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1. Introduction

Let G = (V,E) be a graph with |V | = n vertices and |E| = m edges. The concept of energy of a graph G, denoted by E(G)

was introduced by I. Gutman in 1978 [3]. Initially, the graph energy concept did not attract any noteworthy attention of

mathematicians, but later they did realize its value and worldwide mathematical research of graph energy started. Nowadays,

in connection with graph energy, energy-like quantities were considered also for other matrices. In this paper, we are defining

a matrix, called the minimum paired dominating matrix denoted by Apd(G) and we study its eigenvalues and the energy.

Further, we study the mathematical aspects of the minimum paired dominating energy of a graph. It may be possible that

the minimum paired dominating energy which we are considering in this paper have applications in other areas of science

such as chemistry and so on. The graphs we are considering are assumed to be finite, simple, undirected having no isolated

vertices.

1.1. Definitions

Let G be any graph. A subset M of an edge set E of G is called a matching of G if no two edges in M are incident in G. The

two ends of an edge are said to be matched under M . If every vertex of G is matched under M then M is called a perfect

matching. M is said to be a maximum matching of G if no subset of G containing M properly is a matching of G. Clearly,

every perfect matching is maximum. A subset D of V is called a dominating set of G if every vertex V −D is adjacent to

some vertex in D. A dominating set D of a graph G is said to be paired dominating set of G if 〈D〉 contains atleast one

perfect matching. The least cardinality of a paired dominating set in G is called the minimum paired domination number

of G, denoted by γpd(G). Any paired dominating set of cardinality γpd(G) is called the γpd−set. For more details on the

terms used in this paper refer [4].

∗ E-mail: nayaka.abhi11@gmail.com

59

http://ijmaa.in/


The Minimum Paired Dominating Energy of a Graph

Definition 1.1. The crown graph S0
n, (n ≥ 2) on 2n vertices is a graph with vertex set V = {ui, vj |1 ≤ i, j ≤ n} with an

edge from ui to vj whenever i 6= j.

Definition 1.2. The double star denoted as S(n,m) with n ≥ m ≥ 0, is the graph consisting of the union of two stars Kn

and Km together with a line joining their centers.

Definition 1.3. The cocktail party graph Kn×2 is a graph of order 2n, with the vertex set V = {ui, vj |1 ≤ i, j ≤ n} and the

edge set E = {uiuj , vivj , uivj , viuj | 1 ≤ i < j ≤ n}.

2. The Minimum Paired Dominating Energy of a Graph

In this section, we define the minimum paired dominating energy of a graph and study some basic properties of the minimum

paired dominating energy. The minimum paired dominating matrix of G is an n−square matrix defined by Apd(G) = (aij),

where

aij =


1 if vi and vj are adjecent,

1 if i = j and vi ∈ D,

0 otherwise.

The characteristic polynomial of Apd(G) is denoted by fn(G,λ) and is defined by fn(G,λ) = det(λI−Apd(G)). The minimum

paired dominating eigenvalues of the graph G are the eigenvalues of the matrix Apd(G). We note that these eigenvalues are

real numbers since Apd(G) is real and symmetric. So, we can label them in the non-increasing order λ1 > λ2 > · · · > λn.

The minimum paired dominating energy of G is then defined to be the sum of the absolute values of the eigenvalues of

Apd(G). In symbols, we write

Epd(G) =

n∑
i=1

|λi|.

Example 2.1. Let G be a tree on 6 vertices as shown in the figure 1, with vertex set V= {v1, v2, . . . , v6} and let D= {v2, v3}

be it’s minimum paired dominating set. Then

Apd,D(G) =



0 1 0 0 0 0

1 1 1 0 1 0

0 1 1 1 0 1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


.

So, fn(G,λ) = λ6 − 2λ5 − 4λ4 + 4λ3 + 4λ2 = 0. Using Maple, we are able to find that Epd(G) ≈ 6.2925. Now, suppose if

we choose another paired dominating set D′ = {v1, v2, v3, v4}. Then

Apd,D′(G) =



1 1 0 0 0 0

1 1 1 0 1 0

0 1 1 1 0 1

0 0 1 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0


.
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Clearly, fn(G,λ) = λ6 − 4λ5 + 1λ4 + 8λ3 − 4λ2 + 2λ + 1 = 0. Using Maple, we are able to find that Epd,D′(G) ≈ 7.5581.

Therefore, it is clear from the above example that the minimum paired dominating energy of a graph G depends on the

minimum paired dominating set we choose. Hence, this energy is not the graph invariant.
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Proof of the following theorem is easy and straightforward.

Theorem 2.2. Let G be a graph with an edge set E and let γpd be the paired domination number of G. If fn(G,λ) =

a0λ
n + a1λ

n−1 + a2λ
n−2 + · · ·+ an. Then

(1). a0 = 1.

(2). a1 = −γpd.

(3). a2 =
γpd(γpd−1)

2
− |E|.

We note that sum of the squares of the eigenvalues of Apd(G) is the trace of (Apd(G))2. So we have the following theorem.

Theorem 2.3. Suppose λ1, λ2, . . . , λn denotes the eigenvalues of Apd(G). Then

n∑
i=1

λi
2 = 2m+ γpd(G).

3. The Minimum Paired Dominating Energy of Some Standard
Graphs

In this section, we calculate the minimum paired dominating energy of some standard graphs.

Definition 3.1. Suppose λ1, λ2, · · ·λn are the distinct eigenvalues of G with the multiplicities m1,m2, · · ·mn respectively,

then the minimum paired dominating spectrum of the graph G will be written as

MPDSpec(G) =

λ1 λ2 · · · λn

m1 m2 · · · mn

.

Theorem 3.2. For n ≥ 3, the minimum paired dominating energy of a complete graph Kn is (n− 3) +
√
n2 − 2n+ 9.

Proof. Let Kn be the complete graph with the vertex set V = {v1, v2, . . . , vn}. Clearly, D = {v1, v2} is a minimum paired
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dominating set of Kn. Then

Apd(Kn) =



1 1 0 ... 1 1

1 1 1 ... 1 1

1 1 0 ... 1 1

. . . ... . .

. . . ... . .

. . . ... . .

1 1 1 ... 0 1

1 1 1 ... 1 0



.

So, fn(G,λ) = λ(λ+ 1)n−3(λ2 − (n− 1)λ− 2) and so we obtain that

MPDSpec(Kn) =

0 −1
(n−1)+

√
(n2−2n+9)

2

(n−1)−
√

(n2−2n+9)

2

1 n− 3 1 1

 .

Therefore, Epd(Kn) = (n− 3) +
√
n2 − 2n+ 9.

Theorem 3.3. For n ≥ 3, the minimum paired dominating energy of a crown graph S0
n is equal to (2n−4)+

√
n2 + 2n− 7+

√
n2 − 2n+ 9.

Proof. Let S0
n be a crown graph and let V (S0

n) = {u1, u2, u3, . . . , un, v1, v2, v3, . . . , vn}. Then the minimum paired domi-

nating set is given by D = {u1, u2, v1, v2}. Then

Apd(S
0
n) =



1 0 0 ... 0 0 1 1 ... 1

0 1 0 ... 0 1 0 1 ... 1

1 1 0 ... 0 1 1 0 ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

0 0 0 ... 0 1 1 1 ... 0

0 1 1 ... 1 1 0 0 ... 0

1 0 1 ... 1 0 1 0 ... 0

. . . ... . . . . ... 0

. . . ... . . . . ... 0

. . . ... . . . . ... 0

1 1 1 ... 0 0 0 0 ... 0



.

So, fn(S0
n, λ) = λ(λ− 2)(λ− 1)(n−3)(λ+ 1)n−3(λ2 + (n− 3)λ− (2n− 4)). Hence,

MPDSpec(S0
n) =

0 2 1 −1
(n−1)+

√
(n2−2n+9)

2

(n−1)−
√

(n2−2n+9)

2

(3−n)+
√

(n2+2n−7)

2

(3−n)−
√

(n2+2n−7)

2

1 1 n− 3 n− 3 1 1 1 1

 .

Therefore Epd(S
0
n) = (2n− 4) +

√
n2 + 2n− 7 +

√
n2 − 2n+ 9.

Theorem 3.4. For n ≥ 2, the minimum paired dominating energy of a star K1,n−1 is at most 2 + 2
√

(n− 2). Equality

holds if and only if n = 2.
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Proof. Let K1,n−1 be a star with the vertex set V = {v1, v2, . . . , vn} having the vertex vn at the center. The minimum

paired dominating set is D = {v1, vn}. Then

Apd(K1,n−1) =



1 0 0 ... 0 1

0 0 0 ... 0 1

0 0 0 ... 0 1

. . . ... . .

. . . ... . .

. . . ... . .

0 0 0 ... 0 1

1 1 1 ... 1 1



.

So, fn(S0
n, λ) = λn−3(λ3 − 2λ2 − (n− 2)λ) + (n− 2). By using simple analysis, we obtain that

fn(K1,n−1, λ) = λn−3[λ3 − 2λ2 − (n− 2)λ) + (n− 2)]

= λn−3[λ3 − 2λ2 − (n− 2)λ) + 2(n− 2)− (n− 2)]

≤ λn−3[λ3 − 2λ2 − (n− 2)λ) + 2(n− 2)]

= λn−3[(λ− 2)(λ2 − (n− 2))].

Hence, MPDSpec(K1,n−1) ≈

 0 2
√

(n− 2) −
√

(n− 2)

n− 3 1 1 1

. Therefore, Epd(K1,n−1) ≤ 2 + 2
√

(n− 2).

Corollary 3.5. The minimum paired dominating energy of L(K1,n−1) is equal to (n− 4) +
√

(n2 − 4n+ 12).

Proof. We first note that The line graph of K1,n−1 is the complete graph Kn−1. Now, it follows easily that

Epd(L(K1,n−1)) = Epd(Kn−1). Hence from Theorem 3.1, we obtain, Epd(K1,n−1) = (n− 4) +
√

(n2 − 4n+ 12).

Theorem 3.6. For n ≥ m ≥ 2, the minimum paired dominating energy of a double star S(n,m) is greater than or equal to

2
√

(m+ n)− 1. In particular for m=n with n ≥ 5 the energy of a double star is equal to 2(
√
n− 1 +

√
n).

Proof. Suppose S(n,m), with n,m ≥ 2 is a double star having the vertex set V = {u1, u2, u3, . . . , un, v1, v2, v3, . . . vm}

with un and vm as the vertices at the center. Clearly minimum paired dominating set is D = {un, vm}. Then

Apd(S(n,m)) =



0 0 0 ... 1 0 0 0 ... 0

0 0 0 ... 1 0 0 0 ... 0

0 0 0 ... 1 0 0 0 ... 0

. . . ... . . . . ... 0

. . . ... . . . . ... 0

. . . ... . . . . ... 0

1 1 1 ... 1 0 0 0 ... 1

0 0 0 ... 0 0 0 0 ... 1

0 0 0 ... 0 0 0 0 ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

0 0 0 ... 1 1 1 1 ... 1



.
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So, fn(S(n,m), λ) = λm+n−4(λ4 − 2λ3 − (m+ n− 2)λ2 + (m+ n− 2)λ+ (m− 1)(n− 1)). By using simple analysis,

fn+m(S(n,m), λ) = λm+n−4(λ4 − 2λ3 − (m+ n− 2)λ2 + (m+ n− 2)λ+ (m− 1)(n− 1))

≥ λm+n−4(λ4 − 2λ3 − (m+ n− 2)λ2 + (m+ n− 2)λ)

≥ λm+n−3(λ3 − 2λ2 − (m+ n− 2)λ)

= λm+n−2(λ2 − 2λ− (m+ n− 2)).

Hence, MPDSpec(S(n,m)) =

 0 1 +
√

(m+ n)− 1 1−
√

(m+ n)− 1

m+ n− 2 1 1


Therefore, we get Epd(S(n,m)) ≥ 2

√
(m+ n)− 1. In particular, for m=n, we have

f2n(S(n, n), λ) = λ2n−4(λ4 − 2λ3 − 2(n− 1)λ2 + 2(n− 1)λ+ (n− 1)2)

= λ2n−4(λ2 − (n− 1))(λ2 − 2λ− (n− 1))

Hence, MPDSpec(S(n, n)) =

 0 −
√
n− 1

√
n− 1 1 +

√
n 1−

√
n

2n− 4 1 1 1 1

. Therefore, we get Epd(S(n, n)) = 2(
√
n− 1+

√
n).

Theorem 3.7. For n ≥ 3, the minimum paired dominating energy of a cocktail party graph Kn×2 is at least 2n− 6 +
√

5 +
√

4n2 − 4n+ 13.

Proof. Let Kn×2 be the cocktail party graph with the vertex set V = {ui, vi|1 ≤ i ≤ n} and minimum paired dominating

set be D = {u1, v2}. Then

Apd(Kn×2) =



1 1 1 ... 1 0 1 1 ... 1

1 0 1 ... 1 1 0 1 ... 1

1 1 0 ... 1 1 1 0 ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

1 1 1 ... 0 1 1 1 ... 0

0 1 1 ... 1 0 1 1 ... 1

1 0 1 ... 1 1 1 1 ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

1 1 1 ... 0 1 1 1 ... 0



.

So, fn(Kn×2, λ) = λn−2(λ+ 2)n−3(λ2 + λ− 1)(λ3 − (2n− 3)λ2 − (2n+ 1)λ+ (2n− 2)).

By using analysis,

fn(Kn×2, λ) = λn−2(λ+ 2)n−3(λ2 + λ− 1)[λ3 − (2n− 3)λ2 − (2n+ 1)λ+ (2n− 2)]

≥ λn−2(λ+ 2)n−3(λ2 + λ− 1)[λ3 − (2n− 3)λ2 − (2n+ 1)λ]

= λn−1(λ+ 2)n−3(λ2 + λ− 1)[λ2 − (2n− 3)λ− (2n+ 1)]
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Hence, MPDSpec(Kn×2) ≈

 0 −2 −1+
√
5

2
−1−

√
5

2

(2n−3)+
√

4n2−4n+13

2

(2n−3)−
√

4n2−4n+13

2

n− 1 n− 3 1 1 1 1


Therefore, Epd(Kn×2) ≥ 2n− 6 +

√
5 +
√

4n2 − 4n+ 13.

Theorem 3.1. For n ≥ 3, the minimum paired dominating energy of a complete bipartite graph Kn,n is (2n − 4) +
√
n2 − 2n+ 5 +

√
n2 + 2n+ 3.

Proof. Let Km,n be a complete bipartite graph and let V (Km,n) = {ui, vj |1 ≤ i ≤ m, 1 ≤ j ≤ n}. Then the minimum

paired dominating set is D= {u1, v1}. Hence

Apd(Km,n) =



1 0 0 ... 0 1 1 1 ... 1

0 0 0 ... 0 1 1 1 ... 1

0 0 0 ... 0 1 1 1 ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

. . . ... . . . . ... 1

0 0 0 ... 0 1 1 1 ... 1

1 1 1 ... 1 1 0 0 ... 0

1 1 1 ... 1 0 0 0 ... 0

. . . ... . . . . ... 0

. . . ... . . . . ... 0

. . . ... . . . . ... 0

1 1 1 ... 1 0 0 0 ... 0



.

So, fn(Km,n, λ) = λm+n−4[λ4 − 2λ3 − (mn− 1)λ2 + (2mn−m− n)λ− (m− 1)(n− 1)].

In particular, for m = n we have,

f2n(Kn,n, λ) = (λ− 1)n−2(λ+ 1)n−2(λ2 + (n− 3)λ− (2n− 3))(λ2 − (n− 1)λ− 1)).

Hence, MPDSpec(Kn,n)=

 −1 1
(3−n)+

√
n2+2n−3

2

(3−n)−
√
n2+2n−3

2

(n−1)−
√
n2−2n+5

2

(n−1)−
√
n2−2n+5

2

n− 2 n− 2 1 1 1 1

.

Therefore, we get Epd(Kn,n) = (2n− 4) +
√
n2 + 2n− 3 +

√
n2 − 2n+ 5.

4. Upper and Lower Bounds

Theorem 4.1. Let G be any graph. Then Epd(G) ≤
√
n(2m+ γpd).

Proof. Let λ1 > λ2 > · · · > λn be the eigenvalues of Apd(G) arranged in the non-increasing order. By Cauchy Schwarz

inequality, we have ( n∑
i=1

aibi
)2
≤
( n∑
i=1

a2i

)( n∑
i=1

b2i

)

If we take, ai = 1, bi =| λi | then ( n∑
i=1

| λi |
)2
≤
( n∑
i=1

1
)( n∑

i=1

λ2
i

)
Therefore by theorem 2.2, we obtain,

(Epd(G))2 ≤ n
( n∑
i=1

λ2
i

)
= n(2m+ γpd)

i.e., Epd(G) ≤
√
n(2m+ γpd).
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Theorem 4.2. For any graph G, we have

√
m+

γpd(γpd+1)

2
≤ Epd(G) ≤ 2

√
m(m+

γpd
2

).

Proof. We first assume that the graph G, we are considering has no isolated vertices. Then, from the definition of minimum

paired dominating energy we have,

(Epd(G))2 =

n∑
i=1

|λi|2 + 2
∑
i<j

|λiλj |.
From theorem 2.2, we get

(Epd(G))2 = (2m+ γpd) + 2
∑
i<j

|λiλj |.

Also, we have from theorem 2.1 ∑
i<j

|λi||λj | ≥
∣∣∣∑
i<j

λiλj

∣∣∣ =
γpd(γpd − 1)

2
−m

Consequently

(Epd(G))2 ≥ 2m+ γpd +
γpd(γpd−1)

2
−m

i.e., Epd(G) ≥
√
m+

γpd(γpd+1)

2
.

Further, the maximum number of vertices of such graphs is 2m, From Theorem 4.1, we have

Epd(G) ≤ 2

√
m
(
m+

γpd
2

)

Since, γpd is an even integer always,
γpd
2

will be an integer. So Combining we get,√
m+

γpd(γpd+1)

2
≤ Epd(G) ≤ 2

√
m(m+

γpd
2

).

Theorem 4.3. (Lower bound) Let G be any graph. Then Epd(G) ≥
√

2m+ γpd.

Proof. If a1, a2, a3, . . . , an are positive real numbers. Then
(∑n

i=1 |ai|
)2 ≥ (∑n

i=1 a
2
i

)
.

For each i, taking ai =| λi |, we obtain, ( n∑
i=1

|λi|
)2 ≥ ( n∑

i=1

λ2
i

)
(1)

Then,

(Epd(G))2 ≥
( n∑
i=1

λ2
i ) = 2m+ γpd (2)

Therefore, we obtain that Epd(G) ≥
√

2m+ γpd.

Theorem 4.4. Let G be any graph having n vertices and m edges. Then Epd(G) ≥
√

2m+ γpd + n(n− 1)|Apd(G)| 2n .

Proof. By definition we have,
(Epd(G))2 =

( n∑
i=1

|λi|
)2
.

=

n∑
i=1

|λi|2 +
∑
i 6=j

|λi||λj |.

Now, by using arithmetic and geometric mean inequality, we get
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1

n(n− 1)

∑
i 6=j

| λi || λj | ≥
[∏
i 6=j

| λi || λj |
] 1

n(n− 1)

=
[ n∏
i=1

| λi |2(n−1)
] 1

n(n− 1)

=
∣∣∣ n∏
i=1

λi

∣∣∣ 2n
= (detApd(G))

2
n

Hence, ∑
i 6=j

| λi || λj | ≥ n(n− 1)(detApd(G))
2
n

Now consider

[Epd(G)]2 =

n∑
i=1

|λi|2 +
∑
i 6=j

|λi||λj |.

≥
n∑
i=1

|λi|2 + n(n− 1)(detApd(G))
2
n

i.e., Epd(G) ≥
√

2m+ γpd + n(n− 1)|Apd(G)| 2n .

Theorem 4.5. If G is r−regular graph with n vertices and m edges and let λn denotes the largest eigenvalue of G. Then

Epd(G) ≤| λn | +
√

(n− 1)(nr + γpd − (| λn |)2.

Proof. Let G be an r−regular graph with n vertices and m edges. Let λ1, λ2, . . . , λn be the eigenvalues of G and let λn

denote the largest eigenvalue. Then taking ai = 1, bi =| λi | in Cauchy’s-Schwarz inequality, we get

(n−1∑
i=1

| λi |
)2
≤ (n− 1)

(n−1∑
i=1

λ2
i

)
(3)

and

Epd(G)− | λn |=
n−1∑
i=1

| λi | (4)

Also,

2m+ γpd =

n∑
i=1

| λi |2 =

n−1∑
i=1

| λi |2 + | λn |2

Hence

2m+ γpd − | λn |2 =
(n−1∑
i=1

| λi |2
)

(5)

Now, from (1), (2) and (3) we have

(Epd(G)− | λn |)2 ≤ (n− 1)(2m+ γpd − | λn |2)

Since 2m = nr, we obtain that Epd(G) ≤ | λn |+
√

(n− 1)(nr + γpd − (| λn |)2).

Definition 4.1. For any two graphs G1 = (V1, E1) and G2 = (V2, E2), the union of G1 and G2 is the graph G = G1 ∪G2

having the vertex set V = V1 ∪ V2 and the edge set E = E1 ∪ E2.

The union of two graphs which are not disjoint is also defined in the same way. By using the simple linear algebra, we have

the following proposition.

Proposition 4.2. Let G1 and G2 are any two graphs. Then, we have Epd(G1 ∪G2) = Epd(G1) + Epd(G2).
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4.1. Some properties of Epd(G)

Here, we look for the graph G whose minimum paired dominating energy is equal to the number of vertices of G. In fact if

G ∼= n
2
K2 then Epd(G) = n. clearly we must have n is an even integer, i.e n = 2m for some integer m. Suppose G ∼= n

2
K2

having the vertex set V = {v1, v2, v3, ...v2m}. Clearly V itself is a minimum paired dominating set of G. Then,

Apd(G) =



1 1 0 0 ... 0 0

1 1 0 0 ... 0 0

0 0 1 1 ... 0 0

0 0 1 1 ... 0 0

. . . ... . . .

. . . ... . . .

. . . ... . . .

0 0 0 ... 0 1 1

0 0 0 ... 0 1 1



.

The characteristic equation of Apd(G) is λm(λ− 2)m. Hence, MPDSpec(G) =

 0 2

m m

.

Therefore, Epd(G) = |0|.m + |2|.m = 2m. i.e., Epd(G) = n, the number of vertices in G. Thus, every even positive integer

can be looked as a paired dominating energy of some graph. R.B.Bapat and Pati [2] showed that, if the energy of a graph

is rational then it must be an even number. Analogously we have the following theorem.

Theorem 4.6. Let G be a graph with a minimum paired dominating set D. If the minimum paired dominating energy

Epd(G) of G is a rational number. Then

Epd(G) ≡ γpd(G)(mod 2).

Recently C.Adiga et al studied the minimum covering energy of a graph, for more details we refer [1]. It is proved that each

positive integer 2p−1(≥ 3) can be looked as the minimum covering energy of a star graph K1,p2−p. Given any graph G and a

dominating set D we have minimum dominating energy introduced and studied by Rajesh Kannan et al [5]. For any positive

integer n, consider a graph G on n vertices which is totally disconnected having the vertex set V = {v1, v2, v3, ...vn}, clearly

V itself is a minimum dominating set of G. Then AD(G) is an identity matrix of order n, whose characteristic polynomial

is (λ− 1)n. Hence the minimum dominating eigenvalue of G is 1 with the multiplicity n. Hence the minimum dominating

energy of G will be n. Therefore, it follows from the above that every positive integer can be looked as the dominating

energy of a graph. Any two graphs non-isomorphic G and H for which Epd(G) = Epd(H) are called equi-paired dominating

energetic graphs.

4.2. Hyper-paired Dominating Energetic Graph

I. Gutman conjectured that among all graphs on n vertices Kn, the complete graph has the maximum energy. But later it is

proved that there are graphs having energy greater than the energy of a complete graph such graphs are called hyperenergetic

graphs for more details on hyper-energetic graphs we refer to [3].

The graphs whose energy less than the energy of a complete graph are called non-hyper-energetic graphs. Here, we are

interested in graphs having the minimum paired dominating energy greater than that of the complete graph and we refer

them as hyper-paired dominating energetic graphs. From Theorem 3.1 we have, for n ≥ 3, the minimum paired dominating

energy of a complete graph is (n− 3) +
√
n2 − 2n+ 9.
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In this section we investigate for the graph G on n vertices having the minimum paired dominating energy greater than the

minimum paired dominating energy of a complete graph. In fact we note that the energy of a cocktail party graph is at

least 2n− 6 +
√

5 +
√

4n2 − 4n+ 13. clearly, for n ≥ 3, we have 4n2 − 4n+ 13 > n2 − 2n+ 9. Hence,

Epd(Kn) = (n− 3) +
√
n2 − 2n+ 9

≤ 2(n− 3) +
√
n2 − 2n+ 9

≤ 2n− 6 +
√

4n2 − 4n+ 13 +
√

5

≤ Epd(Kn×2).

Thus, Cockatail party graph is an hyper-paired dominating energetic graph. The line graph L(Kn) of a complete graph is

also hyper paired-hyper dominating energetic graph. The graphs having the minimum paired dominating energy less than

that of the complete graph are referred as non hyper-paired dominating energetic graphs, star graph and double-star graphs

are examples for the non hyper-paired dominating energetic graphs.
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