On Ideals and Multiplicative (Generalized) - $(\Phi,\Phi)$ - Derivations

# S. Lalitha^{1,2}, S. Sreenivasulu^{1} and A. Mallikarjun Reddy^{2}

^{1}Department of Mathematics, GDC (M), S. K. University, Ananthapuramu, Andhra Pradesh, India.

^{2}Department of Mathematics, S. K. University, Ananthapuramu, Andhra Pradesh, India.**Abstract:** Let $P$ be a prime ring. $I$ is a nonzero ideal of $P$. $\Phi$ is an automorphism on P. A mapping $M:P \to P$ is called Multiplicative (generalized) $(\Phi, \Phi)$-derivation if there exist a map $d: P\to P$ such that $M(a, b)=M(a) \Phi(b)+\Phi(a) d(b)$ holds for all $a, b \in P$. The objective of the present paper is to study the following identities (i). If $M(ab)+M(a) M(b)=0$ for all $a, b \in I$ then $\Phi(I)[M(a), M(b)]=0$ for all $a \in I$ (ii). Let $M_{1}$ and $M_{2}$ be two multiplicative (generalized)-$(\Phi, \Phi)$ derivations on P associated with the maps $d_{1}$ and $d_{2}$ on P respectively. If $M_{1}(a b)=\Phi(b) \circ M_{2}(a)$ for all $a, b \in I$ then $R$ is abelian or commutative or $\Phi(I)\left[\Phi(I), M_{2}(I)\right]=0$ (iii). If $M_{1}(ab)=\left[\Phi(b), M_{2}(a)\right]$ for all $a, b \in I$ then either $\Phi(I)\left[\Phi(I), M_{2}(I)\right]=(0)$ or $R$ is commutative.

**Keywords:** Primering, Ideal, Multiplicative (generalized) derivation, Multiplicative (generalized)-$(\Phi, \Phi)$-derivation.

**Cite this article as:** S. Lalitha, S. Sreenivasulu and A. Mallikarjun Reddy, *On Ideals and Multiplicative (Generalized) - $(\Phi,\Phi)$ - Derivations*, Int. J. Math. And Appl., vol. 9, no. 4, 2021, pp. 53-57.

**References**

- Basudeb Dhara, Sukhendu Kar and Deepankar Das, \textit{A multiplicative (generalized)-$(\sigma, \sigma)$-derivation acting as (anti) homomorphism in semiprime rings}, Palestine Journal of Mathematics, 3(2)(2014), 240-246.
- Hidetoshi Marubayashi, Mohammad Ashraf, Nadeem-ur Rehman and Shakir Ali, \textit{On generalized $(\alpha,\beta)$ derivations in prime rings}, Algebra Colloquium, 17(1)(2010), 865-874.
- S. Khan, \textit{On semi prime rings with multiplicative (generalized)-derivations}, Contributions to Algebra and Geometry, 57(1)(2016), 119-128.
- S. Ali, B. Dhara, N. A. Dar and A. N. Khan, \textit{On Lie ideals with multiplicative (Generalized)-derivations in prime and semi prime rings}, Contributions to Algebra and Geometry, 56(2015), 325-337.
- B. Dhara and S. Ali, \textit{On multiplicative (generalized)-derivations in prime and semi prime rings}, Aequationes Math., 86(1-2)(2013), 65-79.
- O. Golbasi and E. Koc, \textit{Generalized derivations of Lie ideals in prime rings}, Turk. J. Math., 35(2011), 23-28.
- N. Rehman, \textit{On commutativity of rings with generalized derivations}, Math. J. Okayama Univ., 44(2002), 43-49.
- M. Ashraf and N. Rehman, \textit{On commutativity of rings with derivations}, Results Math., 42(2002), 3-8.
- E. Albas, \textit{Generalized derivations on ideals of prime rings}, Miskolc Mathematical Notes, 14(1)(2013), 3-9.
- H. Goldmann and P. Semrl, \textit{Multiplicative derivations on $C(X)$}, Monatsh. Math., 121(1996), 189-197.
- H. E. Bell and M. N. Daif, \textit{On derivations and commutativity in prime rings}, Acta Math. Hungar., 66(1995), 337-343.