Volume 4, Issue 2-A (2016), 51-57.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

$\mathcal{I}_{m\omega}$ -closed Sets

Research Article

O.Ravi^{1*}, K.Indirani² and A.R.Thilagavathi³

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.
- 2 Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.
- 3 Department of Mathematics, Sri G. V. G Visalatkshi College for Women, Udumalpet, Thirupur District, Tamil Nadu, India.

Abstract: In this paper we introduce the notion of $\mathcal{I}_{m\omega}$ -closed sets. In Sections 3 and 4, we obtain some basic properties and characterizations of $\mathcal{I}_{m\omega}$ -closed sets. In the last section, we define several new subsets in ideal topological spaces which

lie between \star -closed sets and \mathcal{I}_{ω} -closed sets.

MSC: 54C05, 54C08, 54C10.

Keywords: \mathcal{I}_{ω} -closed set, $\mathcal{I}_{m\omega}$ -closed set, m- ω -closed set, m- ω -open set.

© JS Publication.

1. Introduction

Sheik John [11] (= Veera Kumar [12]) introduced the notion of ω -closed sets (= \hat{g} -closed sets). Recently many variations of ω -closed sets were introduced and investigated. They are applied to introduce several low separation axioms. Since then, the further generalizations of ω -closed sets are being introduced and investigated. Ravi et al [8] introduced the notion of $\mathcal{I}_{\hat{g}}$ -closed sets (\mathcal{I}_{ω} -closed sets) and further properties of $\mathcal{I}_{\hat{g}}$ -closed sets are investigated. By combining a topological space (X, τ) and an ideal \mathcal{I} on (X, τ), Dontchev et. al [1] introduced the notion of \mathcal{I}_{g} -closed sets and investigated the properties of \mathcal{I}_{g} -closed sets. By combining an m-space (X, m_x) and an ideal \mathcal{I} on (X, m_x), quite recently Ozbakir and Yildirim [6] have introduced the notion of an ideal minimal spaces. Especially, the notion of m- \mathcal{I}_{g} -closed sets is introduced and investigated.

In this paper we introduce the notion of $\mathcal{I}_{m\omega}$ -closed sets. In Sections 3 and 4, we obtain some basic properties and characterizations of $\mathcal{I}_{m\omega}$ -closed sets. In the last section, we define several new subsets in ideal topological spaces which lie between \star -closed sets and \mathcal{I}_{ω} -closed sets.

2. Preliminaries

Definition 2.1 ([7]). A subfamily $m_X \subseteq \wp(X)$ is said to be a minimal structure (briefly, m-structure) on X if \emptyset , $X \in m_X$. The pair (X, m_X) is called a minimal space (briefly m-space). Each member of m_X is said to be m-open and the complement of an m-open set is said to be m-closed.

Notice that (X, m_X, \mathcal{I}) is called an ideal m-space.

^{*} E-mail: siinqam@yahoo.com

Remark 2.2. Let (X, τ) be a topological space. Then $m_X = \tau$, SO(X) and SPO(X) are minimal structures on X.

Definition 2.3. Let (X, m_X) be an m-space. For a subset A of X, the m-closure of A and the m-interior of A are defined in [5] as follows:

- (1). $m\text{-}cl(A) = \cap \{F : A \subseteq F, F^c \in m_X\}$,
- (2). $m\text{-}int(A) = \bigcup \{U : U \subseteq A, U \in m_X\}.$

Lemma 2.4 ([3]). Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (1). $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (2). $A^* = cl(A^*) \subseteq cl(A)$,
- (3). $(A^*)^* \subseteq A^*$,
- (4). $(A \cup B)^* = A^* \cup B^*$,
- (5). $(A \cap B)^* \subseteq A^* \cap B^*$.

Lemma 2.5. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every ω -closed set is an \mathcal{I}_{ω} -closed but not conversely ([8], Theorem 2.13).

Lemma 2.6 ([2]). Let $\{A_{\lambda} : \lambda \in \wedge\}$ be a locally finite family of sets in (X, τ, \mathcal{I}) . Then $\bigcup_{\lambda \in \wedge} A_{\lambda}^{\star} = (\bigcup_{\lambda \in \wedge} A_{\lambda})^{\star}$.

Definition 2.7 ([7]). A minimal structure m_x on a nonempty set X is said to have property \mathcal{B} if the union of any family of subsets belonging to m_x belongs to m_x .

3. $\mathcal{I}_{m\omega}$ -closed Sets

In this section, let (X, τ, \mathcal{I}) be an ideal topological space and m_X an m-structure on X. We obtain several basic properties of $\mathcal{I}_{m\omega}$ -closed sets.

Definition 3.1. Let (X, τ) be a topological space and m_X an m-structure on X. A subset A of X is said to be m-semiopen [4] if $A \subset m$ -cl(m-int(A)). The family of all m-semiopen sets in X is denoted by m-SO(X). The complement of m-semiopen set is said to be m-semiclosed.

Definition 3.2 ([9]). Let (X, τ) be a topological space and m_X an m-structure on X. A subset A of X is said to be

- (1). m- ω -closed if $cl(A) \subset U$ whenever $A \subset U$ and U is m-semiopen,
- (2). m- ω -open if its complement is m- ω -closed.

Definition 3.3 ([4]). Let (X, m_X) be an m-space. For a subset A of X, the m-semi-closure of A and the m-semi-interior of A, denoted by m-scl(A) and m-sint(A), respectively are defined as follows:

- (1). m- $scl(A) = \bigcap \{F : A \subset F, F \text{ is } m\text{-semiclosed in } X\},$
- (2). m-sint(A) = $\cup \{U : U \subset A, U \text{ is } m$ -semiopen in $X\}$.

Remark 3.4. Let (X, τ) be a topological space and A a subset of X. If m-SO(X) = SO(X) (resp. τ) and A is $m\text{-}\omega\text{-}closed$, then A is $\omega\text{-}closed$ (g-closed).

Definition 3.5. A subset A of an ideal m-space (X, m_X, \mathcal{I}) is said to be

- (1). $\mathcal{I}_{m\omega}$ -closed if $A^* \subset U$ whenever $A \subset U$ and U is m-semiopen.
- (2). $\mathcal{I}_{m\omega}$ -open if X A is $\mathcal{I}_{m\omega}$ -closed.

Remark 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. If m-SO(X) = SO(X) (resp. τ) and A is $\mathcal{I}_{m\omega}$ -closed, then A is \mathcal{I}_{ω} -closed (resp. \mathcal{I}_{g} -closed).

Proposition 3.7. Every m- ω -closed set is $\mathcal{I}_{m\omega}$ -closed but not conversely.

Proof. Let A be an m- ω -closed, then $cl(A) \subset U$ whenever $A \subset U$ and U is m-semiopen. By Lemma 2.4, $A^* \subset cl(A)$. Hence A is $\mathcal{I}_{m\omega}$ -closed.

Example 3.8. Let $X = \{a, b, c\}$, $m_X = \{\phi, X, \{c\}\}$, $\tau = \{\phi, X, \{c\}, \{b, c\}\}$ and $\mathcal{I} = \{\phi, \{b\}\}$. Then m-semiopen sets are ϕ , X, $\{c\}$, $\{a, c\}$ and $\{b, c\}$; semi-open sets are ϕ , X, $\{c\}$, $\{a, c\}$ and $\{b, c\}$; m- ω -closed sets are ϕ , X, $\{a\}$ and $\{a, b\}$; and $\mathcal{I}_{m\omega}$ -closed sets are ϕ , X, $\{a\}$, $\{b\}$ and $\{a, b\}$. It is clear that $\{b\}$ is $\mathcal{I}_{m\omega}$ -closed set but it is not m- ω -closed.

Proposition 3.9. Let $SO(X) \subset m\text{-}SO(X)$. Then every $\mathcal{I}_{m\omega}$ -closed set is \mathcal{I}_{ω} -closed but not conversely.

Proof. Suppose that A is an $\mathcal{I}_{m\omega}$ -closed set. Let $A \subset U$ and $U \in SO(X)$. Since $SO(X) \subset m$ -SO(X), $A^* \subset U$ and hence A is \mathcal{I}_{ω} -closed.

Example 3.10. Let $X = \{a, b, c\}$, $m_X = \{\phi, X, \{c\}\}$, $\tau = \{\phi, X, \{b\}, \{a, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. Then ω -closed sets are the power set of X; m- ω -closed sets are ϕ , X, $\{a\}$, $\{b\}$, $\{a, b\}$ and $\{a, c\}$; $\mathcal{I}_{m\omega}$ -closed sets are ϕ , X, $\{a\}$, $\{b\}$, $\{a, b\}$ and $\{a, c\}$; and \mathcal{I}_{ω} -closed sets are the power set of X. It is clear that $\{c\}$ is \mathcal{I}_{ω} -closed set but it is not $\mathcal{I}_{m\omega}$ -closed.

Remark 3.11. Let $SO(X) \subset m$ -SO(X). Then we have the following implications for the subsets stated above.

$$\begin{array}{ccc} closed &\longrightarrow & m\text{-}\omega\text{-}closed &\longrightarrow & \omega\text{-}closed \\ \downarrow & & \downarrow & & \downarrow \\ \star\text{-}closed &\longrightarrow & \mathcal{I}_{m\omega}\text{-}closed &\longrightarrow & \mathcal{I}_{\omega}\text{-}closed \end{array}$$

The implications in the first line are known in [10]. The three vertical implications follow from Lemma 2.4(2), Proposition 3.7 and Lemma 2.5. It is obvious that every \star -closed is $\mathcal{I}_{m\omega}$ -closed and by Proposition 3.9, every $\mathcal{I}_{m\omega}$ -closed set is \mathcal{I}_{ω} -closed.

Proposition 3.12. If $\{A_{\lambda} : \lambda \in \wedge \}$ is a locally finite family of sets in (X, τ, \mathcal{I}) and A_{λ} is $\mathcal{I}_{m\omega}$ -closed for each $\lambda \in \wedge$, then $(\cup_{\lambda \in \wedge} A_{\lambda})$ is $\mathcal{I}_{m\omega}$ -closed.

Proof. Let $(\cup_{\lambda \in \wedge} A_{\lambda}) \subset U$ where U is m-semiopen. Then $A_{\lambda} \subset U$ for each $\lambda \in \wedge$. Since A_{λ} is $\mathcal{I}_{m\omega}$ -closed for each $\lambda \in \wedge$, we have $A_{\lambda}^{\star} \subset U$ and hence $\cup_{\lambda \in \wedge} A_{\lambda}^{\star} \subset U$. By Lemma 2.6, $(\cup_{\lambda \in \wedge} A_{\lambda})^{\star} \subset U$. Hence $(\cup_{\lambda \in \wedge} A_{\lambda})$ is $\mathcal{I}_{m\omega}$ -closed.

Corollary 3.13. If A and B are $\mathcal{I}_{m\omega}$ -closed sets in (X, τ, \mathcal{I}) , then $A \cup B$ is $\mathcal{I}_{m\omega}$ -closed.

Proof. Let $A \cup B \subset U$ where U is m-semiopen. Then $A \subset U$ and $B \subset U$. Since A and B are $\mathcal{I}_{m\omega}$ -closed, then $A^* \subset U$ and $B^* \subset U$ and so $A^* \cup B^* \subset U$. By Lemma 2.4, $A^* \cup B^* = (A \cup B)^*$. Hence $A \cup B$ is $\mathcal{I}_{m\omega}$ -closed.

Example 3.14. Let $X = \{a, b, c, d\}$, $m_X = \{\phi, X, \{a, b\}, \{a, c\}, \{b, d\}\}$ and $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, b, d\}\}$. Then m- ω -open sets ϕ , X, $\{a\}$, $\{b\}$, $\{d\}$, $\{a, b\}$, $\{a, d\}$ and $\{a, b, d\}$. It is shown that this collection does not have property \mathcal{B} .

Remark 3.15. Let (X, τ) be a topological space. Then the families SO(X) and τ^{α} are all m-structure with property \mathcal{B} .

Proposition 3.16. Let $SO(X) \subset m\text{-}SO(X)$ and m-SO(X) have property \mathcal{B} . If A is $\mathcal{I}_{m\omega}$ -closed in (X, τ, \mathcal{I}) and B is closed in (X, τ) , then $A \cap B$ is $\mathcal{I}_{m\omega}$ -closed.

Proof. Let A∩B ⊂ U where U is m-semiopen. Then we have A ⊂ U∪(X−B). Since τ ⊂ SO(X) ⊂ m-SO(X) and so U∪(X−B) is m-semiopen. Since A is $\mathcal{I}_{m\omega}$ -closed, then A*⊂U∪(X−B) and hence A*∩B ⊂ U∩B ⊂ U. By Lemma 2.4. (A∩B)* ⊂ A*∩B*. Since τ ⊂ τ *, B is *-closed and B* ⊂ B. Therefore, we obtain (A∩B)* ⊂ A*∩B* ⊂ A*∩B ⊂ U. This shows that A∩B is $\mathcal{I}_{m\omega}$ -closed.

Proposition 3.17. If A is $\mathcal{I}_{m\omega}$ -closed and $A \subset B \subset cl^*(A)$, then B is $\mathcal{I}_{m\omega}$ -closed.

Proof. Let $B \subset U$ where U is m-semiopen. Then $A \subset U$ and A is $\mathcal{I}_{m\omega}$ -closed. Therefore $A^* \subset U$ and $B^* \subset cl^*(B) \subset cl^*(A) = A \cup A^* \subset U$. Hence B is $\mathcal{I}_{m\omega}$ -closed.

Proposition 3.18. A subset A of X is $\mathcal{I}_{m\omega}$ -open if and only if $F \subset int^*(A)$ whenever $F \subset A$ and F is m-semiclosed.

Proof. Suppose that A is $\mathcal{I}_{m\omega}$ -open. Let $F \subset A$ and F be m-semiclosed. Then $X - A \subset X - F$ and X - F is m-semiopen. Since X - A is $\mathcal{I}_{m\omega}$ -closed, then $(X - A)^* \subset X - F$ and $X - \operatorname{int}^*(A) = \operatorname{cl}^*(X - A) = (X - A) \cup (X - A)^* \subset X - F$ and hence $F \subset \operatorname{int}^*(A)$.

Conversely, let $X - A \subset G$ where G is m-semiopen. Then $X - G \subset A$ and X - G is m-semiclosed. By hypothesis, we have $X - G \subset \operatorname{int}^*(A)$ and hence $(X - A)^* \subset \operatorname{cl}^*(X - A) = X - \operatorname{int}^*(A) \subset G$. Therefore, X - A is $\mathcal{I}_{m\omega}$ -closed and A is $\mathcal{I}_{m\omega}$ -open.

Corollary 3.19. Let $SO(X) \subset m\text{-}SO(X)$ and m-SO(X) have property \mathcal{B} . Then the following properties hold.

- (1). Every \star -open set is $\mathcal{I}_{m\omega}$ -open and every $\mathcal{I}_{m\omega}$ -open set is \mathcal{I}_{ω} -open,
- (2). If A and B are $\mathcal{I}_{m\omega}$ -open, then $A \cap B$ is $\mathcal{I}_{m\omega}$ -open,
- (3). If A is $\mathcal{I}_{m\omega}$ -open and B is open in (X, τ) , then $A \cup B$ is $\mathcal{I}_{m\omega}$ -open,
- (4). If A is $\mathcal{I}_{m\omega}$ -open and $int^*(A) \subset B \subset A$, then B is $\mathcal{I}_{m\omega}$ -open.

Proof. This follows from Remark 3.11, Propositions 3.16 and 3.17 and Corollary 3.13.

Lemma 3.20. Let (X, m_X) be an m-space and A a subset of X. Then $x \in m$ -scl(A) if and only if $U \cap A \neq \phi$ for every $U \in m$ -SO(X) containing x.

Lemma 3.21. Let X be a nonempty set, m_X an m-structure on X and m-SO(X) have property \mathcal{B} . For a subset A of X, the following properties hold:

- (1). $A \in m\text{-}SO(X)$ if and only if m-sint(A) = A,
- (2). A is m-semiclosed if and only if m-scl(A) = A,
- (3). m-sint(A) $\in m$ -SO(X) and m-scl(A) is m-semiclosed.

4. Characterizations of $\mathcal{I}_{m\omega}$ -closed sets

In this section, let (X, τ, \mathcal{I}) be an ideal topological space and m_X an m-structure on X. We obtain several characterizations of $\mathcal{I}_{m\omega}$ -closed sets.

Theorem 4.1. For a subset A of X, the following properties are equivalent:

- (1). A is $\mathcal{I}_{m\omega}$ -closed,
- (2). $cl^*(A) \subset U$ whenever $A \subset U$ and U is m-semiopen,
- (3). $cl^*(A) \cap F = \phi$ whenever $A \cap F = \phi$ and F is m-semiclosed.

Proof. (1) \Rightarrow (2) Let A \subset U where U is m-semiopen. Then by (1), $A^* \subset U$ and $cl^*(A) = A \cup A^* \subset U$.

- (2) \Rightarrow (3) Let $A \cap F = \phi$ and F be m-semiclosed. Then $A \subset X F$ and X F is m-semiopen. By (2), $cl^*(A) \subset X F$. Hence $cl^*(A) \cap F = \phi$.
- (3) \Rightarrow (1) Let $A \subset U$ where U is m-semiopen. Then $A \cap (X U) = \phi$ and X U is m-semiclosed. By (3), $cl^*(A) \cap (X U) = \phi$ and so $A^* \subset cl^*(A) \subset U$. Hence A is $\mathcal{I}_{m\omega}$ -closed.

Definition 4.2. Let (X, τ) be a topological space, m_X an m-structure on X and A a subset of X. The subset $\wedge_{ms}(A)$ is defined as follows: $\wedge_{ms}(A) = \cap \{U : A \subset U, U \in m\text{-}SO(X)\}.$

Theorem 4.3. A subset A of X is $\mathcal{I}_{m\omega}$ -closed if and only if $cl^{\star}(A) \subset \wedge_{ms}(A)$.

Proof. Suppose that A is $\mathcal{I}_{m\omega}$ -closed. If $x \notin \wedge_{ms}(A)$, then there exists $U \in \text{m-SO}(X)$ such that $A \subset U$ and $x \notin U$. Since A is $\mathcal{I}_{m\omega}$ -closed, by Theorem 4.1, $\text{cl}^*(A) \subset U$ and hence $x \notin \text{cl}^*(A)$. Hence we obtain $\text{cl}^*(A) \subset \wedge_{ms}(A)$.

Conversely, suppose that $cl^*(A) \subset \wedge_{ms}(A)$. Let $A \subset U$ and $U \in m\text{-SO}(X)$. Then $cl^*(A) \subset \wedge_{ms}(A) \subset U$. By Theorem 4.1, A is $\mathcal{I}_{m\omega}$ -closed.

Theorem 4.4. Let $SO(X) \subset m\text{-}SO(X)$ and m-SO(X) have property \mathcal{B} . For a subset A of X, the following properties are equivalent:

- (1). A is $\mathcal{I}_{m\omega}$ -closed,
- (2). $A^* A$ contains no nonempty m-semiclosed set,
- (3). $A^* A$ is $\mathcal{I}_{m\omega}$ -open,
- (4). $A \cup (X A^*)$ is $\mathcal{I}_{m\omega}$ -closed,
- (5). $cl^*(A) A$ contains no nonempty m-semiclosed set,
- (6). $m\text{-scl}(\{x\})\cap A \neq \phi \text{ for each } x \in cl^*(A).$
- *Proof.* (1) \Rightarrow (2) Suppose that A is $\mathcal{I}_{m\omega}$ -closed. Let $F \subset A^* A$ and F be m-semiclosed. Then $F \subset A^*$ and $F \nsubseteq A$. We have $A \subset X F$ and X F is m-semiopen. Therefore $A^* \subset X F$ and so $F \subset X A^*$. Hence $F \subset A^* \cap (X A^*) = \phi$.
- (2) \Rightarrow (3) Let $F \subset A^* A$ and F be m-semiclosed. By (2), we have $F = \phi$ and so $F \subset \text{int}^*(A^* A)$. By Proposition 3.18, $A^* A$ is $\mathcal{I}_{m\omega}$ -open.
- (3) \Rightarrow (1) Let $A \subset U$ where U is m-semiopen. Then $X U \subset X A \Rightarrow A^* \cap (X U) \subset A^* \cap (X A) = A^* A$. Since A^* is closed in (X, τ) and hence A^* is semi-closed in (X, τ) . Since every semi-closed set is m-semiclosed and so A^* is m-semiclosed.

Since m-SO(X) has property \mathcal{B} , then $A^* \cap (X - U)$ is m-semiclosed and by (3), $A^* - A$ is $\mathcal{I}_{m\omega}$ -open. Therefore by Proposition 3.18, $A^* \cap (X - U) \subset \operatorname{int}^*(A^* - A) = \operatorname{int}^*(A^* \cap (X - A)) = \operatorname{int}^*(A^*) \cap \operatorname{int}^*(X - A) = \operatorname{int}^*(A^*) \cap (X - \operatorname{cl}^*(A)) \subset A^* \cap (A \cup A^*)^c$ $= A^* \cap (A^c \cap (A^c)^c) = \phi \text{ and hence } A^* \subset U. \text{ Hence } A \text{ is } \mathcal{I}_{m\omega}\text{-closed}.$

- (3) \Leftrightarrow (4) This follows from the fact that $X (A^* A) = X \cap (A^* \cap A^c)^c = X \cap ((A^*)^c \cup A) = (X \cap (A^*)^c) \cup (X \cap A) = A \cup (X A^*)$.
- (2) \Leftrightarrow (5) This follows from the fact that $cl^*(A) A = (A \cup A^*) A = (A \cup A^*) \cap A^c = (A \cap A^c) \cup (A^* \cap A^c) = A^* \cap A^c = A^* \cap$
- (1) \Rightarrow (6) Suppose that A is $\mathcal{I}_{m\omega}$ -closed and m-scl($\{x\}$) \cap A = ϕ for some $x \in \text{cl}^*(A)$. We know that m-scl($\{x\}$) is m-semiclosed. We have $A \subset X (\text{m-scl}(\{x\}))$ and $X (\text{m-scl}(\{x\}))$ is m-semiopen. Therefore by Theorem 4.1, $\text{cl}^*(A) \subset X (\text{m-scl}(\{x\}))$ $\subset X \{x\}$. This contradicts that $x \in \text{cl}^*(A)$. Hence m-scl($\{x\}$) \cap A $\neq \phi$ for each $x \in \text{cl}^*(A)$.
- (6) \Rightarrow (1) Suppose m-scl($\{x\}$) $\cap A \neq \phi$ for each $x \in cl^*(A)$. We have to prove that A is $\mathcal{I}_{m\omega}$ -closed. Suppose A is not $\mathcal{I}_{m\omega}$ -closed. Then by Theorem 4.1, $\phi \neq cl^*(A) U$ for some m-semiopen set U containing A. There exists $x \in cl^*(A) U$. Since $x \notin U$, by Lemma 3.20, m-scl($\{x\}$) $\cap U = \phi$ and hence m-scl($\{x\}$) $\cap A \subset m$ -scl($\{x\}$) $\cap U = \phi$. This shows that m-scl($\{x\}$) $\cap A = \phi$ for some $x \in cl^*(A)$. This is a contradiction. Hence A is $\mathcal{I}_{m\omega}$ -closed.

Corollary 4.5. Let $SO(X) \subset m\text{-}SO(X)$ and m-SO(X) have property \mathcal{B} . For a subset A of X, the following properties are equivalent:

- (1). A is $\mathcal{I}_{m\omega}$ -open,
- (2). $A int^*(A)$ contains no nonempty m-semiclosed set,
- (3). $m\text{-scl}(\{x\})\cap (X-A)\neq \phi \text{ for each } x\in X-\text{ int}^*(A).$

Theorem 4.6. Let $SO(X) \subset m\text{-}SO(X)$ and m-SO(X) have property \mathcal{B} . A subset A of X is $\mathcal{I}_{m\omega}$ -closed if and only if A = F - N where F is \star -closed and N contains no nonempty m-semiclosed set.

Proof. If A is $\mathcal{I}_{m\omega}$ -closed, then by Theorem 4.4, $N = A^* - A$ contains no nonempty m-semiclosed set. If $F = cl^*(A)$, then $A \cup A^* = cl^*(A) = F$ and by Lemma 2.4, we obtain $F^* = (A \cup A^*)^* = A^* \cup (A^*)^* \subset A^* \cup A = F$. Therefore F is *-closed such that $F - N = (A \cup A^*) - (A^* - A) = (A \cup A^*) \cap (A^* \cap A^c)^c = (A \cup A^*) \cap (A \cup (A^*)^c) = A \cup (A^* \cap (A^*)^c) = A$. Conversely, suppose A = F - N where F is *-closed and N contains no nonempty m-semiclosed set. Let U be a m-semiopen set such that $A \subset U$. Then $F - N \subset U \Rightarrow F \cap (X - U) \subset N$. Since A^* is m-semiclosed, hence $A^* \cap (X - U)$ is m-semiclosed. Since $A \subset F$ and $F^* \subset F$, then $A^* \cap (X - U) \subset F^* \cap (X - U) \subset F \cap (X - U) \subset N$. Therefore, $A^* \cap (X - U) = \phi$ and so $A^* \subset U$. Hence A is $\mathcal{I}_{m\omega}$ -closed.

5. New Forms of Closed Sets in Ideal Topological Spaces

Definition 5.1. A subset A of a space (X, τ) is called a \tilde{g} -semi-preclosed set (briefly \tilde{g} sp-closed set) if $\operatorname{spcl}(A) \subset U$ whenever $A \subset U$ and U is # gs-open in X. The complement of \tilde{g} sp-closed set is \tilde{g} sp-open in X.

By SO(X) (resp. $^{\#}$ GSO(X), SGO(X), GSO(X), SPO(X), \tilde{G} SPO(X), SPGO(X), GSPO(X)) we denote the collection of all semi-open (resp. $^{\#}$ gs-open, sg-open, gs-open, semi-preopen, \tilde{g} sp-open, spg-open, gsp-open) sets of the topological space (X, τ). These collections are m-structures on X. By the definitions, we obtain the following diagram:

Diagram I

semi-open
$$\longrightarrow$$
 $\tilde{g}s$ -open \longrightarrow sg-open \longrightarrow gs-open
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 semi-preopen \longrightarrow $\tilde{g}sp$ -open \longrightarrow spg-open \longrightarrow gsp-open

For subsets of an ideal topological space (X, τ, \mathcal{I}) , we can define new types of closed sets as follows:

Definition 5.2. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I}_{ω} -closed (resp. $\mathcal{I}_{\tilde{g}sg}$ -closed, \mathcal{I}_{sgg} -closed, \mathcal{I}_{gsg} -closed, \mathcal{I}_{gsg} -closed, \mathcal{I}_{sgg} -clo

By Diagram I and Definition 5.2, we have the following diagram:

Diagram II

$$\mathcal{I}_{\omega}$$
-closed $\longleftarrow \mathcal{I}_{\bar{g}sg}$ -closed $\longleftarrow \mathcal{I}_{sgg}$ -closed $\longleftarrow \mathcal{I}_{gsg}$ -closed $\uparrow \qquad \uparrow \qquad \uparrow$

$$\mathcal{I}_{sog}$$
-closed $\longleftarrow \mathcal{I}_{\bar{g}sp}$ -closed $\longleftarrow \mathcal{I}_{spg}$ -closed $\longleftarrow \mathcal{I}_{gsp}$ -closed $\longleftarrow \star$ -closed

References

- [1] J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [2] T.R.Hamlett, D.Rose and D.Jankovic, Paracompactness with respect to an ideal, Internat. J. Math. Math. Sci., 20(1997), 433-442.
- [3] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [4] W.K.Min, m-semiopen sets and M-semicontinuous functions on spaces with minimal structures, Honam Mathematical Journal, 31(2)(2009), 239-245.
- [5] H.Maki, K.C.Rao and A.Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49(1999), 17-29.
- [6] O.B.Ozbakir and E.D.Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125(3)(2006), 227-
- [7] V.Popa and T.Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., 18(23)(2000), 31-41.
- [8] O.Ravi, J.Antony Rex Rodrigo and A.Naliniramalatha, \hat{g} -closed sets in ideal topological spaces, Methods of Functional Analysis and Topology, 17(3)(2011), 274-280.
- [9] O.Ravi, J.Antony Rex Rodrigo, S.Tharmar and K.Vijayalakshmi, Between closed sets and *g-closed sets, Fasciculi Mathematici, 49(2012), 127-136.
- [10] O.Ravi, J.Antony Rex Rodrigo and A.Naliniramalatha, Between closed sets and ω -closed sets, submitted.
- [11] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (2002).
- [12] M.K.R.S. Veerakumar, \hat{g} -closed sets in topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.