International Journal of Mathematics And its Applications

E-Colouring of a Graph

Research Article

D.K.Thakkar ${ }^{1 *}$ and V.R.Dave ${ }^{2}$
1 Department of Mathematics, Saurashtra University, Rajkot, India.
2 Shree M. \& N. Virani Science College, Kalavad Road, Rajkot, India.

Abstract

In this paper we introduce a new colouring of graphs called E -Colouring. This is not a proper colouring in general. We also define E-Chromatic Number and E-Homomorphism of a graph. We prove several related results. In particular we prove that for a given E-chromatic colouring there is a vertex in every colour class which has an equitable neighbour in every other colour class.

MSC: 05C15, 05C69. Keywords: E-Colouring, E-Chromatic Colouring, E-Chromatic Number, E-Homomorphism, Equitable Independent Set, Maximal Equitable Independent Set, Transversal, Colour Class. (C) JS Publication.

1. Introduction

The concept of an equitable edge was introduced in [2]. An edge uv of a graph is said to be an equitable edge if $|d(u)-d(v)| \leq$ 1. Two vertices u and v are said to be equitable adjacent if there is an equitable edge containing u and v. The concept of an equitable independent set was introduced in [5]. A set S of vertices of a graph G is said to be equitable independent if no two vertices of S are equitable adjacent. An equitable independent set S is said to be a maximal independent set [5] if for every vertex v in $V(G)-S, S \cup\{v\}$ is not an equitable independent set. We assume that our graphs are finite, simple and undirected.

2. E-Colouring of a Graph

We introduced here a new concept of colouring.

Definition 2.1 (E-Colouring of a Graph). Let G be a graph. An E-Colouring of the vertices of the graph G is an assignment $f: V(G) \rightarrow\{1,2, \ldots, k\}$ such that if u and v are equitable adjacent then the colours $f(u)$ and $f(v)$ are different. An E Colouring $f: V(G) \rightarrow\{1,2, \ldots, k\}$ is also called a k - E-Colouring.

Note that an E-Colouring of a graph G need not be a proper colouring of G.

Definition 2.2 (Equitable Independent Set [5]). Let G be a graph and $S \subseteq V(G)$, then S is said to be an equitable independent set if no two vertices of S are equitable adjacent. Obviously, every independent set is an equitable independent set but an equitable independent set need not be an independent set.

[^0]
Example 2.3.

Figure 1

Let $G=(V, E)$ be a graph. $V(G)=\{a, b, c, d\}$. The function $f: V(G) \rightarrow\{1,2,3\}$ defined as $f(a)=1, f(b)=2, f(c)=3$, $f(d)=3$.

The above colouring is an E-Colouring of the graph and observe that it is not a proper colouring of the graph.
Remark 2.4. Let G be a graph and $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a k-E-Colouring of G. We assume that this assignment f of colours is onto \forall i let $C_{i}=\{v \in V(G) / f(v)=i\}(i=1,2, \ldots, k)$. Then obviously each C_{i} is non-empty equitable independent subset of G and $C_{i} \cap C_{j}=\phi$ if $i \neq j$. In fact the sets $C_{1}, C_{2}, \ldots, C_{k}$ is a partition of $V(G)$ into equitable independent subset of G. These sets C_{i} are called colour classes corresponding to this E-Colouring.

Conversely if we have a partition of $V(G)$ say $C_{1}, C_{2}, \ldots, C_{k}$ consisting of equitable independent sets then we have an E Colouring arising naturally as follows. Define $f: V(G) \rightarrow\{1,2, \ldots, k\}$ as $f(v)=i$ if $v \in C_{i}$ for some i, for this E-Colouring obviously the sets $C_{1}, C_{2}, \ldots, C_{k}$ are the colour classes.
For example, the colour classes corresponding to the E-Colouring in the above graph are $C_{1}=\{a\}, C_{2}=\{b\}, C_{3}=\{c, d\}$.
Definition 2.5 (E-Chromatic Number and E-Chromatic Colouring). Let G be a graph. The smallest positive integer k such that G admits a $k-E$-Colouring is called the E-Chromatic Number of the graph. Such a $k-E$-Colouring is called the E-Chromatic Colouring of a graph.

Notation 2.6. The E-Chromatic number of a graph is denoted by $\chi_{E}(G)$ or $E-c h(G)$.
Example 2.7. Consider the graph

If we assign colour i to $v_{i}(i=1,2,3,4)$ and colour 4 to v_{5} then this colouring is an E-Chromatic Colouring of G and note that E-Chromatic number of this graph $=4$.

Note that this colouring is not a proper colouring of the graph. Also it is observed that there is a proper colouring of G which is an E-Chromatic Colouring. This colouring is as follows.

Assign colour i to $c_{i}(i=1,2,3,4)$ and assign colour -1 to v_{5}.

Definition 2.8 (Homomorphism of Graphs [6]). Let G and H be two graphs. A function $f: V(G) \rightarrow V(H)$ is said to be a homomorphism from G to H if whenever u and v are adjacent vertices of $G, f(u)$ and $f(v)$ are adjacent vertices of H.

Definition 2.9 (E-Homomorphism of Graphs). Let G and H be two graphs. A function $f: V(G) \rightarrow V(H)$ is said to be an E-homomorphism from G to H if whenever u and v are equitable adjacent vertices of $G, f(u)$ and $f(v)$ are adjacent vertices of H.

Example 2.10. Consider the following two graphs G and H. Graph G has the vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ which is as shown below.

The vertex set of the graph H is $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and it is as shown below.

Figure 4

Define the function $f: V(G) \rightarrow V(H)$ as follows: $f\left(v_{i}\right)=v_{i}(i=1,2,3,4)$. It is obvious that f is an E-Homomorphism from G to H. Let $g=f^{-1}$ then it is obvious that $g: V(H) \rightarrow V(G)$ is also an E-Homomorphism from H to G.

Remark 2.11. Suppose f is an E-homomorphism from G to H which is onto. Let $y \in V(H)$ and consider $S=f^{-1}(y)$. Suppose $x_{1}, x_{2} \in S$ and suppose they are equitable adjacent. Since f is an E-homomorphism, $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ are adjacent and therefore they are distinct. However $f\left(x_{1}\right)=f\left(x_{2}\right)=y$. This is a contradiction. Therefore S must be an equitable independent set. Now, we will see that an $n-E$-Colouring of a graph G gives rise to an E-homomorphism from $G \rightarrow K_{n}$.

Remark 2.12. Suppose f is an E-homomorphism from G to H and G is regular or bi-regular. Therefore any two vertices of G are adjacent iff they are equitable adjacent. Therefore f is a homomorphism from G to H.

Theorem 2.13. Let G be a graph and f is an $n-E$-Colouring of a graph G, then f can be regarded as an E - homomorphism from $G \rightarrow K_{n}$.

Proof. Let $f: V(G) \rightarrow\{1,2, \ldots, n\}$ be an n-E-Colouring of a graph G. Consider the complete graph K_{n} whose vertices are $\{1,2, \ldots, n\}$. If we regard f as a function from $\mathrm{V}(\mathrm{G}) \rightarrow \mathrm{V}\left(\mathrm{K}_{n}\right)$ then if u and v are equitable adjacent vertices of G then $\mathrm{f}(\mathrm{u})$ and $\mathrm{f}(\mathrm{v})$ are distinct members of the set $\{1,2, \ldots \ldots \ldots, \mathrm{n}\}$. This means that $\mathrm{f}(\mathrm{u})$ and $\mathrm{f}(\mathrm{v})$ are adjacent vertices of K_{n}. Thus, f is an E-homomorphism from $G \rightarrow K_{n}$.

Remark 2.14. Considering the above theorem we can say that the E-Chromatic number of a graph G is the smallest positive integer n such that there is an E-homomorphism from $G \rightarrow K_{n}$.

Remark 2.15. Let G be a graph and suppose $f: V(G) \rightarrow\{1,2, \ldots, n\}$ is a chromatic colouring of the graph. (i.e. $\chi(G)=n$) then obviously f is an E-Colouring of the graph. Therefore the E-Chromatic number of $G \leq n=$ Chromatic number of G.

Notation 2.16. Suppose G and H are graphs. If there is an E - homomorphism from G to H then we will write $G \xrightarrow{E} H$. If there is no E-homomorphism from G to H then we denote it as $G \stackrel{E}{\rightarrow} H$. If there is an E-homomorphism from G to H and If there is an E - homomorphism from H to G, we denote this by $G \stackrel{E}{\leftrightarrows} H$.

Proposition 2.17. Let G and H be two graphs such that $G \stackrel{E}{\rightarrow} H$ then $\chi_{E}(G) \leq \chi(H)$.
Proof. Suppose $\chi(H)=n$ and let $f: V(H) \rightarrow\{1,2, \ldots, n\}$ be a chromatic colouring of H. f can be regarded as a homomorphism from $H \rightarrow K_{n}$. Let g be an E-homomorphism from G to H. Now, $f \circ g: V(G) \rightarrow V\left(K_{n}\right)$ is an $\mathrm{E}-$ homomorphism from G to K_{n}. Therefore $\chi_{E}(G) \leq n=\chi(H)$.

Let G be a graph and $f: V(G) \rightarrow\{1,2, \ldots, n\}$ be an E-Chromatic Colouring of G. Let $C_{1}, C_{2}, \ldots, C_{n}$ be the colour classes of G corresponding to this E -Colouring. We have the following theorem

Theorem 2.18. In every colour class C there is a vertex v such that v has an equitable neighbour in every other colour class.

Proof. Suppose there is a colour class in which no such vertex exists. For simplicity we may assume that this colour class is $C_{1} . \forall v \in C_{1}$ there is a colour class say C_{j} in which v has no equitable neighbour. (This j depends on vertex v) Now, we obtain a new $\mathrm{E}-$ Colouring of G as follows. Assign colour j to v if $v \in C_{1}$ and v has no equitable neighbour in C_{j}. Repeat this $\forall \mathrm{v}$ in C_{1}. Thus, now we have an E -Colouring of G consisting of colours $\{2,3, \ldots, n\}$. This is a contradiction because the given colouring $f: V(G) \rightarrow\{1,2, \ldots, n\}$ is an E-Chromatic Colouring. Therefore the statement of the theorem holds.

Now, we prove a necessary condition under which the chromatic number of a graph is same as the E-Chromatic number of a graph.

Theorem 2.19. Let G be a graph. If Chromatic Number of $G=E$-Chromatic Number of G then for every chromatic colouring of G and for every colour class C of this chromatic colouring there is a vertex v in C such that v has an equitable neighbour in every other colour class of this colouring.

Proof. Suppose there is a chromatic colouring fof G which fails to satisfy the condition. Then there is a colour class C of f such that $\forall v \in C$ there is a colour class C^{\prime} of f such that $C^{\prime} \neq C$ and v has no equitable neighbour in C^{\prime}. We obtain a new E-Colouring f^{\prime} by assigning the colour of C^{\prime} to $\mathrm{v}, \forall v \in C$. Then the E -Colouring f^{\prime} uses one less colour than f . Which is a contradiction. Therefore the statement of the theorem holds.

Definition 2.20 (Maximal Equitable Independent Set [5]). Let G be a graph and S be an equitable independent subset of G. Then S is said to be maximal equitable independent set if for every vertex v in $V(G)-S, S \cup\{v\}$ is not an equitable independent set.

Example 2.21. Consider the graph G which has the vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ which is as shown below.

Obviously $S=\left\{v_{3}, v_{4}\right\}$ is a maximal equitable independent set. There are other maximal equitable independent set also. For example $T=\left\{v_{2}, v_{4}\right\}$ is also a maximal equitable independent set.

Theorem 2.22. Let G be a graph and S be an equitable independent set which is not a maximal equitable independent set then there is an E-Chromatic Colouring of G such that S is not a colour class in this E-Chromatic Colouring.

Proof. If S is not a colour class in every E-Chromatic Colouring then the theorem is proved. Suppose there is an E-
 independent set, therefore \exists a vertex x which is not in S and x is not equitable adjacent with every vertex of S. Now, x lies in some colour class S^{\prime} such that $S^{\prime} \neq S$. Suppose $S^{\prime}=\{x\}$ then by Theorem 2.18 x is equitable adjacent with some vertex of every colour class. In particular, x is equitable adjacent with some vertex of S also. Which is not true. Thus, S^{\prime} contains some other element y also. i.e. S^{\prime} has at least two vertices. Now, we obtain a new E-Colouring as follows.

Assign the colour of S to the vertex x and do not change colours of any other vertex. Obviously, this colouring is an E-Colouring and uses the same number of colours as f . We call this colouring as f^{\prime}. Obviously S is not a colour class in this colouring f^{\prime}. Thus the theorem is proved.

Definition 2.23 (Transversal). Let S be a non-empty set and $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a family of nonempty subsets of S. A subset T of S is said to be a transversal of this family if $T \cap S_{i} \neq \phi, \forall i \in\{1,2, \ldots, k\}$.

Theorem 2.24. Let G be a graph and S be an equitable independent subset of G. Suppose f is an E-Chromatic Colouring of G. Then either $V(G)-S$ is a transversal of the colour classes of f or there is an E-Chromatic Colouring f^{\prime} of G such that S is a colour class in this E-Colouring.

Proof. Let f be an E-Chromatic Colouring of G. Suppose $V(G)-S=T$ is not a transversal for this E-Colouring f of G. Therefore, T does not contain any vertex of a particular colour of this colouring. This means that for a particular colour of this colouring the corresponding colour class C does not intersect T . Therefore $C \subseteq S$. If $C=S$ then S is a colour class for this colouring fitself. Suppose $C \subset S$. Also $y \in S-C$, then the colour of y is different from the colour of C and also $\{y\}$ cannot be a colour class for this colouring because otherwise y would be equitable adjacent to some vertex of C (by Theorem 2.18). Which is a contradiction as S is an equitable independent set.
Therefore there is a vertex y^{\prime} outside S which has the same colour as y . Thus we have proved that for every y in S-C there is a vertex y^{\prime} such that y^{\prime} is not in S and y^{\prime} has the same colour as y. Now we define a new colouring f^{\prime} as follows. Assign the same colour as that of C to all vertices of S and do not change the colours of vertices which are outside of S . Then this is an $\mathrm{E}-$ Chromatic Colouring and S is a colour class in this colouring.

References

[1] C.Berge, Theory of Graphs and its Applications, Methuen, London, (1962).
[2] K.Dharmalingam, A Note on The Equitable Covering and Equitable Packing of A Graph, Bulletin of International Mathematical Virtual Institute, 3(2013), 21-27.
[3] T.Haynes, S.Hedetniemi and P.Slater, Domination In Graphs Advanced Topics, Marcel Dekker Inc, New York, (1998).
[4] T.Haynes, S.Hedetniemi and P.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc, New York, (1998).
[5] V.Swaminathan and K.Dharmalingam, Degree Equitable Domination on Graphs, Kragujevac Journal of Mathematics, $35(1)(2011), 191-197$.
[6] D.West, Introduction to Graph Theory, 2nd Edition, Pearson Education, India, (2001).

[^0]: * E-mail: dkthakkar1@yahoo.co.in

