The Approximation of Laplace-Stieltjes Transforms in the Half Plane

Gyan Prakash Rathore1 and Anupma Rastogi1


1Department of Mathematics and Astronomy, Lucknow University, Lucknow, Uttar Pradesh, India.

Abstract: In this paper, we study the growth of the analytic function represented by Laplace-Stieltjes transform of infinite order which is convergent in the right half plane. We also investigate the error in approximation defined on Laplace-Stieltjes transform of finite $\gamma_{U}$-order in the half plane, and some relations between the error and growth of Laplace-Stieltjes transform of finite $\gamma_{U}$-order.
Keywords: Growth, Laplace-Stieltjes transform, approximation, $\gamma_{U}$-order.


Cite this article as: Gyan Prakash Rathore and Anupma Rastogi, The Approximation of Laplace-Stieltjes Transforms in the Half Plane, Int. J. Math. And Appl., vol. 9, no. 2, 2021, pp. 27-37.

References
  1. A. Nautiyal, On the coefficients of analytic Dirichlet series of fast growth, Indian Journal of Pure and Appl. Math., 155(10), 1984, 1102-1114.
  2. A. Nautiyal and D. P. Shukla, On the approximation of an analytic function by exponential polynomials, Indian J. of Pure and App. Math., 14(6)(1983),722-727.
  3. C. J. K. Batty, Tauberian theorem for the Laplace-Stieltjes transform, Trans. Amer. Math.Soc., 322(2)(1990), 783-804.
  4. D. C. Sun, On the distribution of values of random Dirichlet Series II, Chin. Ann. Math. Ser. B, 11(1)(1990), 33-44.
  5. H. Y. Xu, The logarithmic order and logarithmic type of Laplace-Stieltjes transform, J. Jiangxi Norm. Univ. Nat. Sci., 41(2017), 180-183.
  6. H. Y. Xu, C. F. Yi and T. B. Cao, On proximate order and type function of Laplace - Stieltjes transformation convergent in the right half plane, Math.Commun., 17(2012), 355-369.
  7. H. Y. Xu and Z. X. Xuan, The growth and value distribution of Laplace -Stieltjes transformation with infinite order in the right half plane, Journal of Inequalities and Applications 2013(2013), Art. 273.
  8. H. Y. Xu and Z. X. Xuan, The singular points of analytic functions with finite X-order defined by Laplace-Stieltjes transformation, Journal of Functional Spaces, 2015(2015), Art.ID 865069, 9 pages.
  9. J. R. Yu, Borel's line of entire functions represented by Laplace-Stieltjes transformation (in chinese), Acta Math. Sinica, 13(1963), 471-484.
  10. J. R. Yu, X. Q. Ding and F. J. Tian, On the distribution of values of Dirichlet series and random Dirichlet Series, Wuhan: Press in Wuhan University, (2004).
  11. L. N. Shang and Z. S. Gao, The growth of entire functions of infinite order represented by Laplace-Stieltjes transformation, Acta Math. Sci., 27A(6)(2007), 1035-1043.
  12. M. S. Liu, The regular growth of Dirichlet series of finite order in the half plane, J. Syst. Sci. Math. Sci., 22(2)(2002), 229-238.
  13. J. R. Yu, Dirichlet Series and the Random Dirichlet Series, Science Press, Beijing, (1997).
  14. W. C. Lu, On the $\lambda^*$-logarithmic type of analytic functions represented by Laplace-Stieltjes transformation, J. Jiangxi Norm. Univ. Nat. Sci., 40(2016), 591-594.
  15. W. J. Tang, Y. Q. Cui, H. Q. Xu, On some $q$-order and $q$-type of Taylor-Hadamard Product function, J. Jiangxi Norm. Univ. Nat. Sci., 40(2016), 276-279.
  16. Y. Y. Kong and Y. Yang, On the growth properties of the Laplace-Stieltjes transform, Complex Variables and Elliptic Equation, 59(2014), 553-563.
  17. Y. Y. Kong and Y. Y. Huo, On general order and type of Laplace-Stieltjes transforms analytic in the right half plane, Acta Math. Sinica, 59A(2016), 91-98.
  18. X. Luo, X. Z. Liu and Y. Y. Kong, The regular growth of Laplace-Stieltjes transforms, J. of Math. (PRC) 34(2014), 1181-1186.
  19. X. Luo and Y. Y. Kong, On the order and type Laplace-Stieltjes transforms of slow growth, Acta Math. Sci., 32A(2012), 601-607.
  20. Z. S. Gao, The growth of entire functions represented by Dirichlet series, Acta Mathematica Sinica, 42A(1999), 741-748.

Back