

International Journal of Mathematics And its Applications

Analysis of Primes in Arithmetical Progressions 7n + k up to a Trillion

Research Article

Neeraj Anant Pande^{1*}

1 Department of Mathematics & Statistics, Yeshwant Mahavidyalaya (College), Nanded, Maharashtra, India.

Abstract:	Each prime number fits in one of six unique forms $7n+k$. Each form $7n+k$, for $1 \le k \le 6$ forms an arithmetical progression; each containing, as assured by Dirichlet's Theorem, infinite number of primes. This work analyzes occurrences of primes in all of these arithmetical progressions from different angles, both 10 power blockwise as well as absolutely in ranges going as high as 1,000,000,000,000.
MSC:	11A41, 11N05, 11N25
Keywords:	Arithmetical progressions, block-wise distribution, prime, prime density, prime spacing
	(c) JS Publication.

1. Introduction

As is well known, a prime number is a positive integer greater than 1 having only two positive integral divisors, viz., 1 and itself. They happen to be infinite in number [1].

2. Primes Distributions

Irregularity in the distribution of prime numbers amongst the natural numbers is very clear by their often-quoted two properties: On one side it is strongly conjectured that there are infinitely many twin primes, those successive prime pairs which are very much close, accommodating only one composite number inbetween and on the other side, the proved fact that there are successive primes with as high gaps between them as desired.

One parameter of measurement of prime distribution is the number of primes less than or equal to x. It is denoted by $\pi(x)$.

3. Primes Distributions in Arithmetical Progressions

An arithmetical progression is integer sequence of form an+b, with a and b fixed integers and n varying over all non-negative integers. If we take a as a positive integer and let b take values from 0 to a-1, then the a number of arithmetical progressions an + k, with $0 \le k < a$ generate and every integer fits in one and only one of them.

For any fixed a, every prime number also occurs in some or other arithmetical progression an + b; wherein we are interested in how many of them will be in each such progression. As there are infinitely many primes, for every fixed positive integer

^{*} E-mail: napande@gmail.com

a, at least one of the progressions can contain infinitely many primes. Dirichlet [2] elegantly proved that every arithmetical progression an + b satisfying the condition gcd(a, b) = 1 contains infinitely many primes.

Already in [4], [5], [6], and [7], the symbol $\pi_{a,b}(x)$ is introduced to represent the number of primes in an arithmetical progression an + b that are less than or equal to x.

4. Primes Distributions in Arithmetical Progressions 7n + k

After dividing any positive integer by a positive integer m, the process of integer division gives one of the integers $0, 1, 2, \dots, m-1$ as remainders. Taking m = 7 gives remainders in the process of division by 7 to be 0, 1, 2, 3, 4, 5 and 6. As each positive integer after dividing by 7 yields one and only one amongst these values as remainder, each integer must be of either of the forms 7n + 0 = 7n or 7n + 1 or 7n + 2 or 7n + 3 or 7n + 4 or 7n + 5 or 7n + 6, which are arithmetical progressions under consideration here.

First few numbers of the form 7n are

$$7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, \cdots$$

Each one of them is perfectly divisible by 7. Except the first member, viz., 7, none of these is prime. This sequence contains only one prime 7 with all its other members being composite numbers. 7n when seen as arithmetical progression 7n + 0, with gcd(7,0) = 7 > 1, is not a candidate for occurrence of any more primes by Dirichlet's Theorem also. First few numbers of the form 7n + 1 are

 $1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, \cdots$

This contains infinitely many primes as gcd(7,1) is 1 as per requirement of Dirichlet's Theorem. First few numbers of the form 7n + 2 are

$$2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, \cdots$$

This sequence also contains infinitely many primes as gcd(7,2) is 1 as per requirement of Dirichlet's Theorem. First few numbers of the form 7n + 3 are

$$3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, \cdots$$

This one also has infinitely many primes in it as gcd(7,3) is 1 as per need of Dirichlet's Theorem. First few numbers of the form 7n + 4 are

$$4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, \cdots$$

This sequence also does contain infinitely many primes as gcd(7,4) is 1 as required by Dirichlet's Theorem. First few numbers of the form 7n + 5 are

 $5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, \cdots$

This one also does contain infinitely many primes as gcd(7,5) is 1 as demanded by Dirichlet's Theorem. First few numbers of the form 7n + 6 are

 $6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, \cdots$

This progression also contains infinitely many primes as gcd(7,6) is 1 as necessitated by Dirichlet's Theorem.

Like for some arithmetical progressions given in [8], independent proofs about infinitude of primes in each of these arithmetical progressions can separately be provided.

We present here a comparative analysis of the prime numbers contained in arithmetical progressions 7n + 1, 7n + 2, 7n + 3, 7n + 4, 7n + 5 and 7n + 6.

5. Prime Number Race

For any fixed positive integer a and all integers b, $0 \le b < a$, all the arithmetical progressions an + b which contain infinitely many primes are compared to decide which one amongst them contains more number of primes. This is term well-known as prime number race [9].

Here we have compared dominance of the number of primes of form 7n + 1, 7n + 2, 7n + 3, 7n + 4, 7n + 5 and 7n + 6 till one trillion, i.e., 1,000,000,000 (10^{12}). The huge prime database could be made available in minimum time by use of best of the algorithms obtained by exhaustive comparisons in [10], [11], [12], [13], [14], [15] with betterment estimates in [16]. Java Programming Language [17], was chosen to implement these best algorithms on electronic computers to analyze big range of primes thoroughly.

		Number of Primes of Form								
Sr. No.	Range $1 - x$ (1 to x)	7n + 1	7n + 2	7n + 3	7n + 4	7n + 5	7n + 6			
		$(\pi_{7,1}(x))$	$(\pi_{7,2}(x))$	$(\pi_{7,3}(x))$	$(\pi_{7,4}(x))$	$(\pi_{7,5}(x))$	$(\pi_{7,6}(x))$			
1	1-10	0	1	1	0	1	0			
2	1-100	3	4	5	3	5	4			
3	1-1,000	28	27	30	26	29	27			
4	1-10,000	203	203	209	202	211	200			
5	1-100,000	1,593	1,584	1,613	1,601	1,604	1,596			
6	1-1,000,000	13,063	13,065	13,105	13,069	13,105	13,090			
7	1-10,000,000	110,653	110,771	110,815	110,776	110,787	110,776			
8	1-100,000,000	960,023	960,114	960,213	960,085	960,379	960,640			
9	1-1,000,000,000	8,474,221	8,474,796	8,475,123	8,474,021	8,474,630	8,474,742			
10	1-10,000,000,000	75,840,762	75,841,428	75,843,438	75,841,922	75,842,174	75,842,786			
11	1-100,000,000,000	686,339,040	686,342,043	686,338,138	686,340,737	686,346,250	686,348,604			
12	1-1,000,000,000,000	6,267,973,536	6,267,979,692	6,267,994,788	6,267,984,796	6,267,992,446	6,267,986,759			

Table 1: Number of Primes of form 7n + k in First Blocks of 10 Powers.

Since all primes, except 7, are of only of one of these forms, their quantity seems quite averagely distributed. The deviation from respective averages is plotted ahead.

Figure 1: Deviation of $\pi_{7,k}(x)$ from Average

The number of primes of the form 7n + 5 is seen always above the average; while 7n + 1 is below the average up to 10^{12} in almost all discrete blocks of 10 powers. This trend might have changed in between and is a subject matter of future explorations.

6. Block-wise Distribution of Primes

Lack of the formula for all primes together with their infinitude makes them mysterious. We continue with the plain approach of considering all primes up to limit of one trillion (10^{12}) and dividing this complete number range under consideration in blocks of powers of 10 each :

$$1 - 10, 11 - 20, 21 - 30, 31 - 40, \cdots$$
$$1 - 100, 101 - 200, 201 - 300, 301 - 400, \cdots$$
$$1 - 1000, 1001 - 2000, 2001 - 3000, 3001 - 4000, \cdots$$
$$\vdots$$

A detail analysis is performed on various fronts and owing to our range limit of 10^{12} , there are 10^{12-i} number of blocks of 10^i size for each $1 \le i \le 12$.

6.1. The First and the Last Primes in the First Blocks of 10 Powers

The search of the first and the last prime number in every first block of each 10 power till 10^{12} is performed. Once available, the first prime of first power of 10 continues for all higher sized blocks.

Sr. No.	Blocks of Size	First Prime in the First Block								
		Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$			
1	10	Not Found	2	3	Not Found	5	Not Found			
2	100 and all 10^n for $n \ge 2$	29	2	3	11	5	13			

Table 2: First Primes of form 7n + k in First Blocks of 10 Powers

The largest prime numbers of various forms in first blocks of 10 powers are as follows.

Table 3: Last Primes of form 7n + k in First Blocks of 10 Powers

Sr No	Blocks of Size	Last Prime in the First Block								
51. 10.	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$			
1	10	Not Found	2	3	Not Found	5	Not Found			
2	100	71	79	73	67	89	97			
3	1,000	967	947	997	991	971	937			
4	10,000	9,941	9,949	9,929	9,923	9,973	9,967			
5	100,000	99,989	99,871	99,991	99,971	99,923	99,833			
6	1,000,000	999,979	999,959	999,953	999,961	999,983	999,907			
7	10,000,000	9,999,991	9,999,971	9,999,937	9,999,973	9,999,883	9,999,877			
8	100,000,000	99,999,971	99,999,839	99,999,959	99,999,827	99,999,989	99,999,941			
9	1,000,000,000	999,999,883	999,999,751	999,999,353	999,999,893	999,999,929	999,999,937			
10	10,000,000,000	9,999,999,787	9,999,999,851	9,999,999,943	9,999,999,881	9,999,999,833	9,999,999,967			
11	100,000,000,000	99,999,999,947	99,999,999,871	99,999,999,977	99,999,999,943	99,999,999,769	99,999,999,833			
12	1,000,000,000,000	999,999,999,937	999,999,999,959	999,999,999,673	999,999,999,989	999,999,999,899	999,999,999,767			

Once found, the first primes for specific forms in all the first blocks continue to be same for higher sizes. The deviation of the last primes of these forms in the first blocks has following trend.

Figure 2: First & Last Primes of form 7n + k in First Blocks of 10 Powers.

6.2. Minimum Number of Primes in Blocks of 10 Powers

For all blocks of each first 10 power ranging from 10^1 to 10^{12} , the minimum number of primes of each form coming in each such block has been determined and the block-wise deviation of minimum number of primes of different forms found there from respective averages is as it appears in the figure ahead.

Sr No	Blocks of Size	Minimum Number of Primes in Blocks							
51. 10.	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$		
1	10	0	0	0	0	0	0		
2	100	0	0	0	0	0	0		
3	1,000	0	0	0	0	0	0		
4	10,000	29	29	28	28	28	28		
5	100,000	506	513	513	508	505	501		
6	1,000,000	5,766	5,771	5,798	5,790	5,802	5,789		
7	10,000,000	59,675	59,817	59,736	59,676	59,788	59,843		
8	100,000,000	602,206	602,328	602,250	601,897	602,304	602,097		
9	1,000,000,000	6,030,499	6,030,924	6,031,408	6,030,567	6,031,413	6,030,063		
10	10,000,000,000	60,325,839	60,326,188	60,332,353	60,330,357	60,333,294	60,329,390		
11	100,000,000,000	604,306,097	604,328,075	604,326,144	604,316,906	604,317,490	604,329,720		
12	1,000,000,000,000	$6,\!267,\!973,\!536$	6,267,979,692	$6,\!267,\!994,\!788$	6,267,984,796	6,267,992,446	$6,\!267,\!986,\!759$		

Table 4: Minimum Number of Primes of form 7n + k in Blocks of 10 Powers

The first 10 power blocks till one trillion with minimum number of primes of these six forms in them are determined.

Sr No	Blocks of Sizo	First Block with Minimum Number of Primes						
51. 10.	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$	
1	10	0	10	20	0	20	0	
2	100	3,400	4,200	6,400	2,800	3,800	1,100	
3	1,000	74,673,000	163,014,000	57,502,000	273,388,000	35,018,000	67,667,000	
4	10,000	773,514,760,000	520,793,000,000	801,425,060,000	454,847,640,000	724,483,020,000	461,343,210,000	
5	100,000	846,428,800,000	944,598,200,000	866,675,100,000	936,768,900,000	942,228,800,000	975,758,200,000	
6	1,000,000	999,652,000,000	992,313,000,000	993,219,000,000	906,367,000,000	965,097,000,000	926,912,000,000	
7	10,000,000	975,060,000,000	998,020,000,000	970,760,000,000	987,710,000,000	999,270,000,000	997,370,000,000	
8	100,000,000	999,000,000,000	980,600,000,000	996,400,000,000	975,100,000,000	971,600,000,000	997,300,000,000	
9	1,000,000,000	997,000,000,000	998,000,000,000	990,000,000,000	999,000,000,000	995,000,000,000	997,000,000,000	
10	10,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	
11	100,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	

Table 5: First Blocks of 10 Powers with Minimum Number of Primes of form 7n + k

The last such blocks in our range of one trillion with minimum number of primes of these different forms in them are also determined.

Table 6:	Last	BIOCKS OI	10	Powers	with	Minimum	Number	OI	Primes of	of form	(n + l)	κ

Sr No	Blocks of Sizo		Last Block with Minimum Number of Primes								
51. 10.	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$				
1	10	999,999,999,990	999,999,999,990	999,999,999,990	999,999,999,990	999,999,999,990	999,999,999,990				
2	100	999,999,999,800	999,999,999,600	999,999,999,900	999,999,999,700	999,999,999,900	999,999,999,900				
3	1,000	999,998,814,000	999,999,666,000	999,999,041,000	999,999,401,000	999,999,339,000	999,999,899,000				
4	10,000	773,514,760,000	563,068,490,000	953,603,980,000	454,847,640,000	724,483,020,000	952,710,080,000				
5	100,000	846,428,800,000	944,598,200,000	866,675,100,000	936,768,900,000	942,228,800,000	975,758,200,000				
6	1,000,000	999,652,000,000	992,313,000,000	993,219,000,000	906,367,000,000	965,097,000,000	926,912,000,000				
7	10,000,000	975,060,000,000	998,020,000,000	970,760,000,000	987,710,000,000	999,270,000,000	997,370,000,000				
8	100,000,000	999,000,000,000	980,600,000,000	996,400,000,000	975,100,000,000	971,600,000,000	997,300,000,000				
9	1,000,000,000	997,000,000,000	998,000,000,000	990,000,000,000	999,000,000,000	995,000,000,000	997,000,000,000				
10	10,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000				
11	100,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000				

The comparative trend deserves graphical representation.

Figure 4: First & Last Blocks of 10 Powers with Minimum Number of Primes of form 7n + k.

The determination of frequency of blocks of minimum occurrences of primes of 7n + k forms is now due.

Sr. No.	Blocks of Size	No. of Times Minimum No. of Primes Occurring in Blocks								
	DIOCKS OF SIZE	Form $7n+1$	Form $7n+2$	Form $7n+3$	Form $7n + 4$	Form $7n+5$	Form $7n + 6$			
1	10	93,732,026,464	93,732,020,308	93,732,005,212	93,732,015,204	93,732,007,554	93,732,013,241			
2	100	5,035,939,997	5,035,927,212	5,035,927,620	5,035,915,029	5,035,890,322	5,035,901,175			
3	1,000	743,646	742,535	744,827	744,553	743,138	742,918			
4	10,000	1	2	2	1	1	5			
5	100,000 & all 10^n for $n \ge 5$	1	1	1	1	1	1			

Table 7: Frequency of Minimum Number of Primes of form 7n + k in Blocks of 10 Powers

The block-wise deviation of frequency of occurrence of minimum number of primes from corresponding averages is plotted.

Figure 5: Deviation in Frequency of Minimum Number of Primes in Blocks from Average

6.3. Maximum Number of Primes in Blocks of 10 Powers

Now all blocks of each 10 power ranging from 10^1 to 10^12 are analyzed for the maximum number of primes of various forms 7n + k in each of them.

			Maximum Number of Primes in Blocks					
Sr. No.	Blocks of Size							
		Form $7n+1$	Form $7n+2$	Form $7n+3$	Form $7n+4$	Form $7n+5$	Form $7n + 6$	
1	10	1	1	1	1	1	1	
2	100	5	5	5	5	5	5	
3	1,000	28	27	30	26	29	27	
4	10,000	203	203	209	202	211	200	
5	100,000	1,593	1,584	1,613	1,601	1,604	1,596	
6	1,000,000	13,063	13,065	13,105	13,069	13,105	13,090	
7	10,000,000	110,653	110,771	110,815	110,776	110,787	110,776	
8	100,000,000	960,023	960,114	960,213	960,085	960,379	960,640	
9	1,000,000,000	8,474,221	8,474,796	8,475,123	8,474,021	8,474,630	8,474,742	
10	10,000,000,000	75,840,762	75,841,428	75,843,438	75,841,922	75,842,174	75,842,786	
11	100,000,000,000	686,339,040	686,342,043	686,338,138	686,340,737	686,346,250	686,348,604	
12	1,000,000,000,000	6,267,973,536	6,267,979,692	6,267,994,788	6,267,984,796	6,267,992,446	6,267,986,759	

Table 8: Maximum Number of Primes of form 7n + k in Blocks of 10 Powers

Analyzing deviation from average, it is found that the block-wise maximality of primes of form 7n + 1 has always lagged behind and that of 7n + 5 has been above the average of all of these.

Figure 6: Deviation in Maximum Number of Primes of form 7n + k in Blocks of 10 Powers from Average

The first 10 power blocks till one trillion with maximum number of primes of these six forms in them are also determined.

Sr No	Blocks of Sizo	First Block with Maximum Number of Primes								
SI. NO. DIOCKS OF S		Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$			
1	10	20	0	0	10	0	10			
2	100	530,200	21,100	0	100	0	1,693,600			
3	1,000	0	0	0	0	0	0			
4	10,000	0	0	0	0	0	0			
5	100,000	0	0	0	0	0	0			
6	1,000,000	0	0	0	0	0	0			
7	10,000,000	0	0	0	0	0	0			
8	100,000,000	0	0	0	0	0	0			
9	1,000,000,000	0	0	0	0	0	0			
10	10,000,000,000	0	0	0	0	0	0			
11	100,000,000,000	0	0	0	0	0	0			

Table 9: First Blocks of 10 Powers with Maximum Number of Primes of form 7n+k

The last such blocks in our range of one trillion with maximum number of primes of these different forms in them are given ahead.

Table 10: Las	st Blocks of 10	Powers with	Maximum	Number	of Primes	of form	7n+k
10010 101 100	Dioono or io	1 0 11 0 11 0 11 0 11	1,10011110111	1,0001	01 1 111100	or rorm	

Sr No	Blocks of Sizo		Last Block with Maximum Number of Primes									
51. 10.	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$					
1	10	999,999,999,930	999,999,999,950	999,999,999,670	999,999,999,980	999,999,999,890	999,999,999,760					
2	100	999,993,651,700	999,997,532,200	999,998,422,300	999,977,974,900	999,988,728,100	999,973,496,500					
3	1,000	0	0	0	0	0	0					
4	10,000	0	0	0	0	0	0					
5	100,000	0	0	0	0	0	0					
6	1,000,000	0	0	0	0	0	0					
7	10,000,000	0	0	0	0	0	0					
8	100,000,000	0	0	0	0	0	0					
9	1,000,000,000	0	0	0	0	0	0					
10	10,000,000,000	0	0	0	0	0	0					
11	100,000,000,000	0	0	0	0	0	0					

As in general, the prime density has a decreasing trend with increasing range of numbers, it is natural that for larger block sizes, the first as well as the last occurrences of maximum number of primes in them start in the block 0, which is the very first block.

Figure 7: First & Last Blocks of 10 Powers with Maximum Number of Primes of form 7n + k.

Well-known decrease in the prime density assures that the maximum number of primes cannot occur as frequently, at least for higher ranges.

Table 11: Frequency of Maximum Number of Primes of form 7n + k in Blocks of 10 Powers

Sr. No.	Blocks of Sizo	No. of Times Maximum No. of Primes Occurring in Blocks							
	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$		
1	10	6,267,973,536	6,267,979,692	6,267,994,788	6,267,984,796	$6,\!267,\!992,\!446$	$6,\!267,\!986,\!759$		
2	100	77,946	77,531	78,016	77,890	77,366	77,557		
3	1,000 & all 10^n for $n \ge 3$	1	1	1	1	1	1		

Now the block-wise deviation of frequency of occurrence of maximum number of primes from corresponding averages is plotted.

Figure 8: Deviation in Frequency of Maximum Number of Primes in Blocks from Average

Spacings Between Primes of form 7n + k in Blocks of 10 Powers Minimum Spacing Between Primes in Blocks of 10 Powers

Omitting prime-free blocks and all blocks of smaller size 10, the minimum spacing between primes of all forms 7n+1, 7n+2, 7n+3, 7n+4, 7n+5 and 7n+6 in the blocks of increasing power of 10 from 100 onwards are determined to be 14. This is the first even integral multiple of 7. Clearly as for larger block sizes, the minimum spacing value cannot increase, it remains same afterwards for all blocks of all higher powers of 10 in all ranges, virtually till infinity!

Figure 9: Minimum Block Spacings between Primes of form 7n + k

Except the block-size of 10, the first and the last primes in the 10 power blocks with minimum block spacings are as follows.

Table 12: First Starters of Minimum Block Spacings between Primes of form 7n + k in Blocks of 10^n

Sr. No.	Blocks of Size	First Prime with Respective Minimum Block Spacing						
	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$	
1	10	Not Found	Not Found	Not Found	Not Found	Not Found	Not Found	
2	100 & all 10^n for $n \ge 2$	29	23	3	53	5	83	

Withing specific limit like that of ours of 1 trillion, the last primes in the 10 power blocks with minimum block spacings are also more or less uniform.

Table 13: Last Starters of Minimum Block Spacings	between Primes of form $7n + k$ in Blocks of 10^n
---	---

Sr. No.	Blocks of Size		Last Prime with Respective Minimum Block Spacing					
		Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$	
1	10	Not Found	Not Found	Not Found	Not Found	Not Found	Not Found	
2	100	999,999,993,749	$999,\!999,\!994,\!457$	999,999,998,567	999,999,999,863	999,999,998,513	999,999,995,483	
3	1,000 & all 10^n for $n \ge 3$	999,999,993,749	999,999,999,287	999,999,998,567	999,999,999,863	999,999,998,513	999,999,996,197	

Figure 10: First & Last Starters of Minimum Block Spacings between Primes of form 7n + k in Blocks of 10^n

The number of times this minimum block spacing occurs between primes of all forms 7n + 1, 7n + 2, 7n + 3, 7n + 4, 7n + 5 and 7n + 6 is noteworthy.

Sr No	Blocks of Size	Nı	umber of Min	nber of Minimum Block Spacings Occurring for Primes					
51. 10.	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$		
1	10	0	0	0	0	0	0		
2	100	311,770,604	311,758,174	311,752,528	311,745,077	311,747,223	311,754,644		
3	1,000	367,877,711	367,864,098	367,868,966	367, 867, 484	$367,\!869,\!338$	367,862,706		
4	10,000	373,488,315	373,474,760	373,481,415	373,479,744	$373,\!478,\!126$	373,474,324		
5	100,000	374,049,446	$374,\!035,\!656$	374,043,124	374,039,376	$374,\!038,\!041$	374,035,184		
6	1,000,000	$374,\!105,\!552$	374,091,587	374,099,147	374,095,467	$374,\!094,\!007$	374,091,658		
7	10,000,000	374,111,200	374,097,095	374,104,803	374,101,058	374,099,619	374,097,291		
8	100,000,000	374,111,746	374,097,669	374,105,359	374,101,621	374,100,173	374,097,869		
9	1,000,000,000	374,111,789	374,097,735	374,105,414	374,101,672	374,100,238	374,097,920		
10	10,000,000,000	374,111,795	374,097,735	374,105,423	374,101,679	374,100,249	374,097,926		
11	100,000,000,000	374,111,796	374,097,735	374,105,423	374,101,680	$374,\!100,\!252$	374,097,926		
12	1,000,000,000,000	374,111,796	374,097,735	374,105,423	374,101,680	$374,\!100,\!252$	374,097,926		

We see increase in the occurrence of minimum spacings for prime numbers of all forms. The cause of this is that as we increase block size, some primes with desired spacing coming at the crossing of smaller sized blocks find themselves inside larger blocks, which raises their count. Then this rate of increase gradually decreases owing to fading prime frequency.

Figure 11: % Increase in Occurrences of Minimum Block Spacings between Primes of form 7n + k in Blocks of 10^n

7.2. Maximum Spacing Between Primes in Blocks of 10 Powers

Unlike the minimum spacing between primes in blocks of 10 powers, the maximum spacing in them shows a little increasing trend with increase in the block size.

Sr. No.	Blocks of Size	Maximum Spacing Between Primes								
51. 10.	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$			
1	10	Not Found	Not Found	Not Found	Not Found	Not Found	Not Found			
2	100	98	98	98	98	98	98			
3	1,000	994	994	994	994	994	994			
4	10,000	3,318	3,038	3,066	3,122	3,108	3,024			
5	100,000 & all 10^n for $n \ge 5$	3,318	3,038	3,066	3,122	3,108	3,150			

Table 15: Maximum Block Spacing between Primes of form 7n+k

Till our ceiling of 10^{12} , a trend of increase and settling is observed as shown in the figure.

Figure 12: Deviation of Maximum Block Spacings between Primes of form 7n + k from Average

The first & the last prime numbers of forms 7n + k with these maximum block spacings within different blocks are as follows.

Table 16: First Starters of Maximum Block Spacings between Primes of form 7n + k in Blocks of 10^n

Sr. No.	Blocks of Size	First Prime with Respective Maximum Block Spacing							
51. 110.		Form $7n+1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$		
1	10	Not Found	Not Found	Not Found	Not Found	Not Found	Not Found		
2	100	53,201	15,101	29,501	1,901	224,201	1,301		
3	1,000	745,831,003	1,152,838,003	4,575,760,003	3,352,978,003	464,770,003	6,175,768,003		
4	10,000	857,234,220,221	548,658,004,421	517,425,410,561	714,877,644,191	134,572,683,299	153,787,932,689		
5	100,000 & all 10^n for $n \ge 5$	857,234,220,221	548,658,004,421	517,425,410,561	714,877,644,191	134,572,683,299	502,607,208,767		

Table 17: Last Starters of Maximum Block Spacings between Primes of form 7n + k in Blocks of 10^n

Sr. No.	Blocks of Size	Last Prime with Respective Maximum Block Spacing								
		Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$			
1	10	Not Found	Not Found	Not Found	Not Found	Not Found	Not Found			
2	100	999,999,937,301	999,999,884,501	999,999,982,901	999,999,984,701	999,999,957,101	999,999,990,401			
3	1,000	999,840,340,003	999,192,706,003	999,921,916,003	999,608,182,003	999,898,933,003	998,669,725,003			
4	10,000	857,234,220,221	548,658,004,421	517,425,410,561	714,877,644,191	893,062,422,523	153,787,932,689			
5	100,000 & all 10^n for $n \ge 5$	857,234,220,221	548,658,004,421	517,425,410,561	714,877,644,191	893,062,422,523	502,607,208,767			

Figure 13: First & Last Starters of Maximum Block Spacings between Primes of form 7n + k in Blocks of 10^n

Sr. No.	Blocks of Size	Number of Maximum Block Spacings Occurring for Primes							
	DIOCKS OF SIZE	Form $7n + 1$	Form $7n+2$	Form $7n + 3$	Form $7n + 4$	Form $7n + 5$	Form $7n + 6$		
1	10	0	0	0	0	0	0		
2	100	8,927,987	8,929,783	8,932,889	8,928,289	8,931,033	8,929,226		
3	1,000	1,486	1,607	1,536	1,564	1,644	1,556		
4	10,000 & all 10^n for $n \ge 4$	1	1	1	1	2	1		

Table 18: Frequency of Maximum Block Spacings between Primes of form $(n - n)$	Table 18	: Frequency of	f Maximum	Block	Spacings	between	Primes	of form	7n +	-k
--	----------	----------------	-----------	-------	----------	---------	--------	---------	------	----

8. Units Place and Tens Place Digits in Primes of form 7n + k

Only 6 different digits are possible in units place of primes. The number of primes of form 7n + k with these different digits in units have been determined till 1 trillion. So ignoring these special cases 2 & 3, deviations from average are also drawn.

	Sr. No.	Digit in Unite Place	Number of Primes of form							
		Digit in Chits I lace	7n + 1	7n + 2	7n + 3	7n + 4	7n + 5	7n + 6		
	1	1	1,566,997,409	1,566,981,018	1,567,001,317	1,566,998,104	1,566,990,811	1,566,992,321		
	2	2	0	1	0	0	0	0		
	3	3	1,567,001,995	1,567,007,149	1,566,990,378	1,566,987,259	1,566,998,652	$1,\!566,\!994,\!472$		
	4	5	0	0	0	0	1	0		
	5	7	1,566,992,306	1,567,000,080	1,567,002,239	$1,\!567,\!006,\!872$	1,566,999,313	$1,\!566,\!996,\!189$		
	6	9	1,566,981,826	1,566,991,444	1,567,000,855	1,566,992,561	1,567,003,669	1,567,003,777		

Table 19: Number of primes of form 7n + k with different units place digits till one trillion

Figure 15: Deviation of Units Place Digits of Primes of form 7n + k from Average

Now follow the figures for tens and units place digits together. There are 42 different cases of tens and units places that can occur in any prime.

Sr No	Digit in Tens and Units Place	Number of Primes of form							
	bigit in tens and emits I lace	7n + 1	7n + 2	7n + 3	7n + 4	7n + 5	7n + 6		
1	01	156,702,292	$156,\!697,\!199$	156,700,578	156,703,304	$156,\!696,\!787$	156,701,064		
2	02	0	1	0	0	0	0		
3	03	156,700,698	156,701,521	156,704,979	$156,\!691,\!981$	156,703,091	$156,\!696,\!773$		
4	05	0	0	0	0	1	0		
5	07	$156,\!698,\!448$	156,704,401	$156,\!696,\!450$	$156,\!703,\!614$	$156,\!694,\!252$	156,704,358		
6	09	156,702,103	156,703,796	$156,\!702,\!044$	$156,\!691,\!676$	$156,\!699,\!541$	$156,\!698,\!877$		
7	11	$156,\!692,\!276$	$156,\!694,\!120$	156,703,195	$156,\!699,\!595$	156,700,392	156,702,053		
8	13	$156,\!699,\!832$	156,704,660	156,702,759	$156,\!693,\!750$	$156,\!701,\!714$	$156,\!697,\!989$		
9	17	156,700,053	$156,\!698,\!640$	$156,\!698,\!813$	$156,\!695,\!335$	$156,\!697,\!824$	$156,\!698,\!640$		
10	19	156,700,861	156,702,034	156,707,296	$156,\!704,\!612$	$156,\!706,\!132$	156,703,632		
11	21	156,705,922	$156,\!695,\!597$	$156,\!695,\!592$	156,701,742	$156,\!704,\!762$	156,703,836		
12	23	$156,\!698,\!341$	156,706,166	$156,\!697,\!267$	156,701,379	156,703,329	$156,\!698,\!631$		
13	27	156,704,475	$156,\!696,\!777$	$156,\!702,\!101$	$156,\!694,\!190$	$156,\!709,\!797$	156,700,032		
14	29	156,701,667	$156,\!697,\!484$	156,707,327	156,701,454	$156,\!696,\!749$	$156,\!692,\!748$		
15	31	156,703,334	156,702,020	$156,\!696,\!689$	156,705,296	$156,\!699,\!537$	$156,\!694,\!420$		
16	33	156,701,189	156,703,550	$156,\!690,\!122$	$156,\!695,\!821$	$156,\!703,\!173$	156,703,779		
17	37	$156,\!694,\!366$	156,701,152	$156,\!702,\!013$	156,700,827	$156,\!703,\!832$	$156,\!696,\!646$		
18	39	156,700,994	156,701,187	156,704,908	$156,\!698,\!215$	$156,\!695,\!338$	$156,\!694,\!721$		
19	41	156,701,067	156,695,501	156,700,714	$156,\!695,\!393$	156,703,449	$156,\!693,\!882$		
20	43	156,699,420	$156,\!696,\!674$	$156,\!698,\!656$	$156,\!708,\!981$	$156,\!695,\!774$	$156,\!698,\!088$		
21	47	156,702,611	156,698,396	$156,\!697,\!739$	156,700,264	$156,\!696,\!364$	156,702,358		
22	49	156,692,813	$156,\!696,\!796$	156,702,386	$156,\!704,\!177$	$156,\!703,\!458$	156,701,146		
23	51	$156,\!699,\!937$	156,705,292	$156,\!699,\!031$	$156,\!697,\!973$	$156,\!701,\!847$	156,700,800		
24	53	$156,\!695,\!952$	156,702,555	$156,\!699,\!935$	$156,\!696,\!521$	$156,\!702,\!686$	$156,\!697,\!938$		
25	57	156,704,579	$156,\!697,\!893$	156,702,719	$156,\!696,\!672$	156,700,972	$156,\!690,\!160$		
26	59	156,704,905	$156,\!694,\!384$	$156,\!694,\!825$	$156,\!698,\!414$	$156,\!702,\!763$	156,704,231		
27	61	$156,\!698,\!957$	156,702,466	$156,\!698,\!139$	$156,\!696,\!058$	$156,\!702,\!101$	$156,\!698,\!389$		
28	63	156,700,544	$156,\!698,\!456$	$156,\!695,\!565$	$156,\!698,\!162$	$156,\!699,\!688$	156,702,951		
29	67	156,690,748	156,700,900	$156,\!704,\!728$	156,703,222	$156,\!699,\!884$	156,703,875		
30	69	$156,\!690,\!167$	$156,\!694,\!076$	$156,\!697,\!099$	$156,\!691,\!254$	$156,\!696,\!892$	156,702,956		
31	71	156,700,920	$156,\!694,\!839$	$156,\!702,\!347$	156,702,880	156,700,186	$156,\!695,\!317$		
32	73	156,704,245	$156,\!695,\!968$	$156,\!696,\!467$	156,700,805	$156,\!699,\!539$	$156,\!699,\!923$		
33	77	$156,\!697,\!568$	$156,\!698,\!745$	$156,\!698,\!072$	156,703,626	$156,\!698,\!830$	$156,\!699,\!802$		
34	79	156,695,923	$156,\!698,\!460$	$156,\!695,\!749$	$156,\!698,\!312$	156,700,376	156,700,006		
35	81	156,692,984	$156,\!694,\!139$	156,704,605	$156,\!693,\!689$	$156,\!696,\!291$	$156,\!698,\!295$		
36	83	156,702,438	$156,\!698,\!757$	156,703,759	$156,\!691,\!391$	$156,\!697,\!499$	$156,\!698,\!056$		
37	87	$156,\!697,\!472$	$156,\!696,\!545$	156,703,998	156,701,087	$156,\!698,\!907$	156,701,045		
38	89	$156,\!694,\!476$	$156,\!697,\!752$	$156,\!698,\!944$	156,700,117	156,700,555	156,710,164		
39	91	156,699,720	$156,\!699,\!845$	156,700,427	156,702,174	$156,\!685,\!459$	156,704,265		
40	93	156,699,336	$156,\!698,\!842$	156,700,869	156,708,468	$156,\!692,\!159$	156,700,344		
41	97	156,701,986	$156,\!706,\!631$	$156,\!695,\!606$	$156,\!708,\!035$	$156,\!698,\!651$	$156,\!699,\!273$		
42	99	156,697,917	156,705,475	156,690,277	156,704,330	156,701,865	156,695,296		

Table 20: Number of Primes of form 7n + k with Different Tens & Units Place Digits till One Trillion

Out of these 42 cases, the cases of 02 and 05 are exceptional as they occur only once. So, while studying averages, these special cases are always to be kept aside having odd man out roles.

Following deviation from average is seen for occurrences of other last two digits in range of $1-10^{12}$ for primes of form 7n+k.

Figure 16: Deviation of Last 2 Digits of Primes of form 7n + k from Inter se Average

9. Analysis of Successive Primes of form 7n + k

When two successive primes are of same form 7n + k, the case becomes interesting. Their analysis is graphically presented.

Figure 17: Number of Successive Primes of form 7n + k till $10^{1}2$

Figure 18: Successive Occurrence of Primes of form 7n + k till $10^{1}2$

Since long consistent efforts are been taken to study random distribution of primes. This work is an addition to that with respect to a specific linear pattern of 7n + k. The availability of more and more rigorous analysis like this will help give a deeper insight into understanding of prime distribution.

Acknowledgements

The author has extensively used the Java Programming Language, NetBeans IDE, for implementing the algorithms developed during this work. Thanks are due to their Development Teams including the that of Microsoft Office Excel, which was used as validation and visualization tool, in addition to usual plotting of graphs.

The continuous use of the Computer Laboratory of Mathematics & Statistics Department of the author's institution has a great credit in materializing the analysis aimed at. The power support extended by the Department of Electronics of the institute is also being acknowledged.

The author is thankful to the University Grants Commission (U.G.C.), New Delhi of the Government of India for funding this research work under a Research Project (F.No. 47-748/13(WRO)).

References

- [1] Euclid (of Alexandria), *Elements*, Book IX(300 BC).
- [2] P.G.L.Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Abhand. Ak. Wiss, Berlin, (1837).
- [3] Neeraj Anant Pande, Analysis of Primes Less Than a Trillion, International Journal of Computer Science & Engineering Technology, 6(6)(2015), 332-341.
- [4] Neeraj Anant Pande, Analysis of Primes in Arithmetical Progressions 3n + k up to a Trillion, IOSR Journal of Mathematics, 11(3-IV)(2015), 72-85.
- [5] Neeraj Anant Pande, Analysis of Primes in Arithmetical Progressions 4n + k up to a Trillion, International Journal of Mathematics and Computer Applications Research, 5(4)(2015), 1-18.
- [6] Neeraj Anant Pande, Analysis of Primes in Arithmetical Progressions 5n + k up to a Trillion, Journal of Research in Applied Mathematics, 2(5)(2015), 14-29.
- [7] Neeraj Anant Pande, Analysis of Primes in Arithmetical Progressions 6n + k up to a Trillion, International Journal of Mathematics and Computer Research, 3(6)(2015), 1037-1053.
- [8] Benjamin Fine and Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Birkhauser, (2007).
- [9] Andrew Granville and Greg Martin, Prime Number Races, American Mathematical Monthly, 113(1)(2006), 1-33.
- [10] Neeraj Anant Pande, Evolution of Algorithms: A Case Study of Three Prime Generating Sieves, Journal of Science and Arts, 3(24)(2013), 267-276.
- [11] Neeraj Anant Pande, Algorithms of Three Prime Generating Sieves Improvised Through Nonprimality of Even Numbers (Except 2), International Journal of Emerging Technologies in Computational and Applied Sciences, 4(6)(2013), 274-279.
- [12] Neeraj Anant Pande, Algorithms of Three Prime Generating Sieves Improvised by Skipping Even Divisors (Except 2), American International Journal of Research in Formal, Applied & Natural Sciences, 1(4)(2013), 22-27.
- [13] Neeraj Anant Pande, Prime Generating Algorithms through Nonprimality of Even Numbers (Except 2) and by Skipping Even Divisors (Except 2), Journal of Natural Sciences, 2(1)(2014), 107-116.
- [14] Neeraj Anant Pande, Prime Generating Algorithms by Skipping Composite Divisors, International Journal of Computer Science & Engineering Technology, 5(9)(2014), 935-940.
- [15] Neeraj Anant Pande, Improved Prime Generating Algorithms by Skipping Composite Divisors and Even Numbers (Other

Than 2), Journal of Science and Arts, 31(2)(2015), 135-142.

- [16] Neeraj Anant Pande, Refinement of Prime Generating Algorithms, International Journal of Innovative Science, Engineering & Technology, 2(6)(2015), 21-24.
- [17] Herbert Schildt, Java : The Complete Reference, 7th Edition, Tata McGrawHill, (2006).