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1. Introduction

This is the second part of a work [13] on indefinitely oscillating functions. In [13] we have considered the case where the

functions are in Sobolev spaces are cdefined on the whola real axis. In this paper, we will consider functions in Sobolev

spaces which are only defined on a half axis. We will consider functions which are only defined on a half axis, [0,∞) for

example. The difficulty comes from that we cannot use Fourier’s transform. We overcome this difficulty either defining the

space of functions indefinitely oscillating on [0,∞) as the space of restrictions to [0,∞) of functions indefinitely oscillating

on R, or defining an indefinitely oscillating function f on [0,∞) using the scalar product 〈f, ϕ (a, b)〉, where ϕ ∈ C∞0 ([−1, 1])

and ϕ (a, b) (x) = 1
a
ϕ
(
x−b
a

)
where b ≥ a+ 1. We will show that the two definitions are equivalent.

The motivation for studying indefinitely oscillating functions is given by chirps. We observe that a chirp is an asymptotic

signal which is of the form s (t) = A (t) eiλΦ(t), where A and Φ are two smooth functions and λ � 1 (actually Φ′ (t) → ∞

when t→ t0).

2. Indefinitely Oscillating Functions on the Half Real Axis

Here we cannot use Fourier’s transform. We have two ways to study Indefinitely oscillating functions within this context:

• Restriction to a half real axis of functions indefinitely oscillating on the whole R.

• Direct definition.

Before studying the case of functions indefinitely oscillating on [0,∞) relatively to the space Hs [0,∞), we will recall the

results concerning functions indefinitely oscillating on [0,∞) relatively to the space L∞ ([0,∞)).
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Indefinitely Oscillating Functions–Part II

2.1. The L∞ ([0,∞))-case

Definition 2.1. Let f be a function defined on the half real axe [0,∞). We say that f is indefinitely oscillating in the

L∞ ([0,∞))-sense if f ∈ L∞ ([0,∞)) and if for every integer m there exists fm ∈ L∞ ([0,∞)) such that f =
(
dfm
dx

)m
, in the

distributional sense on [0,∞).

Theorem 2.2. Let f a function indefinitely oscillating in L∞ ([0,∞))-sense. Then f is the restriction to [0,∞) of a function

g indefinitely oscillating on R.

Proof. We start defining the generalized moments µk of f by

µk = lim
ε→0

∫ ∞
0

e−εxxkf (x) dx.

Let us first prove the existence of this limit. We write

∫ ∞
0

e−εxxk
df1

dx
(x) dx =

[
e−εxxkf1 (x)

]∞
0
−
∫ ∞

0

d

dx

(
e−εxxk

)
f1 (x) dx.

The first part in the right hand side is equal to 0. Then we have

∫ ∞
0

e−εxxkf (x) dx = (−1)k
∫ ∞

0

(
d

dx

)k (
e−εxxk

)
fk (x) dx

= (−1)k

 k!
∫∞

0
e−εxfk (x) dx+ εk−2 k

2 (k − 2)2

2

∫∞
0
e−εxxk−2fk (x) dx

−k2εk−1
∫∞

0
e−εxfk (x)xk−1dx+ εk

∫∞
0
e−εxxkfk (x) dx

 .

We then argue by recurrence on the integer. Assume that limε→0

∫∞
0
e−εxxqf (x) dx exists for q = 0, 1, . . . , k−1. We remark

that if f is an indefinitely oscillating function on [0,∞) its primitives functions f1, . . . , fk, . . . are indefinitely oscillating

function too. Because of the hypothesis, the quantity
∫∞

0
e−εxxqfn (x) dx has a limit when ε goes to 0, for every integer n

and for every integer q with 0 ≤ q ≤ k − 1. However we precisely have

∫ ∞
0

e−εxxkf (x) dx = (−1)k k!

∫ ∞
0

e−εxfk (x) dx+ +εk−2 k
2 (k − 2)2

2

∫ ∞
0

e−εxxk−2fk (x) dx

− k2εk−1

∫ ∞
0

e−εxfk (x)xk−1dx+ εk
∫ ∞

0

e−εxxkfk (x) dx.

In order to prove the desired result, it is sufficient to show the existence of

lim
ε→0

εk
∫ ∞

0

e−εxxkfk (x) dx.

Integrating again and using the hypothesis, we get εk+1
∫∞

0
e−εxxkfk+1 (x) dx. Another last integration gives

εk+2
∫∞

0
e−εxxkfk+2 (x) dx, which can be estimated from above by ‖fk+2‖∞ ε

∫∞
0
xke−xdx, which goes to 0 when ε goes

to 0.

The demonstration will now be complete if the property is satisfied at the zero rank. We have

∫ ∞
0

e−εxf (x) dx =
[
f1 (x) e−εx

]∞
0

+ ε

∫ ∞
0

f1 (x) e−εxdx = −f1 (0) + ε

∫ ∞
0

f1 (x) e−εxdx.

An integration gives

ε

∫ ∞
0

f1 (x) e−εx = ε
[
f2 (x) e−εx

]∞
0

+ ε2
∫ ∞

0

f2 (x) e−εxdx

= −εf2 (0) + ε2
∫ ∞

0

f2 (x) e−εxdx.
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We have 0 ≤ ε2
∣∣∫∞

0
f2 (x) e−εxdx

∣∣ ≤ ε ‖f2‖∞
∫∞

0
e−xdx and this last quantity goes to 0 when ε goes to 0. We deduce

µk = limε→0

∫∞
0
e−εxxkf (x) dx = (−1)k+1 k!fk+1 (0) or again

lim
ε→0

∫ ∞
0

e−εxfk (x) dx = −fk+1 (0) .

Let us come back to the proof of the theorem. Applying Borel’s theorem, there exists a function h belonging to the Schwartz

class now taken on (−∞, 0] such that

−µk = lim
ε→0

∫ 0

−∞
xkh (x) dx.

We show that h+fχ([0,∞)) is the function g that we are looking for. It is sufficient to prove that g is indefinitely oscillating on

the whole R. First g ∈ L∞ (R). By definition g1 (x) =
∫ x
−∞ g (t) dt. If x < 0 then g1 (x) =

∫ x
−∞ h (t) dt and g1 ∈ L∞ ((−∞, 0]).

If x = 0 then g1 (0) =
∫ 0

−∞ h (t) dt = −µ0 = f1 (0). If x ≥ 0 then g1 (x) =
∫ 0

−∞ h (t) dt+
∫ x

0
f (t) dt = f1 (0) + f1 (x)− f1 (0),

which implies ‖g1‖∞ ≤ C. In a similar way, g2 (x) =
∫ x
−∞ g1 (t) dt. For x ≥ 0 one has

g2 (x) =

∫ x

−∞
g1 (t) dt+

∫ x

0

f1 (t) dt =

∫ 0

−∞
g1 (t) dt+ f2 (x)− f2 (0)

= −
∫ 0

−∞
th (t) dt+ f2 (x)− f2 (0) .

But
∫ 0

−∞ th (t) dt = −µ1 = −f2 (0), through the construction of h. We observe that−µk =
∫ 0

−∞ x
kh (x) dx =

∫ 0

−∞ hk (x) dx =

hk+1 (0). Arguing by recurrence, that is assuming that ‖gk‖∞ ≤ Ck ≤ ∞ for k < n and showing that gn satisfies the same

inequality, we have

gn (0) =

∫ 0

−∞
gn−1 (t) dt = fn (0) =

(−1)n−1

(n− 1)!

∫ 0

−∞
xn−1h (x) dx.

For x < 0 one has gn (x) = hn (x), which belongs to the Schwartz class. For x ≥ 0 one has

gn (x) =

∫ x

−∞
gn−1 (t) dt =

∫ 0

−∞
hn−1 (t) dt+

∫ x

0

fn−1 (t) dt

= fn (0) + fn (x)− fn (0) .

But fn is bounded by hypothesis. So it is for gn (x).

2.1.1. The L2 ([0,∞))-case

Definition 2.3. A function f ∈ L2 ([0,∞)) is indefinitely oscillating in the L2 ([0,∞))-sense if, for every n, there exists

fn ∈ L2 ([0,∞)) such that f = dnfn
dxn

, in the distributional sense.

Let f be a function indefinitely oscillating in the L2-sense. Using similar notations, we show that fn ∈ Hn ([0,∞)). If

0 < x < y we have f1 (y)− f1 (x) =
∫ y
x
f (t) dt. Hence |f1 (y)− f1 (x)| ≤

√
y − x ‖f‖2. Hence f1 is uniformly continuous on

[0,∞) and can be extended at 0. It is the same for every fn, n ≥ 1 .Let us now show that fn goes to 0 at infinity for every

n ≥ 1.

Lemma 2.4. Let u be a uniformly continuous function on [0,∞). If u ∈ L2 ([0,∞)) then limx→∞ u (x) = 0.

Proof. The proof of this lemma is well-known. We will repeat it for the reader’s convenience. To prove this lemma, we

argue by contradiction. Hence, there exists a sequence (xk)k which goes to ∞ such that |u (xk)| ≥ δ > 0. As u is uniformly

continuous, there exists ε > 0 such that |u (xk + t)| ≥ δ
2

if |t| ≤ ε. Up to a subsequence, we can assume that the intervals

[xk − ε, xk + ε] are disjoint two by two. Then ‖u‖2 ≥
∑
k

∫ xk+ε

xk−ε
|u (s)|2 ds =∞.
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Remark 2.5. If f ∈ L2 ([0,∞)) is indefinitely oscillating, its primitives given by the definition f1, f2, . . . , fn, . . . are indefi-

nitely oscillating in the L∞ ([0,∞))-sense. The f generalized moment µk exists for every integer k ≥ 1.

Lemma 2.6. If f ∈ L2 ([0,∞)) is indefinitely oscillating in the L2 ([0,∞))-sense, then limε→0

∫ +∞
0

e−εxf (x) dx exists and

is equal to −f1 (0).

Proof. Integrating by parts, we get

∫ +∞

0

e−εxf (x) dx =
[
e−εxf1 (x)

]+∞
0

+ ε

∫ +∞

0

e−εxf1 (x) dx.

As f1 (+∞) = 0, the first term of the right hand side is equal to −f1 (0) and the second term can be bounded using

Cauchy-Schwarz by
‖f1‖2√

ε
.

Theorem 2.7. If f ∈ L2 ([0,∞)) is indefinitely oscillating, there exists a function g ∈ L2 (R), indefinitely oscillating, whose

restriction to [0,∞) is f .

Proof. In order to use Borel’s theorem, it is necessary to start defining the generalized moments of f . Let f ∈ L2 ([0,∞))

be an indefinitely oscillating function. For every n, there exists fn ∈ L2 ([0,∞)) such that f = dnfn
dxn

. We have already

proved that for every n ≥ 1 fn is uniformly continuous on [0,∞) and limx→∞ fn (x) = 0.

Let us prove that for every f ∈ L2 ([0,∞)) which is an indefinitely oscillating function, then for every integer k

limε→0

∫∞
0
e−εxxkf (x) dx = (−1)k+1 k!fk+1 (0) or again limε→0

∫∞
0
e−εxfk (x) dx = −fk+1 (0).

We apply Borel’s theorem. There exists a function h in the Schwartz class taken on (−∞, 0], such that h (x) + f (x)χ[0,∞)

belongs to L2 (R) and is indefinitely oscillating on the whole real axis. Using a similar argument than that of the L∞-case,

we prove that h (x) + f (x)χ[0,∞) is the desired function g.

2.1.2. The Hs ([0,∞))-case

Definition 2.8. A function f ∈ Hs ([0,∞)) is indefinitely oscillating in the Hs-sense if, for every integer n, there exists a

function (or a distribution) fn ∈ Hs ([0,∞)) such that f = dnfn
dxn

, in the distributional sense.

Theorem 2.9. Every function (resp. distribution) f ∈ Hs ([0,∞)) which is indefinitely oscillating in the Hs-sense is the

restriction to [0,∞) of a function (resp. distribution) g ∈ Hs (R) which is indefinitely oscillating in the Hs-sense.

Proof. One starts assuming that s ≥ 0. The functions f1, f2, . . . , fn, . . . are uniformly continuous and can be extended by

0. We apply Borel’s theorem and build a function h in the Schwartz class taken in (−∞, 0] and such that

f1 (0) =
∫ 0

−∞ h (x) dx,

f2 (0) =
∫ 0

−∞ h1 (x) dx where h1 (x) =
∫ x
−∞ h (t) dt,

fm (0) =
∫ 0

−∞ hm−1 (x) dx where hm−1 (x) =
∫ x
−∞ hm−2 (t) dt,

for every m ≥ 1. Then we define g (x) = h (x) + f (x)χ[0,∞). This approach is possible only in the case where 0 ≤ s ≤ 1
2
.

The reason is that if f ∈ Hs ([0,∞)), it is true that f is the restriction to [0,∞) of a function in Hs (R), but it is not

necessarily obtained by multiplying it by the indicator function χ[0,∞). Then we reach the end of the proof observing that

if − 1
2
< s < 1

2
and f ∈ Hs (R), then fχI ∈ Hs (R) for every interval I, with either a finite or infinite length.

Let sign (x) = x
|x| and f ∈ Hs (R) with 0 ≤ s ≤ 1

2
. Observe that the Fourier transform of sign (x) f (x) is Fourier

(sign (.) f) = 1
iπ
f̂ ∗ VP

(
1
ξ

)
. As one remarks, Borel’s theorem can be applied only in the case s ≥ 0 and 0 ≤ s < 1

2
.

Let us now remark that f is indefinitely oscillating in the Hs-sense (either on the half axis or on the whole axis) if and only

if Dmf is indefinitely oscillating in the Hs−m-sense for every m relative integer. We can generalize this observing that f is

106



T.El Bouayachi and N.Yebari

indefinitely oscillating in the Hs-sense (either on R or on some subset of R) if and only if Dαf is indefinitely oscillating in

the Hs−α-sense for every real α. Here Dαf means the fractional derivative of order α of f , 0 < α < 1, which is defined

through Dαf (x) = cα
∫∞
x

f(y)

(x−y)1−α
dy. This integral exists as f is defined on [T,∞). Let f a function indefinitely oscillating.

If f ∈ Hs then Dαf ∈ Hs−α. For every m, there exists fm ∈ Hs+m such that f = dmfm
dxm

. This implies Dαfm ∈ Hs+m−α.

Hence Dαf is indefinitely oscillating in the Hs−α-sense. Conversely, if Dαf is indefinitely oscillating in the Hs−α-sense,

we define g = Dαf . Then gm ∈ Hs−α+m. As 0 < 1 − α < 1 we have D1−αg1 ∈ Hs and D1−αg1 = f . One deduces

D1−αgm ∈ Hs+m−1 and D1−αgm = fm−1.

Let us now move to the case where −1 < α < 0. Take a indefinitely oscillating function f . For every m, there exists

fm ∈ Hs+m such that f = dmfm
dxm

. f1 ∈ Hs+1. One deduces that D1+αf1 ∈ Hs−α. (The operator D1+α is a derivative

operator since 0 < 1 + α < 1). As f1 is indefinitely oscillating in the Hs+1-sense, D1+αf1 is indefinitely oscillating in the

Hs−α-sense.

2.1.3. Generalization to an Arbitrary Banach Space

We take a Banach space E satisfying the following conditions:

(1). E ⊂ D′ ([0,∞)) and the embedding is continuous.

(2). For every sequence (fj)j such that fj ∈ E, ‖fj‖E ≤ C and (fj)j converges to f in the distributional sense, then f ∈ E.

(3). Let f ∈ E and τ ≥ 0. Then T τf , defined by T τf (x) = f (x+ τ), belongs to E with ‖T τf‖E ≤ ‖f‖E .

Definition 2.10. A function (or distribution) f ∈ E is indefinitely oscillating relatively in the E-sense, if and only if, for

every integer n ≥ 1, there exists fn ∈ E such that f =
(
dfn
dx

)n
, in the distributional sense.

Definition 2.11. A function ψ ∈ C∞0 (0, 1) is admissible if
∫∞

0
u−qψ (u) du = γq 6= 0 for every integer q ≥ 1 (this is

compatible with the fact that ψ has a null integral).

Theorem 2.12. With the previous notations, the two following properties of the function f ∈ E are equivalent:

(1). f is indefinitely oscillating relatively to E

(2). The quantity W(a,b) =
∫∞

0
f (x) 1

a
ψ
(
x−b
a

)
dx with a, b > 0, satisfies

∥∥W(a,.)

∥∥
E
≤ CNa−N , for every a ≥ 1.

Proof. 1. implies 2. is evident.

Lemma 2.13. Let ω ∈ L1 (0,∞) and f ∈ E. Then
∫∞

0
(T τf)ω (τ) dτ ∈ E.

Using this result, we write

W(a,b) =

∫ ∞
0

f (x)
1

a
ψ

(
x− b
a

)
dx =

∫ ∞
0

(
d

dx

)n
fn (x)

1

a
ψ

(
x− b
a

)
dx

= (−1)n a−n
∫ ∞

0

fn (x)
1

a
ψ(n)

(
x− b
a

)
dx = (−1)n a−n

∫ ∞
0

(
T (x)fn

)
(b)

1

a
ψ(n)

(x
a

)
dx

= (−1)n a−nW(n)(a,b)
.

Owing to Lemma 13, W(n)(a,b)
∈ E with a norm uniformly bounded by a constant. The estimate on W(a,b) follows.

2. implies 1. is more subtle. We use the identity
∫∞

0
aq−1ψ

(
t−x
a

)
da
a

= γq (t− x)q−1
+ . We conclude that we have

(q − 1)!γqfq (x) =
∫∞

0
aq−1W(a,x)da, where fq is the q-th primitive of f . If q ≥ 1

∫ 1

0
aq−1W(a,x)da ∈ E, as

∥∥W(a,.)

∥∥
E
≤

C ‖f‖E (see Lemma 13 ). Now
∫∞

1
aq−1W(a,x)da ∈ E since (2) let to satisfy that the integral is the Bochner integral.
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3. Some Interesting Examples of Indefinitely Oscillating Functions

Some links between functions indefinitely oscillating in the L∞- and Hs-sense can be more interesting. It is evident to see

that if f is indefinitely oscillating in the Hs-sense and if s > 1
2
, then f is indefinitely oscillating in the L∞-sense (because

of the Sobolev embeddings). One has also the following property.

Lemma 3.1. Let f ∈ Hs (R) ∩ L∞ (R) for s < 1
2

be an indefinitely oscillating in the Hs (R)-sense. Then f is a function

indefinitely oscillating in the L∞ (R)-sense.

Proof. By hypothesis, one has ‖∆jf‖2 ≤ CN2jN , for every N and for some j ≤ −1. As ∆̂jf (ξ) is taken in the dyadic

corona α2j ≤ |ξ| ≤ β2j with 0 < α < β, it comes
∥∥∥∆̂jf

∥∥∥
L1

=
∫ β2j

α2j

∣∣∣∆̂jf (ξ)
∣∣∣ dξ. Applying Cauchy-Schwarz’ inequality

we have
∥∥∥∆̂jf

∥∥∥
L1
≤ CN2jN2

j
2 for every N and for some j ≤ −1. But ∆jf (x) =

∫
∆̂jf (ξ) eiξxdξ. Hence we have

‖∆jf‖∞ ≤
∥∥∥∆̂jf

∥∥∥
L1
≤ CN2jN2

j
2 .

Remark 3.2. If f ∈ Hs (R) is indefinitely oscillating in the L∞ (R)-sense, f is not necessarily indefinitely oscillating in the

Hs (R)-sense. We build such function in the following way. Let ϕ̂ be a function with compact support and indefinitely differen-

tiable (it is in the Schwartz class) such that ϕ̂ (ξ) ≥ 0. Write f (x) =
∑+∞

0 2−k
2

ϕ
(

x

2k
2

)
ei2

−kx
. Using Fourier’s transform,

it comes f̂ (ξ) =
∑+∞

0 ϕ̂
(

2k
3 (
ξ − 2−k

))
2k

3−k2 . It clear that one has
∫

2−j≤|ξ|≤22−j

∣∣∣f̂ (ξ)
∣∣∣ dξ = O

(
2−Nj

)
. It can be observed

by the proof of the preceding Lemma that f is indefinitely oscillating in the L∞-sense, but limj→+∞
∫

2−j≤|ξ|≤22−j

∣∣∣f̂ (ξ)
∣∣∣2 dξ =

+∞. Hence f is not indefinitely oscillating in the L2-sense.

Remark 3.3. We know that an indefinitely oscillating function in the Hs-sense can be written under the form f = f0 + f1,

where f0 is the principal component frequency which defines the oscillating characteristic of the function f , and f1 is

a function of Hs which is indefinitely oscillating since the support of f̂1 does not contain 0. Finally f0 is a function

indefinitely oscillating in the L2-sense. An interesting example of indefinitely oscillating function in the L2-sense is the

Grassmann wavelet defined by

f (x) =

 e−(log x)2 if x > 0,

e−(log|x|+iπ)2 if x < 0.

We can easily show that f is in the Schwartz class. Hence f̂ is in the Schwartz class too. Paley-Wiener’s theorem implies

that f̂ (ξ) = 0 for ξ < 0 and f̂(ξ)

ξN
is in the Schwartz class, for every N . One deduces that 0 is a zero of infinity order for f̂ .

Hence f is indefinitely oscillating in the L2-sense. We can observe that the same function is also indefinitely oscillating in

the L∞-sense.
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CEREMADE, 27-11-92. N 9246.

[13] T.El Bouayachi and N.Yebari, Indefinitely oscillating functions-Part I, International Journal of Mathematics And its

Applications, 4(1–D)(2016), 203-207.

109


	Introduction
	Indefinitely Oscillating Functions on the Half Real Axis
	Some Interesting Examples of Indefinitely Oscillating Functions
	References

