International Journal of Mathematics And its Applications

Some Result on Balanced Cordial Graphs

V.J.Kaneria ${ }^{1}$, J.R.Teraiya ${ }^{2}$ and K.M.Patadiya ${ }^{3 *}$
1 Department of Mathematics, Saurashtra University, Rajkot, India.
2 Department of Mathematics, Marwadi Engineering college, Rajkot, India.
3 Department of Mathematics, School of Engineering, RK University, Rajkot, India.

[^0]Keywords: Balanced cordial labeling, cycle of graph, star of graph, path of graph. (C) JS Publication.

1. Introduction

Labeled graph has several applications. Gallian [3] survey on graph labeling gives enough amount of literature with comprehensive bibliography of papers on various types of graph labeling. Cahit [1] has introduced a variation of both graceful and harmonious labeling which is cordial labeling. He proved that K_{n} is admits cordial labeling if and only if $n<4$. After this, many researcher have studied cordial labeling and similar types of labeling. Kaneria, Makadia and Meera [4] proved that cycle of n copies of K_{n} and star of K_{n} are cordial graph for all n . Shee and Ho [5] define path union of graph G, A graph obtained by joining a vertex v of $G^{(i)}$ with the same vertex of $G^{(i+1)}$ by an edge $\forall i=1,2, \ldots, n-1$, where $G=G^{(1)}=G^{(2)}=\ldots=G^{(n)}$. They proved that $P\left(t \cdot C_{n}\right)$ is cordial, $\forall t, n \in \mathbb{N}$.

All the graph in this paper are finite, simple and undirected. For a graph G, we take $p=|V(G)|$, number of vertices and $q=|E(G)|$ number of edges in G. We follow Harary [2] for the basic notation and terminology of graph theory. Let f be a function from $V(G)$ to $\{0,1\}$, for a graph G and for each $e=(x, y) \in E(G)$, the edge label of e assign by $f(x)+f(y)$ (mod 2). f is called cordial labeling for G and G is called a cordial graph if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$. Also f is called balanced cordial labeling, edge balanced cordial labeling, vertex balanced cordial labeling and unbalanced cordial labeling if it satisfies 1 to 4 conditions respectively.
(1) $\left|v_{f}(0)-v_{f}(1)\right|=0=\left|e_{f}(0)-e_{f}(1)\right|$.
(2) $\left|v_{f}(0)-v_{f}(1)\right|=1,\left|e_{f}(0)-e_{f}(1)\right|=0$.
(3) $\left|v_{f}(0)-v_{f}(1)\right|=0,\left|e_{f}(0)-e_{f}(1)\right|=1$ and
(4) $\left|v_{f}(0)-v_{f}(1)\right|=1=\left|e_{f}(0)-e_{f}(1)\right|$.

[^1]
2. Main Results

Theorem 2.1. $P\left(t \cdot C_{4 n}\right)$ is a balanced cordial if t is odd and it is vertex balanced cordial if t is even, where $n \in N$.
Proof. Let $u_{i, j}(1 \leq \mathrm{j} \leq 4 n)$ be the vertices of $i^{\text {th }}$ copy $C_{4 n}^{(i)}$ in $P\left(t \cdot C_{4 n}\right), \forall i=1,2, \ldots, t$. It it obvious that the vertex labeling function $f_{1}: V\left(C_{4 n}^{(1)}\right) \rightarrow\{0,1\}$ defined by

$$
\begin{aligned}
f_{1}\left(u_{1, j}\right) & =0 ; \text { if } j \equiv 0,1(\bmod 4), \\
& =1 ; \text { if } j \equiv 2,3(\bmod 4), \forall j=1,2, \ldots, 4 n ;
\end{aligned}
$$

is a balanced cordial labeling for $C_{4 n}^{(1)}$. For each $i=1,2, \ldots, t-1$, join $u_{i, j_{0}}$ with $u_{i+1, j_{0}}$, by an edge, for some $j_{0} \in\{1,2, \ldots, 4 n\}$ to form the path union $P\left(t \cdot C_{4 n}\right)$. For each $i=2,3, \ldots, t$, define by $f_{i}: V\left(C_{4 n}^{(i)}\right) \rightarrow\{0,1\}$ as follows.

$$
\begin{aligned}
& f_{i}\left(u_{i, j}\right)=1-f_{1}\left(u_{1, j}\right) \text { if } j \equiv 2,3(\bmod 4) \text {, } \\
& =f_{1}\left(u_{1, j}\right) \quad \text { if } j \equiv 0,1(\bmod 4), \forall j=1,2, \ldots, 4 n .
\end{aligned}
$$

It is obvious that above defined labeling function $f_{i}(i=2,3, \ldots, t)$ is also a balanced cordial labeling. Now define f : $V\left(P\left(t \cdot C_{4 n}\right)\right) \rightarrow\{0,1\}$ as follows. $f(x)=f_{i}(x)$ if $x \in V\left(C_{4 n}^{(i)}\right)$, for some $i \in\{1,2, \ldots, t\}$. Since $V\left(P\left(t \cdot C_{4 n}\right)\right)=\bigcup_{i=1}^{t} V\left(C_{4 n}^{(i)}\right)$ and f_{i} 's are balanced cordial labelings, $v_{f}(0)=v_{f}(1)$. i.e. $\left|v_{f}(0)-v_{f}(1)\right|=0$ hold in $P\left(t \cdot C_{4 n}\right)$. For each $i=1,2, \ldots, t-1$, it is observed that the edge label of $\left(u_{i, j_{0}}, u_{i+1, j_{0}}\right)=1$ if i is odd and it is 0 if i is even. Thus, $e_{f}(0)=t \cdot e_{f_{1}}(0)+\left\lfloor\frac{t-1}{2}\right\rfloor$ and $e_{f}(1)=t \cdot e_{f_{1}}(1)+\left\lceil\frac{t-1}{2}\right\rceil$. Therefore, $\left|e_{f}(0)-e_{f}(1)\right|=0$ if t is odd and it is 1 if t is even. So, $P\left(t \cdot C_{4 n}\right)$ is balanced cordial if t is odd and it is vertex balanced cordial if t is even.

Illustration 2.2. $P\left(5 \cdot C_{8}\right)$ and its balanced cordial labeling are shown in Figure 1.

Figure 1. $\quad P\left(5 \cdot C_{8}\right)$ with its balanced cordial labeling and $v_{f}(0)=v_{f}(1)=20$ as well as $e_{f}(0)=e_{f}(1)=22$.

Theorem 2.3. $C\left(t \cdot C_{4 n}\right)$ is a balanced cordial if $t \equiv 0(\bmod 4)$ and it is a vertex balanced cordial if $t \equiv 1,3(\bmod 4)$, where $n \in N$.

Proof. Let $u_{i, j}(1 \leq j \leq 4 n)$ be the vertices of $i^{t h}$ copy $C_{4 n}^{(i)}$ in $C\left(t \cdot C_{4 n}\right), i=1,2, \ldots, t$. It is obvious that the vertex labeling function $f_{1}: V\left(C_{4 n}^{(1)}\right) \rightarrow\{0,1\}$ defined by

$$
\begin{aligned}
f_{1}\left(u_{1, j}\right) & =0 ; \text { if } j \equiv 0,1(\bmod 4), \\
& =1 ; \text { if } j \equiv 2,3(\bmod 4), \forall j=1,2, \ldots, 4 n ;
\end{aligned}
$$

is a balanced cordial labeling for $C_{4 n}^{(1)}$. For each $i=1,2, \ldots, t-1$, join $u_{i, j_{0}}$ with $u_{i+1, j_{0}}$. by an edge and also join $u_{t, j_{0}}$ with $u_{1, j_{0}}$ by an edge, for some $j_{0} \in\{1,2, \ldots, 4 n\}$ to form the cycle graph $C\left(t \cdot C_{4 n}\right)$. For each $i=2,3, \ldots, t$, define $f_{2}: V\left(C_{4 n}^{(i)}\right) \rightarrow\{0,1\}$ as follows.

$$
\begin{aligned}
f_{i}\left(u_{i, j}\right) & =f_{1}\left(u_{1, j}\right) \quad \text { if } j \equiv 0,1(\bmod 4), \\
& =1-f_{1}\left(u_{1, j}\right) \quad \text { if } j \equiv 2,3(\bmod 4), \forall j=1,2, \ldots, 4 n .
\end{aligned}
$$

It is Obvious that above defined labeling function $f_{i}(i=2,3, \ldots, t)$ is also a balanced cordial labeling. Now define f : $V\left(C\left(t \cdot C_{4 n}\right)\right) \rightarrow\{0,1\}$ as follows. $f(x)=f_{i}(x)$ if $x \in V\left(C_{4 n}^{(i)}\right)$, for some $i \in\{1,2, \ldots, t\}$. Since $V\left(C\left(t \cdot C_{4 n}\right)\right)=\bigcup_{i=1}^{t} V\left(C_{4 n}^{(i)}\right)$ and $f_{i}{ }^{\prime}$ s are balanced cordial labelings, $\left|v_{f}(0)-v_{f}(1)\right|=0$ hold in $C\left(t \cdot C_{4 n}\right)$. For each $i=1,2, \ldots, t-1$, it is observed that the edge label of $\left(u_{i, j_{0}}, u_{i+1, j_{0}}\right)=1$ if i is odd and it is 0 if i is even. Also the edge label of $\left(u_{t, j_{0}}, u_{1, j_{0}}\right)=1$ if $t \equiv 3$ $(\bmod 4)$ and it is 0 if $t \equiv 0,1(\bmod 4)$. Thus, $e_{f}(0)=t \cdot e_{f_{1}}(0)+\left\lceil\frac{t}{2}\right\rceil, e_{f}(1)=t \cdot e_{f_{1}}(1)+\left\lfloor\frac{t}{2}\right\rfloor$, if $t \equiv 0,1(\bmod 4)$ and $e_{f}(1)=t \cdot e_{f_{1}}(1)+\left(\frac{t+1}{2}\right), e_{f}(0)=t \cdot e_{f_{1}}(0)+\left(\frac{t-1}{2}\right)$, if $t \equiv 3(\bmod 4)$. Therefore, $\left|e_{f}(0)-e_{f}(1)\right|=1$ if t is odd and it is 0 if $t \equiv 0(\bmod 4)$ and it is vertex balanced cordial if $t \equiv 1,3(\bmod 4)$.

Illustration 2.4. $C\left(9 \cdot C_{4}\right)$ and its vertex balanced cordial labeling are shown in Figure 2.

Figure 2. $C\left(9 \cdot C_{4}\right)$ with its vertex balanced cordial labeling and $v_{f}(0)=v_{f}(1)=18, e_{f}(0)=23, e_{f}(1)=22$.

Theorem 2.5. $C_{4 n}^{\star}$ is a balanced cordial graph, $\forall n \in N$.
Proof. Let $u_{i, j}(1 \leq j \leq 4 n)$ be the vertices of $i^{t h}$ copy $C_{4 n}^{(i)}$ in $C_{4 n}^{\star}, \forall i=1,2, \ldots, 4 n$ and $u_{0, j}(1 \leq j \leq 4 n)$ be the vertices of central copy of $C_{4 n}$ in $C_{4 n}^{\star}$. It is obvious that the vertex labeling function $f: V\left(C_{4 t}^{(0)}\right) \rightarrow\{0,1\}$ defined by

$$
\begin{aligned}
f\left(u_{0, j}\right) & =0 \text { if } j \equiv 0,1(\bmod 4), \\
& =1 \text { if } j \equiv 2,3(\bmod 4), \forall j=1,2, \ldots, 4 n
\end{aligned}
$$

is a balanced cordial labeling for $C_{4 n}^{(0)}$. For each $\mathrm{i}=1,2, \ldots, 4 \mathrm{n}$, join $u_{0, i}$ with $u_{i, i}$ by an edge to form the of $C_{4 n}$. Now define $g: V\left(C_{4 n}^{\star}\right) \rightarrow\{0,1\}$ as follows

$$
\begin{aligned}
g\left(u_{i, j}\right) & =1-f\left(u_{0, j}\right) \quad \text { if } i \text { is odd, } \\
& =f\left(u_{0, j}\right) \quad \text { if } i \text { is even, } \forall i=1,2, \ldots, 4 n, \forall j=1,2, \ldots, 4 n .
\end{aligned}
$$

Since $V\left(C_{4 n}^{\star}\right)=\bigcup_{i=0}^{4 n} V\left(C_{4 n}^{(i)}\right)$ and $v_{f}(0)=v_{f}(1)$ in $C_{4 n}^{(0)},\left|v_{g}(0)-v_{g}(1)\right|=0$ hold in $C_{4 n}^{\star}$. For each $i=1,2, \ldots, 4 n$, it is observed that the edge label of $\left(u_{0, i}, u_{i, i}\right)=1$ if i is odd and it is 0 if i is even. Thus, $e_{g}(0)=e_{g}(1)=(4 n+1) e_{f}(0)+2 n$. Therefore, $\left|e_{g}(0)-e_{g}(1)\right|=0$ hold in $C_{4 n}^{\star}$ and So, it is a balanced cordial graph.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23,(1987) pp. 201-207.
[2] F. Harary, Graph Theory, Addition Wesley, Massachusetts,(1972).
[3] J.A. Gallian, A dynamic Survey of graph labeling, The electronics J. Combin., 17, \sharp DS6,(2014) .
[4] V.J. Kaneria, Hardik Makadia and Meera Meghpara, Cordiality of star of the complete graph and a cycle graph $C\left(n \cdot K_{n}\right)$, J. of Math. Research, 6(4) (2014) pp. 18-28.
[5] S. C. Shee and Y. S. Ho, The cordiality of the path-union of n copies of a graph, Discrete Math., 151 (1996) pp. 221-229.

[^0]: Abstract: In this paper we have prove that $P\left(t \cdot C_{4 n}\right), C\left(t \cdot C_{4 n}\right)$ and $C_{4 n}^{*}$ are balanced cordial graphs under certain condition. A balanced cordial graph is a cordial graph and it satisfies $\left|v_{f}(0)-v_{f}(1)\right|=0=\left|e_{f}(0)-e_{f}(1)\right|$ condition.
 MSC: 05C78.

[^1]: * E-mail: kalpesh.patadiya@rku.ac.in

