International Journal of Mathematics And its Applications
Volume 4, Issue 2—-A (2016), 71-77.
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Monopoly Free and Monopoly Cover in Graphs

Research Article

Ahmed M. Naji'* and N.D.Soner!

1 Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru, India.

Abstract: In a graph G = (V, E), aset M C V(G) is said to be a monopoly set of G if every vertex v € V — M has at least @
neighbors in M. The monopoly size mo(G) is the minimum cardinality of a monopoly set among all monopoly sets in
G. In this paper, we introduce two type sets associated with a monopoly set, monopoly free and monopoly cover sets. A
set F' C V is called a monopoly free of G if F' does not contain any monopoly set as a subset. The monopoly free set is
maximal if for every v ¢ F there exists A C F such that AU {v} is a monopoly. The cardinality of a largest maximal
monopoly free set, denoted mof(G), and is called a monopoly free size of G. A set C C V is called a monopoly cover
of G if C contains, at least, one vertex from each monopoly set in G. The cardinality of a minimum monopoly cover set
in G, denoted by moc(G), and is called a monopoly cover size of G. We investigate the relationship between these three
parameters. Exact values of mof(G) and moc(G) for some standard graphs are found. Bounds for mof(G) and moc(G)
are obtained. It is shown that mof(G) + moc(G) = n for every graph G of order n. Moreover, it is shown that for every
integer k > 3 there exist a graph G of order n > 6 such that mof(G) = moc(G) = mo(G) = k. finally, we characterize all
graphs G with mof(G) = 0,1 and n — 2.
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1. Introduction

By a graph G = (V, E) we mean a simple graph, that is finite, having no loops no multiple and directed edges. As usual,
we denote n = |V| and m = |E| to the number of vertices and edges in a graph G, respectively. For a vertex v € V,
the open neighborhood, N(v), of v in G is the set of all vertices that are adjacent to v and the closed neighborhood
of v is N[v] = N(v) U {v}. The degree , d(v), of a vertex v in G is the number of its neighbors in G. An isolated
vertex is a vertex with degree zero and a pendant vertex is a vertex with degree one. We denote by A(G) and §(G)
to maximum and minimum degree among the vertices of G, respectively. As usual, G denote to the complement graph
of G, for a subset S C V, (§) = V — S, [z] denote to the smallest integer number that greater than or equals to
z and [z]| to the greatest integer number that smaller than or equals to z. A set I C V is independent if no two
vertices in I are adjacent. The independent sets of maximum cardinality are called maximum independent sets. The

number of vertices in a maximum independent set in a graph G is the independence number (or vertex independence num-

ber) of G and is denoted by a(G). For more terminologies and notations in graph theory, we refer the reader to the books [3].

A set M C V(G) is called a monopoly set of G if for every vertex v € V(G) — M has at least d(;) neighbors in M. The

monopoly size of G is the smallest cardinality of a monopoly set in G, denoted by mo(G). The concept of monopoly in the
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graph was introduced by Khoshkhak K. et al. [5]. Some properties of monopoly in graphs have studied in [7], Other types
of monopoly in graphs have been subsequently proposed, for example, see [8-10]. In particular, a monopoly in graphs is a
dynamic monopoly (dynamos) that, when colored black at a certain time step, will cause the entire graph to be colored
black in the next time step under an irreversible majority conversion process. Dynamos were first introduced by Peleg D.

[11]. For more details in monopoly and dynamos in graphs, we refer to [1, 2, 4, 6, 12].

A set F C V(G) is called a monopoly free set of G if F does not contain any monopoly set as a subset, i.e., for every
monopoly set M in G, M — F # ¢. The monopoly free set of G is maximal if for every v ¢ F there exists a subset A C F
such that A U {v} is a monopoly set in G. A maximum monopoly free set is a maximal monopoly free set of largest
cardinality. The cardinality of the maximum monopoly free set in G is denoted by mof(G) and is called a monopoly free
size of G. For simplicity of notion, we will refer to a monopoly free set of G as a mof-set. A set C' C V is called a monopoly
cover of G if C contains at least one vertex from each monopoly set in G, i.e., for every monopoly set M in G, M NC # ¢.
The monopoly cover set of G is minimal if no proper subset of C' is a monopoly cover. A minimum monopoly cover set
is a minimal monopoly cover set of smallest cardinality. The cardinality of a minimum monopoly cover set in G is de-

noted by moc(G) and is called a monopoly cover size of G. once again, we will refer to a monopoly cover set of G as a moc-set.

In this paper, we investigate the relationship between these three parameters mo(G), mof(G) and moc(G). Exact values of
mof(G) and moc(G) for some standard graphs are found. Also,bounds for mof(G) and moc(G) are obtained. It is shown
that mof(G) 4+ moc(G) = n for every graph G of order n. Moreover, it is shown that for every integer k > 3 there exist a
graph G of order n > 6 such that mof(G) = moc(G) = mo(G) = k. Finally, we characterize all graphs G of order n with

mof(G) = 0,1 and n — 2. On the other side, moc(G) = 2,n — 1 and n.

The following are some fundamental results which will be required for many of our arguments in this paper:
Theorem 1.1 ([5]). Let G be a graph on n vertices with m edges whose mazimum degree is A(G). Then #?LG) <mo(G) < 3.

Theorem 1.2 ([7]). Let G be a graph of order n and minimum degree 5. Then $ < mo(G) <n — 2.

2. Monopoly Free and Monopoly Cover in Graphs

Since every graph G possess a monopoly set it follows that every graph posses a monopoly cover set and if every subset
of V(G) contains a monopoly set, then we say mof(G) = 0 and moc(G) = n. For example, in a complete graph Kj,
every subset of V(K3) is a monopoly set, mo(K3) = 1, then the moc-set of K3 is V(K3) and the mof-set of K3 is ¢ hence

moc(Ks) =n and mof(K3) = 0.
Theorem 2.1. For every graph G, A set F C 'V is a mof-set if and only if F is a moc-set.

Proof. 1In a graph G, a set F' C V is a mof-set of G, if and only if for every monopoly set M in G, M — F # ¢, if and

only if for every monopoly set M in G, M N F # ¢, if and only if F is a moc-set of G. O
Corollary 2.2. For every graph G of order n, mof(G) + moc(G) = n.

Proposition 2.3. For every graph G, if a set F C V is a mazximal mof-set, then for every v € V — F' there exists a subset

M, C F such that M, U {v} is a monopoly set in G.
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Proof. Let F be a maximal mof-set of G. Then by a maximality of F, FU{v} is a monopoly set of G, for every v € V — F.
If FU{v} is minimal, then M, = F, Otherwise, there exists a proper subset M, C F such that M, U{v} is a monopoly set
of G. O

Proposition 2.4. For any graph G, if a set C C'V is a minimal moc-set, then for every v € C there exists a monopoly set

M, in G such that M, N C = {v}.

Proof. Let C C V be a minimal moc-set of G. Then C' — {v} is not a moc-set in G, for every v € C, that means there
exists a monopoly set M, in G such that M, N (C — {v}) = ¢, but by the definition of a moc-set M, N C # ¢. Hence,
M,NC = {v}. O

In the following result, we will just determining the exact values of mof(G) for some standard graph G and by using

Corollary 2.2 any one can easily find the corresponding values of moc(G) for each graph.
Proposition 2.5. For every n > 2

(1). For the path P, and a star K1 ,,—1 graphs, mof(P,) = mof(Kin-1) =n —2.

(2). For the cycle graph Cy, n >3, mof(Cn) =n—3 .

(3). For the complete graph K., mof(K,) = 5] — 1.

(4). For the complete bipartite graph K, s, 2 <r <s,

F(Kns) s+5—2, ifriseven;
mo rs) =
s+ 5] =1, ifr is odd.

(5). For the wheel graph Wi n—1, n >4, mof(Win-1) =n — 3.

(6). For the complete multipartite graph Kn, no,...np, 2<n1 <nz <..<np and k>3

n—+ ng

mof(Knyng,..m) = =51 = 2.
Where n = n1 + no... + nk.
(7). For the totaly disconnected graph K,, mof(K,) = 0.
(8). For every connected graph G, mof(G U K,) = mof(G) + p.
Proof. We left the proof of this Theorem because it is consequences of the next results. O

By the definition of the monopoly set of a graph G, every graph G posses a monopoly set. Furthermore, for every nontrivial
graph G the set V — {v} is a monopoly of G for every v € V(G). this gives the following bounds for mof(G) and moc(G)

in terms the order of G.

Proposition 2.6. For any graph G of order n,

0<mof(G) <n—2,

2 < moc(G) < n.
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The bounds are sharp, K> attending the lower bound for mof(G) (The upper bound for moc(G)) and P, attending the

upper bound for mof(G) (the lower bound for moc(G)).
Theorem 2.7. Let G be a graph of order n > 2 and size m > 1. Then mof(G) = (n —2) — | 2].
Proof. Let v € V(G) be a vertex with d(v) = § and let a set S C N(v) with [S| = 2] 4+ 1. Now, let M =V — (SU {v}).

d(v)
2

Then M does not contain any monopoly set, because v ¢ M and |[N(v)N M| < . Hence, M is a mof-set in G. Therefore,

mof(G) = [M| = [V — (SU{v})]

= (S|4 ) =n— (13 +1+1)

On the other hand, let v € V(G) be a vertex with d(v) = ¢ and let a set S C N(v) with |S| = [£]. Now, let D =

{v}U(N(v) — S). Then V — D is a monopoly set of G (For details of the proof, see the proof of Theorem 1.2), that means
any subset M of V(G) with |[M| > |V —D| =n—|D| =n— (1+[5]) = (n — 1) — [] is a monopoly set of G. Thus,
mof(G) < (n—2) — | £]. Therefore, mof(G) = (n—2) — [2]. O

Corollary 2.8. Let G be a graph of order n > 2 and size m > 1. Then moc(G) = Lg] + 2.

The following results are immediate consequences of Corollary 2.2, Observation 2.6 and Theorem 2.7.
Corollary 2.9. Let G be a graph of order n > 2 and size m > 1. Then

(a). mof(G) > 3] — 1.

(b). moc(G) < [5] + 1.

(¢). mof(Kn) < mof(G) < mof ().

(d). moc(Prn) < moc(G) < moc(Ky).

Corollary 2.10. For every tree T with at least two vertices, mof(T) =n — 2,moc(T) = 2.

Theorem 2.11. Let G be a graph with at least one edge. Then mof(G) > a(G) — 1. The bound is sharp, the star graph

K1, achieve it.

Proof. Let G be a graph with size m > 1 and let I C V be a maximum independent set of G. Then I — {v}, for every

v € I does not contain any monopoly set. Hence, mof(G) > |I — {v}| = a(G) — 1. O
Let B(G) be the covering number of a graph G. Then we have the following result.
Theorem 2.12. Let G be a graph with at least one edge. Then moc(G) < B(G) + 1.

Proof. Let G be a graph of order n and size m > 1. Then by well-known result a(G) + 8(G) = n, Corollary 2.2 and

Theorem 2.11, we have
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The following results give the relationship between the parameters mof(G), moc(G) and mo(G) of graphs.
Theorem 2.13. For every graph G with at least one edge,

(1). mof(G) > mo(G) — 1,

(2). moc(G) < mo(G) + 2.

Proof.

(1). Let M be a minimum monopoly set of a graph G. Then M — {v} dose not contain any monopoly set. Hence,

mof(G) > |M — {v}| = mo(G) — 1.
(2). By Corollary 2.8, moc(G) < 3 + 2 and by Theorem 1.2, mo(G) > 3. Then moc(G) < mo(G) + 2.
O

The bounds in Theorem 2.13 are sharp, for example, the complete graph K, for every n, is attending the lower bound for

mof(G) and also, K, for n is odd, is attending the lower bound for moc(G).

Theorem 2.14. For every graph G with at least one edge,

(1). mof(G) = (n —2) — mo(G),

(2). moc(G) < (n+1) — mo(G).

Corollary 2.15. For every integer a > 1, there ezists a graph G with mo(G) = a, mof(G) = a — 1 and moc(G) = a + 1.
Proof. The result is true for each integer a > 1 since the complete graph K, have the desired properties. O
At the extreme, it is possible for all three of these parameters to have the same prescribed value.

Theorem 2.16. For every integer t > 3, there exists a graph G of order n > 6 such that mof(G) = moc(G) = mo(G) = t.

Proof. We have already noted in Corollary 2.2, that mof(G) + moc(G) = n for every graph G with order n. Then
mof(G) = moc(G) if and only if mof(G) = moc(G) = %, but Theorem 1.1 is stating that, mo(G) < % for every graph
G. Therefore, the result is true, if and only if for every n > 6, n is even and ¢t = . For t = 3 and ¢t = 4, the result is
holding since Cs and K44 have the desired properties. Hence, we may assume that ¢ > 5 (resp. n > 10). Here For ¢ > 5,
let v1,v2, ..., vn, where n = 2t, be a vertex set of K,,. Then let G be the graph obtained from K, by deleting three edges
incident to a common vertex v € V(K,) (namely, the edges vvi,vv2 and vvs). Hence, 6(G) = da(v) = n — 4. Now, we will
show that mof(G) = moc(G) = mo(G) = § = t. Firstly, for mof(G), by Theorem 2.7,

n—4 n
= —. 1
5 3 (1)

mof(G) > (n—2) —

On the other hand, let M be any subset of V(G) with |M| = % + 1. If v € M, then for every other vertex u € V(G) — M

da(u)
5

IN(u) N M| > g >

Hence, M is a monopoly set of G. Now, if v ¢ M and v1,v2 and vs € M, then

n _n—4  dg(v)
IN@) M| =2 +1-3="22 =50,
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Hence, also, M is a monopoly set of G. Therefore

mof(G) < 5. (2)

From equations 1 and 2, we obtain mof(G) = %. Then, for 4moc(G), by Corollary 2.2, moc(G) = 5. Finally, for mo(G),
let M be any subset of V(G) with |M| < 5. Since G has n — 4 vertex with degree n — 1 and since n — 4 > % for every
n > 10, it follows that there must exists at least a vertex v € V(G) — M with d(u) =n — 1. Then

dw) _n-1_mn

2 ~ 2 723

1> M| > [N(w) 0 M|
Hence, M is not a monopoly set of G. That means, mo(G) > %, but by Theorem 1.1 mo(G) < 3. Therefore, mo(G) = 3,
this completes the proof. O

Corollary 2.17. Let G be a graph of order n > 6 and size m > 1. Then mof(G) = moc(G), if and only if n is even number
and 6(G) =n—4 orn—3.

The following result is an immediate consequence of Observation 2.6 and Corollary 2.9.

Theorem 2.18. Let G be a graph with at least one edge. Then mof(G) +2 < n < 2mof(G) + 3.

Corollary 2.19. For every positive integer k, there exists only finitely many connected graphs G with mof(G) = k.
The following result characterizes all graphs G of order n > 1 for which mof(G) € {0,1,n — 2}.

Theorem 2.20. Let G be a graph of order n > 1 and size m > 0. Then

(a). mof(G) =0, if and only if G = K, G = K> or G = K3.

(b). mof(G) =1, if and only if G = K1 UKp, p=2,3, G = P3, G=C4, G= Ky, G= Ky — e, for every edge e € E(K4)
and G = Ks.

(c). mof(G) =n — 2, if and only if G has a pendant vertex.
Proof. Let G be a graph of order n and size m.

(a). If mof(G) = 0, then the maximum mof-set of G is ¢ that means a set {v} is a monopoly set of G for every v € V(G).
Hence, by the definition of a monopoly set d(v) < 2 for every v € V(G) and d(v) = d(u) for every v and u € V(G).
Therefore, G = K, for every n or G = K,, for n < 3.

Conversely, clear.

(b). If mof(G) = 1, then by part (a), G has at least one edge and by Theorem 2.13, 3 < n < 5. we consider the following

cases:
Case 1 If n = 3, then by Observation 2.6, 0 < mof(G) < 1, but once again by part (a), mof(G) = 0 if and only if
G = Ks. Hence, mof(G) =1 for G = K1 U K3 and G = Ps.

Case 2 If n = 4, then by part (a) and Observation 2.6, 1 < mof(G) < 2. Hence, if G is connected, then by Theorem
2.7, mof(G) =1 if and only if the minimum degree of G is greater than or equal 2. i.e., G € {C4, K4, K4 — e} for
some edge e € E(Ky), if G is disconnected, then mof(G) = 1 if and only if G = K; U K3. Otherwise, mof(G) = 2

Case 3 If n =5, then by Theorem 2.7, mof(G) = 1 if and only if §(G) =4, i.e., G = K5. Otherwise, mof(G) > 2.
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(c). The result is immediate consequences of Theorem 2.7.

Corollary 2.21. Let G be a graph of order n > 1 and size m > 0. Then
(a). moc(G) =n, if and only if G = K,,, G = K2 or G = K.

(b). moc(G) =n—1, if and only if G = K1 UK,, p=2,3, G = P3, G=Cys, G= K4, G=Ks—e, for every edge ¢ € E(K4)
and G = K5.

(c). moc(G) = 2, if and only if G has a pendant vertez.
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