A Solution for the Non-Cooperative Equilibrium Problem of Three Person via Fixed Point Theory

Soniya Patel1 and R. S. Patel1


1Department of Mathematics, Government Autonomous P.G. College, Satna, Madhya Pradesh, India.

Abstract: In this paper, we investigate the non-cooperative equilibrium problem of three person games in the setting of game theory and proposed a solution via couple fixed point results in the context of partial metric spaces. We also realized the our Tripled fixed point results can be applied to get a solution of a class of nonlinear Fredholm type integral equations.
Keywords: Tripled fixed point, partial metric, $F$-contractions, non-cooperative equilibrium.


Cite this article as: Soniya Patel and R. S. Patel, A Solution for the Non-Cooperative Equilibrium Problem of Three Person via Fixed Point Theory, Int. J. Math. And Appl., vol. 9, no. 3, 2021, pp. 1-18.

References
  1. T. Abdeljawad, E. Karap\i nar and K. Ta\c{s}, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett, 24(11)(2011), 1900-1904.
  2. H. H. Alsulami, E. Karap\i nar and H. Piri, Fixed points of generalized $F-$Suzuki type contraction in complete metric-like spaces, Discrete Dynamics in Nature and Society, 2015(2015), Article Id:969726.
  3. H. H. Alsulami, E. Karap\i nar and H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, Journal of Function Spaces, 2014(2014), Article Id: 270971.
  4. M. Bukatin, R. Kopperman, S. Matthews and H. Pajoohesh, Partial metric spaces, Amer. Math. Monthly, 116(8)(2009), 708-718.
  5. P. N. Dutta and B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory and Applications, 2008(2008), Article ID 406368.
  6. D Ili\'c, V. Pavlovi\'c and V. Rakocevi\'c, Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett., 24(8)(2011), 1326-1330.
  7. B. S. Choudhury, P . Konar, B. E. Rhoades and N. Metiya, Fixed point theorems for generalized weakly contractive mappings, Nonlinear Analysis, 74 (2011), 2116-2126.
  8. D. Dori\'c, Common fixed point for generalized $(\psi,\varphi)$-weak contractions, Appl. Math. Lett., 22(12)(2009), 1896-1900.
  9. D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. TMA., 11(1987), 623–632.
  10. E. Karap\i nar, Weak $\varphi$-contraction on partial metric spaces, J. Comput. Anal. Appl., 14(2012), 206-210.
  11. E. Karap\i nar, Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces, Fixed Point Theory Appl., 2011(2011), doi:10.1186/1687-1812-2011-4, 7 pages.
  12. G. S. Mathews, Partial metric topology, Reseach Report 212, Dept. of Computer Science University of Warwick, (1992).
  13. G. S. Mathews, Partial metric topology, Annals of the New York Academy of Sciences, 728(1994), 183-197.
  14. S. Oltra and O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, 36(1-2)(2004), 17-26.
  15. O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6(2)(2005), 229-240.
  16. K. P. Chi, E. Karapinar and T. D. Thanh, A Generalized contraction principle in partial metric spaces, Math. Comput. Modelling, 55(5-6)(2012), 1673-1681.
  17. K. P. Chi, E. Karap\i nar and T. D. Thanh, On the fixed point theorems for generalized weakly contractive mappings on partial metric spaces, Bull. Iranian Math. Soc., 39(2)(2013), 369-381.
  18. T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and application, Nonlinear Analysis, 65(2006), 1379-1393.
  19. V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis, 70(2009), 4341-4349.
  20. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl, 2012(2012), doi:10.1186/1687-1812-2012-94, 6 pages.
  21. S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl, 2010(2010), Article ID 493298, 6 pages.
  22. D. Paesano and C. Vetro, Multi-valued F -contractions in 0-complete partial metric spaces with application to Volterra type integral equation, Revista de la Real Academia de Ciencias, Exactas, Fisicas y Naturales. Serie A. Matematicas, 108(2)(2014), 1005-1020.
  23. K. C. Border, Fixed point theorems with Applications to Economics and Game Theory, Cambridge University Press, (1989).
  24. O. E. Christian, Games, Fixed Points and Mathematical Economics, School of Economics and Finance University of St.Andrews, (2003).
  25. M. Sgroi and C. Vetro, Multi-valued $F$-contractions and the solution of certain functional and integral equations, Filomat, 27(2013), 1259-1268.
  26. M. Cosentino and P. Vetro, Fixed Point Results for $F$-Contractive Mappings of Hardy-Rogers-Type, Filomat, 28(2014), 715-722.
  27. A. C. M. Ran and M. C. B. Reuring, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.
  28. J. Nieto and R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-239.
  29. J. Nieto and R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sin., 23(2007), 2205-2212.
  30. R. P. Agarwal, M. A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87(2008), 1-8.
  31. N. V. Luong and N. X. Thuan, Coupled point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 74(2011), 983-992.
  32. G. S. Rad, S. Shukla and H. Rahimi, Some relations between n-tuple fixed point and fixed point results, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, DOI :10.1007/s13398-014-0196-0.
  33. A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karap\i nar, Some remarks on multidimensional fixed point theorems, Fixed Point Theory, 15(2)(2014), 545-558.
  34. B. Samet, E. Karap\i nar, H. Aydi and V. Rajic, Discussion on some coupled fixed point theorems, Fixed Point Theory and Applications, 2013(2013).

Back