

International Journal of Mathematics And its Applications

Some Result on Balanced Cordial Graphs

Research Article

V.J.Kaneria¹, J.R.Teraiya² and K.M.Patadiya³*

1 Department of Mathematics, Saurashtra University, Rajkot, India.

2 Department of Mathematics, Marwadi Engineering college, Rajkot, India.

3 Department of Mathematics, School of Engineering, RK University, Rajkot, India.

Abstract:	In this paper we have prove that $P(t \cdot C_{4n})$, $C(t \cdot C_{4n})$ and C_{4n}^* are balanced cordial graphs under certain condition. A balanced cordial graph is a cordial graph and it satisfies $ v_f(0) - v_f(1) = 0 = e_f(0) - e_f(1) $ condition.	٢
MSC:	05C78.	
Keywords:	Balanced cordial labeling, cycle of graph, star of graph, path of graph	

Keywords: Balanced cordial labeling, cycle of graph, star of graph, path of graph.© JS Publication.

1. Introduction

Labeled graph has several applications. Gallian [3] survey on graph labeling gives enough amount of literature with comprehensive bibliography of papers on various types of graph labeling. Cahit [1] has introduced a variation of both graceful and harmonious labeling which is cordial labeling. He proved that K_n is admits cordial labeling if and only if n < 4. After this, many researcher have studied cordial labeling and similar types of labeling. Kaneria, Makadia and Meera [4] proved that cycle of n copies of K_n and star of K_n are cordial graph for all n. Shee and Ho [5] define path union of graph G, A graph obtained by joining a vertex v of $G^{(i)}$ with the same vertex of $G^{(i+1)}$ by an edge $\forall i = 1, 2, ..., n - 1$, where $G = G^{(1)} = G^{(2)} = ... = G^{(n)}$. They proved that $P(t \cdot C_n)$ is cordial, $\forall t, n \in \mathbb{N}$.

All the graph in this paper are finite, simple and undirected. For a graph G, we take p = |V(G)|, number of vertices and q = |E(G)| number of edges in G. We follow Harary [2] for the basic notation and terminology of graph theory. Let f be a function from V(G) to $\{0,1\}$, for a graph G and for each $e = (x, y) \in E(G)$, the edge label of e assign by f(x) + f(y) (mod 2). f is called cordial labeling for G and G is called a cordial graph if $|e_f(0) - e_f(1)| \leq 1$ and $|v_f(0) - v_f(1)| \leq 1$. Also f is called balanced cordial labeling, edge balanced cordial labeling, vertex balanced cordial labeling and unbalanced cordial labeling if it satisfies 1 to 4 conditions respectively.

- (1) $|v_f(0) v_f(1)| = 0 = |e_f(0) e_f(1)|.$
- (2) $|v_f(0) v_f(1)| = 1, |e_f(0) e_f(1)| = 0.$
- (3) $|v_f(0) v_f(1)| = 0$, $|e_f(0) e_f(1)| = 1$ and
- (4) $|v_f(0) v_f(1)| = 1 = |e_f(0) e_f(1)|.$

^{*} E-mail: kalpesh.patadiya@rku.ac.in

2. Main Results

Theorem 2.1. $P(t \cdot C_{4n})$ is a balanced cordial if t is odd and it is vertex balanced cordial if t is even, where $n \in N$.

Proof. Let $u_{i,j}(1 \le j \le 4n)$ be the vertices of i^{th} copy $C_{4n}^{(i)}$ in $P(t \cdot C_{4n}), \forall i = 1, 2, ..., t$. It it obvious that the vertex labeling function $f_1: V(C_{4n}^{(1)}) \to \{0, 1\}$ defined by

is a balanced cordial labeling for $C_{4n}^{(1)}$. For each i = 1, 2, ..., t-1, join u_{i,j_0} with u_{i+1,j_0} , by an edge, for some $j_0 \in \{1, 2, ..., 4n\}$ to form the path union $P(t \cdot C_{4n})$. For each i = 2, 3, ..., t, define by $f_i : V(C_{4n}^{(i)}) \to \{0, 1\}$ as follows.

It is obvious that above defined labeling function f_i (i = 2, 3, ..., t) is also a balanced cordial labeling. Now define $f: V(P(t \cdot C_{4n})) \rightarrow \{0, 1\}$ as follows. $f(x) = f_i(x)$ if $x \in V(C_{4n}^{(i)})$, for some $i \in \{1, 2, ..., t\}$. Since $V(P(t \cdot C_{4n})) = \bigcup_{i=1}^t V(C_{4n}^{(i)})$ and f_i 's are balanced cordial labelings, $v_f(0) = v_f(1)$. i.e. $|v_f(0) - v_f(1)| = 0$ hold in $P(t \cdot C_{4n})$. For each i = 1, 2, ..., t - 1, it is observed that the edge label of $(u_{i,j_0}, u_{i+1,j_0}) = 1$ if i is odd and it is 0 if i is even. Thus, $e_f(0) = t \cdot e_{f_1}(0) + \lfloor \frac{t-1}{2} \rfloor$ and $e_f(1) = t \cdot e_{f_1}(1) + \lceil \frac{t-1}{2} \rceil$. Therefore, $|e_f(0) - e_f(1)| = 0$ if t is odd and it is 1 if t is even. So, $P(t \cdot C_{4n})$ is balanced cordial if t is even.

Illustration 2.2. $P(5 \cdot C_8)$ and its balanced cordial labeling are shown in Figure 1.

Figure 1. $P(5 \cdot C_8)$ with its balanced cordial labeling and $v_f(0) = v_f(1) = 20$ as well as $e_f(0) = e_f(1) = 22$.

Theorem 2.3. $C(t \cdot C_{4n})$ is a balanced cordial if $t \equiv 0 \pmod{4}$ and it is a vertex balanced cordial if $t \equiv 1, 3 \pmod{4}$, where $n \in N$.

Proof. Let $u_{i,j}(1 \le j \le 4n)$ be the vertices of i^{th} copy $C_{4n}^{(i)}$ in $C(t \cdot C_{4n})$, i = 1, 2, ..., t. It is obvious that the vertex labeling function $f_1: V(C_{4n}^{(1)}) \to \{0, 1\}$ defined by

$$f_1(u_{1,j}) = 0; \text{ if } j \equiv 0, 1 \pmod{4},$$

= 1; if $j \equiv 2, 3 \pmod{4}, \forall j = 1, 2, ..., 4n;$

is a balanced cordial labeling for $C_{4n}^{(1)}$. For each i = 1, 2, ..., t - 1, join u_{i,j_0} with u_{i+1,j_0} . by an edge and also join u_{t,j_0} with u_{1,j_0} by an edge, for some $j_0 \in \{1, 2, ..., 4n\}$ to form the cycle graph $C(t \cdot C_{4n})$. For each i = 2, 3, ..., t, define $f_2: V(C_{4n}^{(i)}) \to \{0, 1\}$ as follows.

$$f_i(u_{i,j}) = f_1(u_{1,j}) \quad \text{if } j \equiv 0,1 \pmod{4},$$

= $1 - f_1(u_{1,j})$ if $j \equiv 2,3 \pmod{4}, \forall j = 1,2,...,4n$

It is Obvious that above defined labeling function f_i (i = 2, 3, ..., t) is also a balanced cordial labeling. Now define $f : V(C(t \cdot C_{4n})) \rightarrow \{0, 1\}$ as follows. $f(x) = f_i(x)$ if $x \in V(C_{4n}^{(i)})$, for some $i \in \{1, 2, ..., t\}$. Since $V(C(t \cdot C_{4n})) = \bigcup_{i=1}^t V(C_{4n}^{(i)})$ and f_i 's are balanced cordial labelings, $|v_f(0) - v_f(1)| = 0$ hold in $C(t \cdot C_{4n})$. For each i = 1, 2, ..., t - 1, it is observed that the edge label of $(u_{i,j_0}, u_{i+1,j_0}) = 1$ if i is odd and it is 0 if i is even. Also the edge label of $(u_{t,j_0}, u_{1,j_0}) = 1$ if $t \equiv 3$ (mod 4) and it is 0 if $t \equiv 0, 1 \pmod{4}$. Thus, $e_f(0) = t \cdot e_{f_1}(0) + \lceil \frac{t}{2} \rceil, e_f(1) = t \cdot e_{f_1}(1) + \lfloor \frac{t}{2} \rfloor$, if $t \equiv 0, 1 \pmod{4}$ and $e_f(1) = t \cdot e_{f_1}(1) + (\frac{t+1}{2}), e_f(0) = t \cdot e_{f_1}(0) + (\frac{t-1}{2})$, if $t \equiv 3 \pmod{4}$. Therefore, $|e_f(0) - e_f(1)| = 1$ if t is odd and it is 0 if $t \equiv 0 \pmod{4}$ and it is vertex balanced cordial if $t \equiv 1, 3 \pmod{4}$.

Illustration 2.4. $C(9 \cdot C_4)$ and its vertex balanced cordial labeling are shown in Figure 2.

 $\textbf{Figure 2.} \quad C(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = v_f(1) = 18, e_f(0) = 23, e_f(1) = 22. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordial labeling and } v_f(0) = 0. \\ \textbf{C}(9 \cdot C_4) \text{ with its vertex balanced cordia$

Theorem 2.5. C_{4n}^{\star} is a balanced cordial graph, $\forall n \in N$.

Proof. Let $u_{i,j}(1 \le j \le 4n)$ be the vertices of i^{th} copy $C_{4n}^{(i)}$ in C_{4n}^{\star} , $\forall i = 1, 2, ..., 4n$ and $u_{0,j}(1 \le j \le 4n)$ be the vertices of central copy of C_{4n} in C_{4n}^{\star} . It is obvious that the vertex labeling function $f: V(C_{4t}^{(0)}) \to \{0, 1\}$ defined by

$$f(u_{0,j}) = 0 \text{ if } j \equiv 0,1 \pmod{4},$$

= 1 if $j \equiv 2,3 \pmod{4}, \forall j = 1,2,...,4n$

is a balanced cordial labeling for $C_{4n}^{(0)}$. For each i = 1, 2, ..., 4n, join $u_{0,i}$ with $u_{i,i}$ by an edge to form the of C_{4n} . Now define $g: V(C_{4n}^{\star}) \to \{0,1\}$ as follows

Since $V(C_{4n}^{\star}) = \bigcup_{i=0}^{4n} V(C_{4n}^{(i)})$ and $v_f(0) = v_f(1)$ in $C_{4n}^{(0)}$, $|v_g(0) - v_g(1)| = 0$ hold in C_{4n}^{\star} . For each i = 1, 2, ..., 4n, it is observed that the edge label of $(u_{0,i}, u_{i,i}) = 1$ if i is odd and it is 0 if i is even. Thus, $e_g(0) = e_g(1) = (4n+1)e_f(0) + 2n$. Therefore, $|e_g(0) - e_g(1)| = 0$ hold in C_{4n}^{\star} and So, it is a balanced cordial graph.

References

^[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23,(1987) pp. 201 - 207.

^[2] F. Harary, Graph Theory, Addition Wesley, Massachusetts, (1972).

^[3] J.A. Gallian, A dynamic Survey of graph labeling, The electronics J. Combin., 17, # DS6,(2014).

^[4] V.J. Kaneria, Hardik Makadia and Meera Meghpara, Cordiality of star of the complete graph and a cycle graph $C(n \cdot K_n)$, J. of Math. Research, 6(4) (2014) pp. 18 - 28.

^[5] S. C. Shee and Y. S. Ho, The cordiality of the path-union of n copies of a graph, Discrete Math., 151 (1996) pp. 221-229.