we investigate some properties of neutrosophic micro topology with ideal. Also we introduce a new definition of neutrosophic micro topological space like neutrosophic micro $\alpha$-open, neutrosophic micro pre-open, neutrosophic micro semi-open, neutrosophic micro b-open, neutrosophic micro $\beta$-open, neutrosophic micro regular-open and neutrosophic micro $\pi$-open.
Keywords: Neutrosophic set, ideal topological spaces, neutrosophic micro topology, neutrosophic micro ideal local function.


Cite this article as: S. Ganesan, C. Alexander, A. Pandi and F. Smarandache, Neutrosophic Micro Ideal Topological Structure, Int. J. Math. And Appl., vol. 9, no. 2, 2021, pp. 127-136.

References
  1. K. T. Atanassov, Intuitionstic fuzzy sets, Fuzzy sets and systems, 20(1986), 87-96.
  2. S. Chandrasekar, On micro topological spaces, Journal of New Theory, 26(2019), 23-31.
  3. S. Ganesan, S. Jafari and F. Smarandache, Neutrosophic micro topological spaces, (communicated).
  4. S. Ganesan and F. Smarandache, Some new classes of neutrosophic minimal open sets, Asia Mathematika, 5(1)(2021), 103-112.
  5. E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
  6. T. R. Hamlett and D. Jankovic, Ideals in topological space and the set operator $\psi$, Bull. U. M. I., (7)(4-B)(1990), 863-874.
  7. D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
  8. K. Kuratowski, Topology, Vol. I, Academic Press, New york, (1966).
  9. M. Lellis Thivagar, Saeid Jafari V. Sutha Devi and V. Antonysamy, A novel approach to nano topology via neutrosophic sets, Neutrosophic Sets and Systems, 20(2018), 86-94.
  10. A. A. Salama and S. A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR J. Math., 3(2012), 31-35.
  11. F. Smarandache, Neutrosophy and Neutrosophic Logic. First International Conference on Neutrosophy, Neutrosophic Logic Set, Probability and Statistics, University of New Mexico, Gallup, NM, USA, (2002).
  12. F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutro-sophic Probability, American Research Press: Rehoboth, NM, USA, (1999).
  13. R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
  14. L. A. Zadeh, Fuzzy Sets, Information and Control, 18(1965), 338-353.

Back