ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Generalization of Semicompact Spaces via Bioperations

Research Article

$R.Nirmala^1$ and $N.Rajesh^{2*}$

- 1 4/10, North street, Oviyampalayam, Namakkal, Tamilnadu, India.
- 2 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India.

Abstract: In this paper, we introduce $\gamma \vee \gamma'$ -semicompact spaces and study some of their properties using the concept of $\gamma \vee \gamma'$ -

semiconvergence, $\gamma \vee \gamma'$ -semifilterbase and $\gamma \vee \gamma'$ -semiaccumulation points.

MSC: 54D05, 54C08, 54B05.

Keywords: $\gamma \vee \gamma'$ -semiopen set, $\gamma \vee \gamma'$ -semicompact space.

© JS Publication.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, seperation axioms etc. by utilizing generalized open sets. Kasahara [1] defined the concept of an operation on topological spaces. Ogata and Maki [3] introduced the notion of $\tau_{\gamma\vee\gamma'}$ which is the collection of all $\gamma\vee\gamma'$ -open sets in a topological space (X,τ) . In this paper, we introduce $\gamma\vee\gamma'$ -semicompact spaces and study some of their properties using the concept of $\gamma\vee\gamma'$ -semiconvergence, $\gamma\vee\gamma'$ -semifilterbase and $\gamma\vee\gamma'$ -semiaccumulation points.

2. Preiliminaries

The closure and the interior of a subset A of (X, τ) are denoted by Cl(A) and Int(A), respectively.

Definition 2.1 ([1]). Let (X, τ) be a topological space. An operation γ on the topology τ is function from τ on to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of τ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2.2 ([3]). A topological space (X, τ) equipped with two operations, say, γ and γ' defined on τ is called a bioperation-topological space, it is denoted by $(X, \tau, \gamma, \gamma')$.

Definition 2.3. A subset A of a topological space (X, τ) is said to be $\gamma \vee \gamma'$ -open set [3] if for each $x \in A$ there exists an open neighbourhood U of x such that $U^{\gamma} \cup U^{\gamma'} \subset A$. The complement of $\gamma \vee \gamma'$ -open set is called $\gamma \vee \gamma'$ -closed. $\tau_{\gamma \vee \gamma'}$ denotes set of all $\gamma \vee \gamma'$ -open sets in (X, τ) .

^{*} E-mail: nrajesh_topology@yahoo.co.in

Definition 2.4 ([3]). For a subset A of (X, τ) , $\tau_{\gamma \vee \gamma'}$ -Cl(A) denotes the intersection of all $\gamma \vee \gamma'$ -closed sets containing A, that is, $\tau_{\gamma \vee \gamma'}$ -Cl $(A) = \bigcap \{F : A \subset F, X \setminus F \in \tau_{\gamma \vee \gamma'}\}$.

Definition 2.5. Let A be any subset of X. The $\tau_{\gamma \vee \gamma'}$ -Int(A) is defined as $\tau_{\gamma \vee \gamma'}$ -Int(A) = $\cup \{U : U \text{ is a } \gamma \vee \gamma' \text{-open set and } U \subset A\}$.

Definition 2.6. A subset A of a topological space (X, τ) is said to be $\gamma \vee \gamma'$ -semiopen [2] if $A \subset \tau_{\gamma \vee \gamma'}$ -Cl $(\tau_{\gamma \vee \gamma'}$ -Int(A)).

3. Bioperation-semicompact spaces

In this section, we introduce $\gamma \vee \gamma'$ -semicompact spaces and study some of their properties using the concept of $\gamma \vee \gamma'$ -semiconvergence, $\gamma \vee \gamma'$ -semifilterbase and $\gamma \vee \gamma'$ -semiaccumulation points.

Definition 3.1. A collection $\{A_i : i \in \Delta\}$ of $\gamma \vee \gamma'$ -semiopen sets in a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is called a $\gamma \vee \gamma'$ -semiopen cover of a subset A in X if $A \subset \bigcup_{i \in \Delta} A_i$.

Definition 3.2. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be $\gamma \vee \gamma'$ -semicompact if for each $\gamma \vee \gamma'$ -semiopen cover of X has a finite subcover.

Example 3.3. Let $X = \mathbb{R}$, $\tau = \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\}$ and γ , γ' identity operations defined on τ . It is clear that $\gamma \vee \gamma'$ - $SO(X, \tau) = \{\emptyset, R\} \cup \{[a, \infty) : a \in R\}$. Clearly, the bioperation-topological space $(X, \tau, \gamma, \gamma')$ is not a $\gamma \vee \gamma'$ -semicompact space.

However, we have the following Theorem.

Theorem 3.4. Every finite bioperation-topological space is $\gamma \vee \gamma'$ -semicompact.

Proof. Let $X = \{x_1, x_2, ..., x_n\}$. Let \mathcal{C} be a $\gamma \vee \gamma'$ -semiopen covering of X. Then each element in X belongs to one of the members of \mathcal{C} , say, $x_1 \in G_1, x_2 \in G_2, ..., x_n \in G_n$, where $G_i \in \mathcal{C}, i = 1, 2, ..., n$. Then the collection $\{G_1, G_2, ..., G_n\}$ is a finite subcover of X. Hence $(X, \tau, \gamma, \gamma')$ is a $\gamma \vee \gamma'$ -semicompact space.

Theorem 3.5. If $G_1, G_2, ..., G_n$ are $\gamma \vee \gamma'$ -semicompact subsets of a bioperation-topological space $(X, \tau, \gamma, \gamma')$, then $G_1 \cup G_2 \cup ... \cup G_n$ is also $\gamma \vee \gamma'$ -semicompact, that is, finite union of $\gamma \vee \gamma'$ -semicompact sets is $\gamma \vee \gamma'$ -semicompact.

Proof. Let U and V be any two $\gamma \vee \gamma'$ -semicompact subsets of X. Let \mathcal{C} be a $\gamma \vee \gamma'$ -semiopen cover of $U \cup V$. Then \mathcal{C} will also be a $\gamma \vee \gamma'$ -semiopen cover of both U and V. So by hypothesis, there exists a finite subcollection of \mathcal{C} of $\gamma \vee \gamma'$ -semiopen sets, say, $\{U_1, U_2, ..., U_n\}$ and $\{V_1, V_2, ..., V_m\}$ covering U and V, respectively. Clearly, the collection $\{U_1, U_2, ..., U_n, V_1, V_2, ..., V_m\}$ is a finite collection of $\gamma \vee \gamma'$ -semicompact sets is $\gamma \vee \gamma'$ -semicompact.

Theorem 3.6. Every $\gamma \vee \gamma'$ -semiclosed subset of a $\gamma \vee \gamma'$ -semicompact space $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact.

Proof. If G is a $\gamma \vee \gamma'$ -semiclosed set in the $\gamma \vee \gamma'$ -semicompact space $(X, \tau, \gamma, \gamma')$ and \mathcal{C} is any $\gamma \vee \gamma'$ -semiopen cover of G, then the collection $\mathcal{C}^* = (X \backslash G) \cup \mathcal{C}$ is a $\gamma \vee \gamma'$ -semiopen cover of X. Since X is $\gamma \vee \gamma'$ -semicompact, the collection \mathcal{C}^* has a finite subcover. If this finite subcover contains the set $X \backslash G$, discard it, otherwise leave the finite subcover alone, the resulting collection is a finite subcover of \mathcal{C} .

Theorem 3.7. Every infinite subset of a $\gamma \vee \gamma'$ -semicompact space $(X, \tau, \gamma, \gamma')$ has at least one $\gamma \vee \gamma'$ -semicluster point in X.

Proof. Suppose X is a $\gamma \vee \gamma'$ -semicompact space and let A be an infinite subset of X. Assume that A has no $\gamma \vee \gamma'$ -semicluster points in X. Then for each $x \in X$, there exists a $\gamma \vee \gamma'$ -semiopen set U_x such that $U_x \cap A = \{x\}$ or \emptyset . Now the collection $\{U_x : x \in X\}$ is a $\gamma \vee \gamma'$ -semiopen covering of X. Since X is $\gamma \vee \gamma'$ -semicompact, there exist points $x_1, x_2, ..., x_n$ in X such that $\bigcup_{i=1}^n U_{x_i} = X$. But $(U_{x_1} \cap A) \cup (U_{x_2} \cap A) \cup \cup (U_{x_n} \cap A) = \{x_1\} \cup \{x_2\} \cup \cup \{x_n\}$ or \emptyset . It follows that $(U_{x_1} \cup U_{x_2} \cup \cup U_{x_n}) \cap A = \{x_1, x_2, ..., x_n\}$ or \emptyset . Hence $A = \{x_1, x_2, ..., x_n\}$ or \emptyset , contradicts that A is infinite.

Definition 3.8. A collection η of $\mathcal{P}(X)$ is said to satisfy the finite intersection condition if for every finite subcollection $\{F_1, F_2, ..., F_n\}$ of η , the intersection $F_1 \cap F_2 \cap ... F_n$ is nonempty.

We will give several characterizations of the $\gamma \vee \gamma'$ -semicompact spaces. The first characterization makes use of the finite intersection condition.

Theorem 3.9. The following statements are equivalent for any bioperation-topological space $(X, \tau, \gamma, \gamma')$:

- (1). $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact.
- (2). Given any family \mathcal{F} of $\gamma \vee \gamma'$ -semiopen sets, if no finite subfamily of \mathcal{F} covers X, then \mathcal{F} does not cover X.
- (3). Given any family \mathcal{F} of $\gamma \vee \gamma'$ -semiclosed sets, if \mathcal{F} satisfies the finite intersection condition, then $\cap \{A: A \in \mathcal{F}\} \neq \emptyset$.
- (4). Given any family \mathcal{F} of subsets of X, if \mathcal{F} satisfies the finite intersection condition, then $\cap \{\gamma \vee \gamma' s \operatorname{Cl}(A) : A \in \mathcal{F}\} \neq \emptyset$.

Proof. $(1) \Leftrightarrow (2)$ and $(2) \Leftrightarrow (3)$ are obivious.

- (3) \Rightarrow (4): If $\mathcal{F} \subset P(X)$ satisfies the finite intersection condition, then $\cap \{\gamma \vee \gamma' s \operatorname{Cl}(A) : A \in \mathcal{F}\}$ is a family of $\gamma \vee \gamma' s \operatorname{Cl}(A)$ semiclosed sets, which obviously satisfies the finite intersection condition.
- (4) \Rightarrow (3): Follows from the fact that $A = \gamma \vee \gamma' s \operatorname{Cl}(A)$ for every $\gamma \vee \gamma'$ -semiclosed subset A of X.

Theorem 3.10. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact if, and only if for every collection of $\gamma \vee \gamma'$ -semiclosed sets in X, satisfying the finite intersection condition, the intersection of all the $\gamma \vee \gamma'$ -semiclosed sets in the collection is nonempty.

Proof. Suppose ζ is a collection of subsets of X. Let $\xi = \{X \setminus G : G \in \zeta\}$ be the collection of their complements. Then we have the following equivalent statements:

- (1). ζ is a collection of $\gamma \vee \gamma'$ -semiopen sets if, and only if ξ is a collection of $\gamma \vee \gamma'$ -semiclosed sets in X.
- (2). The collection ζ is a $\gamma \vee \gamma'$ -semiopen cover of X if, and only if the intersection of all the $\gamma \vee \gamma'$ -semiclosed elements in ξ is empty.
- (3). The finite subcollection $\{G_1, G_2,, G_n\}$ of ζ is a $\gamma \vee \gamma'$ -semiopen cover of X if, and only if the intersection of the corresponding $\gamma \vee \gamma'$ -semiclosed elements of ξ is nonempty.

Now X is $\gamma \vee \gamma'$ -semicompact if, and only if given any collection ζ of $\gamma \vee \gamma'$ -semiopen sets, if ζ is a $\gamma \vee \gamma'$ -semiopen cover of X, then there is a finite subcollection of ζ covers X if, and only if given any collection ζ of $\gamma \vee \gamma'$ -semiopen sets, if there is no finite subcollection of ζ covers X, then ζ is not a $\gamma \vee \gamma'$ -semiopen cover of X if, and ony if given any collection ξ of $\gamma \vee \gamma'$ -semiclosed sets, if every finite intersection of $\gamma \vee \gamma'$ -semiclosed sets in ξ is nonempty, then the intersection of all the $\gamma \vee \gamma'$ -semiclosed sets in ξ is nonempty.

We will give the characterization by nets of $\gamma \vee \gamma'$ -semicompact spaces.

Definition 3.11. Let $(X, \tau, \gamma, \gamma')$ be a bioperation-topological space. A point $x \in X$ is said to be a $\gamma \vee \gamma'$ -semicluster point of a net $\{x_{\alpha}\}_{{\alpha}\in\Delta}$ if $\{x_{\alpha}\}_{{\alpha}\in\Delta}$ is frequently in every $\gamma \vee \gamma'$ -semiopen set containing x. We denote by $\gamma \vee \gamma'$ -s-cp $\{x_{\alpha}\}_{{\alpha}\in\Delta}$ the set of all $\gamma \vee \gamma'$ -semicluster points of a net $\{x_{\alpha}\}_{{\alpha}\in\Delta}$.

Theorem 3.12. The set of all $\gamma \vee \gamma'$ -semicluster points of an arbitrary net in X is $\gamma \vee \gamma'$ -semiclosed.

Proof. Let $\{x_{\alpha}\}_{{\alpha}\in\Delta}$ be a net in X. Set $A=\gamma\vee\gamma'$ -s- $cp\{x_{\alpha}\}_{{\alpha}\in\Delta}$. Let $x\in X\backslash A$. Then there exists a $\gamma\vee\gamma'$ -semiopen set U_x containing x and $\alpha_x\in\Delta$ such that $x_{\beta}\notin U_x$ whenever $\beta\in\Delta$, $\beta\geq\alpha_x$. It turns out that $U_x\subset X\backslash A$, hence $x\in\gamma\vee\gamma'$ - $s\operatorname{Int}(X\backslash A)=X\backslash\gamma\vee\gamma'$ -s $\operatorname{Cl}(A)$. This shows that $\gamma\vee\gamma'$ -s $\operatorname{Cl}(A)\subset A$; hence A is $\gamma\vee\gamma'$ -semiclosed in (X,τ,γ,γ') .

Theorem 3.13. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact if, and only if each net $\{x_{\alpha}\}_{{\alpha} \in \Delta}$ in X has at least one $\gamma \vee \gamma'$ -semicluster point.

Proof. Let $(X, \tau, \gamma, \gamma')$ be a $\gamma \vee \gamma'$ -semicompact space. Assume that there exist some net $\{x_{\alpha}\}_{\alpha \in \Delta}$ in X such that $\gamma \vee \gamma'$ -s-cp $\{x_{\alpha}\}_{\alpha \in \Delta}$ is empty. Then for every $x \in X$, there exist $U(x) \in \gamma \vee \gamma'$ -SO(X, x) and $\alpha(x) \in \Delta$ such that $x_{\beta} \notin U(x)$ whenever $\beta \geq \alpha(x)$, $\beta \in \Delta$. Then the family $\{U(x) : x \in X\}$ is a cover of X by $\gamma \vee \gamma'$ -semiopen sets and has a finite subcover, say, $\{U_k : k = 1, 2, ...n\}$ where $U_k = U(x_k)$ for k = 1, 2, ...n, $\{x_k : k = 1, 2, ...n\} \subset X$. Let us take $\alpha \in \Delta$ such that $\alpha \geq \alpha(x_k)$ for all $k \in \{1, 2, ...n\}$. For every $\beta \in \Delta$ such that $\beta \geq \alpha$ we have, $x_{\beta} \notin U_k$, k = 1, 2, ...n, hence $x_{\beta} \notin X$, which is a contradiction. Conversely, if X is not $\gamma \vee \gamma'$ -semicompact, there exists $\{U_i : i \in \Delta\}$ a cover of X by $\gamma \vee \gamma'$ -semiopen sets, which has no finite subcover. Let $F(\Delta)$ be the family of all finite subsets of Δ . Clearly, $(F(\Delta), \subset)$ is a directed set. For each $J \in F(\Delta)$, we may choose $x_J \in X \setminus \bigcup \{U_i : i \in J\}$. Let us consider the net $\{x_J\}_{J \in F(\Delta)}$. By hypothesis, the set $\gamma \vee \gamma'$ -s-cp $\{x_J\}_{J \in F(\Delta)}$ is nonempty. Let $x \in \gamma \vee \gamma'$ -s-cp $\{x_J\}_{J \in F(\Delta)}$ and let $i_0 \in \Delta$ such that $x \in U_{i_0}$. By the definition of $\gamma \vee \gamma'$ -semicluster point for each $J \in F(\Delta)$ there exists $J^* \in F(\Delta)$ such that $J \subset J^*$ and $x_{J^*} \in U_{i_0}$. For $J = \{i_0\}$, there exists $J^* \in F(\Delta)$ such that $i_0 \in J^*$ and $x_{J^*} \in U_{i_0}$. But $x_{J^*} \in X \setminus \bigcup \{U_i : i \in J^*\} \subset X \setminus U_{i_0}$. The contradiction we obtained shows that $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact.

In the following, we will give a characterization of $\gamma \vee \gamma'$ -semicompact spaces by means of filterbases.

Let us recall that a nonempty family \mathcal{F} of subsets of X is said to be a filterbase on X if $\emptyset \notin \mathcal{F}$ and each intersection of two members of \mathcal{F} contains a third member of \mathcal{F} . Notice that each chain in the family of all filterbases on X (ordered by inclusion) has an upper bound, for example, the union of all members of the chain. Then, by Zorn's Lemma, the family of all filterbases on X has at least one maximal element. Similarly, the family of all filterbases on X containing a given filterbase \mathcal{F} has at least one maximal element.

Definition 3.14. A filterbase \mathcal{F} on a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be

- (1). $\gamma \vee \gamma'$ -semiconverge to a point $x \in X$ if for each $\gamma \vee \gamma'$ -semiopen set U containing x, there exists $B \in \mathcal{F}$ such that $B \subset U$.
- (2). $\gamma \vee \gamma'$ -semiaccumulate at $x \in X$ if $U \cap B \neq \emptyset$ for every $\gamma \vee \gamma'$ -semiopen set U containing x and every $B \in \mathcal{F}$.

Remark 3.15. A filterbase \mathcal{F} $\gamma \vee \gamma'$ -semiaccumulates at x if, and only if $x \in \cap \{\gamma \vee \gamma' \text{-s } \mathrm{Cl}(B) : B \in \mathcal{F}\}$. Clearly, if a filterbase \mathcal{F} $\gamma \vee \gamma'$ -semiconverges to $x \in X$, then \mathcal{F} $\gamma \vee \gamma'$ -semiaccumulates at x.

Lemma 3.16. If a maximal filterbase \mathcal{F} $\gamma \vee \gamma'$ -semiaccumulates at $x \in X$, then \mathcal{F} $\gamma \vee \gamma'$ -semiconverges to x.

Proof. Let \mathcal{F} be a maximal filterbase which $\gamma \vee \gamma'$ -semiaccumulates at $x \in X$. If \mathcal{F} does not $\gamma \vee \gamma'$ -semiconverge to x, then there exists a $\gamma \vee \gamma'$ -semiopen set U containing x such that $U \cap B \neq \emptyset$ and $(X \setminus U) \cap B \neq \emptyset$ for every $B \in \mathcal{F}$. Then $\mathcal{F} \cup \{U \cap B : B \in \mathcal{F}\}$ is a filterbase which strictly contains \mathcal{F} , which is a contradiction.

One of the most important characterizations of $\gamma \vee \gamma'$ -semicompact spaces is the following result:

Theorem 3.17. For a bioperation-topological space $(X, \tau, \gamma, \gamma')$, the following statements are equivalent:

- (1). $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact.
- (2). Every maximal filterbase $\gamma \vee \gamma'$ -semiconverges to some point of X.
- (3). Every filterbase $\gamma \vee \gamma'$ -semiaccumulates at some point of X.
- (4). For every family $\{F_{\alpha} : \alpha \in \Delta\}$ of $\gamma \vee \gamma'$ -semiclosed subsets of $(X, \tau, \gamma, \gamma')$, such that $\cap \{F_{\alpha} : \alpha \in \Delta\} = \emptyset$, there exists a finite subset Δ_0 of Δ such that $\cap \{F_{\alpha} : \alpha \in \Delta_0\} = \emptyset$.

Proof. (1) \Rightarrow (2): Let \mathcal{F}_0 be a maximal filterbase on X. Suppose that \mathcal{F}_0 does not $\gamma \vee \gamma'$ -semiconverge to any point of X. Then, by Lemma 3.16, \mathcal{F}_0 does not $\gamma \vee \gamma'$ -semiaccumulate at any point of X. For each $x \in X$, there exists a $\gamma \vee \gamma'$ -semiopen set U_x containing x and $B_x \in \mathcal{F}_0$ such that $U_x \cap B_x = \emptyset$. The family $\{U_x : x \in X\}$ is a cover of X by $\gamma \vee \gamma'$ -semiopen sets. By (1), there exists a finite subset $\{x_1, x_2,x_n\}$ of X such that $X = \bigcup \{U_{x_k} : k = 1, 2, ...n\}$. Since \mathcal{F}_0 is a filterbase, there exists $B_0 \in \mathcal{F}_0$ such that $B_0 \subset \cap \{B_{x_k} : k = 1, 2, ...n\} = X \setminus \bigcup \{U_{x_k} : k = 1, 2, ...n\} = \emptyset$, hence $B_0 = \emptyset$. This is a contradiction.

(2) \Rightarrow (3): Let \mathcal{F} be a filterbase on X. There exists a maximal filterbase \mathcal{F}_0 such that $\mathcal{F} \subset \mathcal{F}_0$. By (2), $\mathcal{F}_0 \ \gamma \lor \gamma'$ -semiconverges to some point $x_0 \in X$. Let $B \in \mathcal{F}$. For every $U \in \gamma \lor \gamma'$ - $SO(X, x_0)$, there exists $B_U \in \mathcal{F}_0$ such that $B_U \subset U$, hence $U \cap B \neq \emptyset$, since it contains the member $B_U \cap B$ of \mathcal{F}_0 . This shows that $\mathcal{F} \ \gamma \lor \gamma'$ -semiaccumulates at x_0 .

 $(3)\Rightarrow (4)$: Let $\{F_{\alpha}: \alpha \in \Delta\}$ be a family of $\gamma \vee \gamma'$ -semiclosed subsets of $(X, \tau, \gamma, \gamma')$ such that $\cap \{F_{\alpha}: \alpha \in \Delta\} = \emptyset$. If possible suppose that every finite subfamily has a nonempty intersection, then $\beta = \{\bigcap_{i=1}^n F_{\alpha_i}: n \in \mathbb{N}, F_{\alpha_i} \in \{F_{\alpha}: \alpha \in \Delta\}\}$ form a filterbase on X. Then by (3) β is $\gamma \vee \gamma'$ -semiaccumulates to some points $x \in X$. This implies that for every $\gamma \vee \gamma'$ -semiopen set U containing x, $F_{\alpha} \cap U \neq \emptyset$ for every $F_{\alpha} \in \beta$ and every $\alpha \in \Delta$. Since $x \notin \cap \{F_{\alpha}: \alpha \in \Delta\}$, there exists $\alpha_0 \in \Delta$ such that $x \notin F_{\alpha_0}$. Therefore $x \in X \setminus F_{\alpha_0}$, which is $\gamma \vee \gamma'$ -semiopen set in X. But $F_{\alpha_0} \cap X \setminus F_{\alpha_0} = \emptyset$, then we get a contradiction of the fact that β is $\gamma \vee \gamma'$ -semiaccumulates to x.

(4) \Rightarrow (1): Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a $\gamma \vee \gamma'$ -semiopen cover of X. Then $\{X \setminus U_{\alpha} : \alpha \in \Delta\}$ is a family of $\gamma \vee \gamma'$ -semiclosed subsets of X such that $\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\} = \emptyset$. Then by (4) there exists a finite subset Δ_0 of Δ such that $\cap \{X \setminus U_{\alpha} : \alpha \in \Delta_0\} = \emptyset$. This implies that $X = \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$; hence $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact.

Definition 3.18. A point x in a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be a $\gamma \vee \gamma'$ -semicomplete accumulation point of a subset A of X if $|S \cap A| = |A|$ for each $S \in \gamma \vee \gamma'$ -SO(X, x).

Definition 3.19. In a bioperation-topological space $(X, \tau, \gamma, \gamma')$, a point x is said to be a $\gamma \vee \gamma'$ -semiadherent point of a filterbase \mathcal{F} on X if it lies in the $\gamma \vee \gamma'$ -semiclosure of all sets of \mathcal{F} .

Theorem 3.20. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact if, and only if each infinite subset of X has a $\gamma \vee \gamma'$ -semicomplete accumulation point.

Proof. Let $(X, \tau, \gamma, \gamma')$ be a $\gamma \vee \gamma'$ -semicompact space and A an infinite subset of X. Let K be the set of all points x in X which are not $\gamma \vee \gamma'$ -semicomplete accumulation points of A. Now it is obvious that for each point x in K, we are able to find $U(x) \in \gamma \vee \gamma'$ -SO(X, x) such that $|A \cap U(x)| \neq |A|$. If K is the whole space X, then $\mathcal{C} = \{U(x) : x \in X\}$ is a $\gamma \vee \gamma'$ -semicompact cover of X. By the hypothesis X is $\gamma \vee \gamma'$ -semicompact, so there exists a finite subcover $\mathcal{G} = \{U(x_i) : i = 1, 2, ...n\}$ such that

 $A \subset \cup \{U(x_i) \cap A : i = 1, 2, ...n\}$. Then $|A| = max\{|U(x_i) \cap A| : i = 1, 2, ...n\}$ which does not agree with what we assumed. This implies that A has a $\gamma \vee \gamma'$ -semicomplete accumulation point. Now assume that X is not $\gamma \vee \gamma'$ -semicompact and that every infinite subset A of X has a $\gamma \vee \gamma'$ -semicomplete accumulation point in X. It follows that, there exists a $\gamma \vee \gamma'$ -semiopen cover S with no finite subcover. Set $\alpha = min\{|\Psi| : \Psi \subset S$, where Ψ is a $\gamma \vee \gamma'$ -semiopen cover of $X\}$. Fix $\Psi \subset S$ for which $|\Psi| = \alpha$ and $\cup \{U : U \in \Psi\} = X$. Then, by hypothesis $\alpha \geq |\mathbb{N}|$, where \mathbb{N} denotes the set of all natural numbers. By well-ordering of Ψ by some minimal well-ordering " \sim ", suppose that U is any member of Ψ . By minimal well-ordering " \sim " we have $|\{V : V \in \Psi, V \sim U\}| < |\{V : V \in \Psi\}|$. Since Ψ can not have any subcover with cardinality less than α , then for each $U \in \Psi$ we have $X \neq \cup \{V : V \in \Psi, V \sim U\}$. For each $U \in \Psi$, choose a point $X(U) \in X \setminus U \in X(U) : Y \in Y \in Y \in Y \in Y \in X(U)$. We are always able to do this if not one can choose a cover of smaller cardinality from Ψ . If $H = \{x(U) : U \in \Psi\}$, then to finish the proof we will show that H has no $Y \vee Y'$ -semicomplete accumulation point in X. Suppose that $X \in X$. Since $Y \in X(U) \in X(U)$

Theorem 3.21. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact if, and only if every net in X with a well-ordered directed set as its domain $\gamma \vee \gamma'$ -semiaccumulates to some point of X.

Proof. Suppose that X is $\gamma \vee \gamma'$ -semicompact and $A = \{x_\alpha : \alpha \in \Lambda\}$ a net with a well-ordered directed set Λ as domain. Assume that A has no $\gamma \vee \gamma'$ -semiadherent point in X. Then for each $x \in X$, there exists $V(x) \in \gamma \vee \gamma'$ -SO(X,x) and an $\alpha(x) \in \Lambda$ such that $V(x) \cap \{x_\alpha : \alpha \geq \alpha(x)\} = \emptyset$. This implies that $\{x_\alpha : \alpha \geq \alpha(x)\}$ is a subset of $X \setminus V(x)$. Then the collection $\mathcal{C} = \{V(x) : x \in X\}$ is a $\gamma \vee \gamma'$ -semiopen cover of X. Since X is $\gamma \vee \gamma'$ -semicompact, \mathcal{C} has a finite subfamily $\{V(x_i) : i = 1, 2, ...n\}$ such that $X = \bigcup_{i=1}^n V(x_i)$. Suppose that the corresponding elements of Λ be $\{\alpha(x_i)\}$, where i = 1, 2, ...n. Since Λ is well-ordered and $\{\alpha(x_i) : i = 1, 2, ...n\}$ is finite, the largest element of $\{\alpha(x_i)\}$ exists. Suppose it is $\{\alpha(x_l)\}$. Then for $\beta \geq \{\alpha(x_l)\}$, we have $\{x_\delta : \delta \geq \beta\} \subset \bigcap_{i=1}^n \{X \setminus V(x_i)\} = X \setminus \bigcup_{i=1}^n V(x_i) = \emptyset$, which is impossible. This shows that A has at least one $\gamma \vee \gamma'$ -semiadherent point in X. Conversely, suppose that S is an infinite subset of S. According to Zorn's Lemma, the infinite set S can be well-ordered. This means that we can assume S to be a net with a domain which is a well-ordered index set. It follows that S has a $\gamma \vee \gamma'$ -semiadherent point S. Therefore, S is a $\gamma \vee \gamma'$ -semicomplete accumulation point of S. This shows that S is S is S in S

Theorem 3.22. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact if, and only if each filterbase in X has at least one $\gamma \vee \gamma'$ -semiadherent point.

Proof. Suppose that X is $\gamma \vee \gamma'$ -semicompact and $\mathcal{F} = \{F_{\alpha} : \alpha \in \Delta\}$ a filterbase in it. Since all finite intersections of F_{α} 's are nonempty, it follows that all finite intersections of $\gamma \vee \gamma'$ -s $Cl(F_{\alpha})$'s are also nonempty. By finite intersection property, $\bigcap_{\alpha \in \Delta} \gamma \vee \gamma'$ -s $Cl(F_{\alpha}) \neq \emptyset$. This implies that \mathcal{F} has at least one $\gamma \vee \gamma'$ -semiadherent point. Now suppose that \mathcal{F} is any family of $\gamma \vee \gamma'$ -semiclosed sets. Let each finite intersection be nonempty, the set F_{α} with their finite intersection establish the filterbase \mathcal{F} . Therefore, $\mathcal{F} \gamma \vee \gamma'$ -semiaccumulates to some point z in X. It follows that $z \in \bigcap_{\alpha \in \Delta} F_{\alpha}$. Now we have by Theorem 3.9 (3), X is $\gamma \vee \gamma'$ -semicompact.

Theorem 3.23. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $\gamma \vee \gamma'$ -semicompact if, and only if each filterbase on X, with at most $\gamma \vee \gamma'$ -semiadherent point, is $\gamma \vee \gamma'$ -semiconvergent.

Proof. Suppose that X is $\gamma \vee \gamma'$ -semicompact, $x \in X$ and \mathcal{F} is a filterbase on X. The $\gamma \vee \gamma'$ -semiadherent of \mathcal{F} is a subset of $\{x\}$. Then the $\gamma \vee \gamma'$ -semiadherent of \mathcal{F} is equal to $\{x\}$ by Theorem 3.22. Assume that there exists $V \in \gamma \vee \gamma'$ -SO(X, x) such

that for all $F \in \mathcal{F}$, $F \cap (X \setminus V) \neq \emptyset$. Then $\Psi = \{F \setminus V : F \in \mathcal{F}\}$ is a filterbase on X. It follows that the $\gamma \vee \gamma'$ -semiadherent of Ψ is nonempty. However, $\bigcap_{F \in \mathcal{F}} \gamma \vee \gamma'$ -s $\operatorname{Cl}(F \setminus V) \subset (\bigcap_{F \in \mathcal{F}} \gamma \vee \gamma'$ -s $\operatorname{Cl}(F)) \cap (X \setminus V) = \{x\} \cap (X \setminus V) = \emptyset$, a contradiction. Hence for each $V \in \gamma \vee \gamma'$ -sO(X, x), there exists $F \in \mathcal{F}$ such that $F \subset V$. This shows that $\mathcal{F} \gamma \vee \gamma'$ -semiconverges to X. Conversly, assume that \mathcal{F} is a filterbase on X with no $Y \vee Y'$ -semiadherent point. By hypothesis, $Y \vee Y'$ -semiconverges to some point $Y \in Y$ is an arbitrary element of $Y \in Y$. Then for each $Y \in Y \vee Y'$ -sO(X, Z), there exists a $Y \in Y$ such that $Y \in Y \vee Y'$ so a filterbase, there exists a $Y \in Y$ such that $Y \in Y \vee Y'$ -sO($Y \in Y \vee Y'$ -sO($Y \in Y \vee Y'$ -sO($Y \in Y \vee Y'$ -semiadherent point of $Y \in Y \vee Y'$ -semiadhere

References

^[1] S.Kasahara, Operation-compact spaces, Math. Japonica, 24(1979), 97-105.

^[2] R.Nirmala and N.Rajesh, Generalization of semiopen sets via bioperations, (submitted).

^[3] H.Ogata and H.Maki, Bioperation on topological spaces, Math. Japonica, 38(5)(1993), 981-985.