

International Journal of Mathematics And its Applications

Difference Cordial Labeling of 2-tuple Graphs of Some Graphs

Research Article

P.L.Vihol^{1*} and P.H.Shah²

1 Department of Mathematics, Government Engineering College, Rajkot, Gujarat, India.

2 Department of Mathematics, L.E Polytechnic College, Morbi, Gujarat, India.

Abstract:	In this paper, we introduce new notion called 2-tuple graph of an undirected simple graph and we investigate the difference cordiality of 2-tuple graphs of Crown Cr_n , Wheel W_n , Ladder graph $P_n \times P_2$, Triangular snake T_n , Quadrilateral snake Q_n , Middle graph of path P_n and cycle C_n etc.
MSC:	05C78.
Keywords:	Triangular snake, Quadrilateral snake,Crown,Ladder,Wheel,Path,Cycle. © JS Publication.

1. Introduction

Through out this paper we consider simple, finite, connected and undirected graphs. G = (V(G), E(G)) with p vertices and q edges. G is also called a (p,q) graph. Graph labeling, where the vertices are assigned values to certain conditions have been motivated by practical problems as labeled graphs play vital role in the study of X-rays, crystallography, to determine optimal circuit layouts. I.Cahit [1] introduced the concept of cordial labeling of graphs. Subsequently K-product labeling has been introduced by R.Ponraj *et al.* [2] Motivated by these works R.Ponraj *et al.* [3] introduced notion of difference cordial labeling. R.Ponraj, S.Sathish Narayanan and R.Kala [4–6] investigated difference cordial behavior of various graphs in the context of graph operations. For a dynamic survey of various graph labeling problems along with extensive bibliography we refer to Gallian [7].

In this paper we introduce the notion of 2-tuple graphs and we investigate difference cordial behavior of 2-tuple graphs of various graphs. For standard terminology and notations we follow Gross and Yellen [8]. We will provide brief summary of definitions and other information which are necessary for the present investigations.

Definition 1.1. A function f is called difference cordial labeling of a graph G if $f: V(G) \to \{1, 2, ..., p\}$ is bijective and the induced function $f^*: E(G) \to \{0, 1\}$ defined as $f^*(e = uv) = 1$; if |f(u) - f(v)| = 1 and $f^*(e = uv) = 0$; otherwise, such that $|e_{f^*}(0) - e_{f^*}(v)| \le 1$. Where $e_{f^*}(0)$ and $e_{f^*}(1)$ denote the number of edges labeled with 0 and 1 respectively. A graph which admits difference cordial labeling is called a difference cordial graph.

^{*} E-mail: viholprakash@yahoo.com

Definition 1.2. Let G = (V, E) be a simple graph and G' = (V', E') be another copy of graph G. Join each vertex v of G to the corresponding vertex v' of G' by an edge. The new graph thus obtained we call 2- tuple graph of G. We denote 2-tuple graph of G by the notation $T^2(G)$. Further we note that if G = (p, q) then $|V(T^2(G))| = 2p$ and $|E(T^2(G))| = 2q + p$.

Definition 1.3. The middle graph M(G) of a graph G is a graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is vertex of G and other is an edge incident on it.

Definition 1.4. The crown graph $Cr_n = C_n \odot K_1$ is obtained by joining a pendant edge to each vertex of cycle C_n .

Definition 1.5. The triangular snake graph T_n is obtained from the path P_n by replacing each edge $v_i v_{i+1}$ by cycle $C_3(v_i v'_i v_{i+1})$ for $1 \le i \le n-1$.

Definition 1.6. The quadrilateral snake graph Q_n is obtained from the path P_n by replacing each edge $v_i v_{i+1}$ by cycle $C_4(v_i v'_i v_{i+1})$ for $1 \le i \le n-1$.

Definition 1.7. The Ladder graph L_n is defined as $P_n \times P_2$.

Proposition 1.8 ([3]). If G is a (p,q) difference cordial graph then $q \leq 2p-1$.

2. Main Results

Theorem 2.1. Let G be a (p,q) graph. If $T^{2}(G)$ is difference cordial then $2q \leq 3p-1$.

Proof. Let G be a (p,q) graph. Take two copies of G, in order to obtain $T^2(G)$. For convenience, we say $G' = T^2(G)$. Clearly, |V(G')| = 2p and |E(G')| = 2q + p. If we consider the graph G' to be difference cordial then, by Proposition 1.8, $2q + p \le 2(2p) - 1 \Rightarrow 2q + p \le 4p - 1$. Hence $2q \le 3p - 1$.

Theorem 2.2. $T^2(M(P_n))$ is difference cordial graph.

Proof. Consider two copies of $M(P_n)$. Let $u_1, e_1, u_2, e_2, \ldots, e_{n-1}, u_n$ be the vertices of the first copy of $M(P_n)$ and $v_1, e'_1, v_2, e'_2, \ldots, e'_{n-1}, v_n$ be the vertices of the second copy of $M(P_n)$. Let G be the graph $T^2(M(P_n))$. Then |V(G)| = 4n - 2 and |E(G)| = 8n - 9. Define $f: V(G) \to \{1, 2, 3, \ldots, 4n - 2\}$ as follows.

$$f(u_i) = 2i - 1; \ 1 \le i \le n$$

$$f(e_i) = 2i; \ 1 \le i \le n - 1$$

$$f(v_i) = 2n - 2 + 2i; \ 1 \le i \le n$$

$$f(e'_i) = 2n - 1 + 2i; \ 1 \le i \le n - 1$$

With this labeling pattern we have,

$$e_{f^*}(0) = 4n - 5$$

 $e_{f^*}(1) = 4n - 4$

In view of the above defined labeling pattern f is difference cordial labeling for $T^2(M(P_n))$. Hence $T^2(M(P_n))$ is difference cordial graph.

Illustration 2.3. Difference cordial labeling of the graph $T^2(M(P_4))$ is shown in Figure 1.

Figure 1. The graph $T^2(M(P_4))$ and its difference cordial labeling.

Theorem 2.4. $T^2(M(C_n))$ is not difference cordial graph.

Proof. Let $G = M(C_n)$. Then we have |V(G)| = 2n and |E(G)| = 3n. Suppose $T^2(G)$ is difference cordial then, by Theorem 2.1, $2q \leq 3p - 1$. This implies $6n \leq 6n - 1$. This is impossible. Hence $T^2(M(C_n))$ is not difference cordial graph.

Theorem 2.5. $T^2(W_n)$ is not difference cordial graph.

Proof. Consider $G = W_n$. Then we have |V(G)| = n + 1 and |E(G)| = 2n. Suppose $T^2(G)$ is difference cordial. Then, by Theorem 2.1, $2q \leq 3p - 1$. This implies, $4n \leq 3(n+1) - 1$. Hence, $4n \leq 3n + 2$. Thus we have, $n \leq 2$. This is impossible. Hence $T^2(W_n)$ is not difference cordial graph.

Theorem 2.6. $T^2(Cr_n)$ is difference cordial graph.

Proof. Consider two copies of crown Cr_n . Let $u_1, u_2, \ldots, u_n, u'_1, u'_2, \ldots, u'_n$ be the vertices of the first copy of Cr_n and $v_1, v_2, \ldots, v_n, v'_1, v'_2, \ldots, v'_n$ be the vertices of the second copy of Cr_n . Let G be the graph $T^2(Cr_n)$. Then |V(G)| = 4n and |E(G)| = 6n. Define $f: V(G) \to \{1, 2, 3, \ldots, 4n\}$ as follows.

$$f(u_i) = i; \ 1 \le i \le n$$

$$f(u'_i) = 2n + 2i; \ 1 \le i \le n$$

$$f(v_i) = 2n + 1 - i; \ 1 \le i \le n$$

$$f(v'_i) = 2n - 1 + 2i; \ 1 \le i \le n$$

With this labeling pattern we have,

$$e_{f^*}(0) = 3n$$

 $e_{f^*}(1) = 3n$

In view of the above defined labeling pattern f is a difference cordial labeling for $T^2(Cr_n)$. Hence $T^2(Cr_n)$ is a difference cordial graph.

Illustration 2.7. Difference cordial labeling of the graph $T^2(Cr_3)$ is shown in Figure 2.

113

Figure 2. The graph $T^2(Cr_3)$ and its difference cordial labeling.

Theorem 2.8. $T^2(P_n \times P_2)$ is difference cordial graph.

Proof. Consider two copies of $P_n \times P_2$. Let $u_1, u'_1, u_2, u'_2, \ldots, u_n, u'_n$ be the vertices of the first copy of $P_n \times P_2$ and $v_1, v'_1, v_2, v'_2, \ldots, v_n, v'_n$ be the vertices of the second copy of $P_n \times P_2$. Let G be the graph $T^2(P_n \times P_2)$. Then |V(G)| = 4n and |E(G)| = 6n - 4. Define $f: V(G) \to \{1, 2, 3, \ldots, 4n\}$ as follows.

$$f(u_i) = i; \ 1 \le i \le n$$

$$f(u'_i) = 3n + i; \ 1 \le i \le n - 2$$

$$f(u'_{n-2+i}) = 4n + 1 - i; \ 1 \le i \le 2$$

$$f(v_i) = 2n + 1 - i; \ 1 \le i \le n$$

$$f(v'_i) = 2n + i; \ 1 \le i \le n$$

With this labeling pattern we have,

$$e_{f^*}(0) = 4n - 2$$

 $e_{f^*}(1) = 4n - 2$

In view of the above defined labeling pattern f is difference cordial labeling for $T^2(P_n \times P_2)$. Hence $T^2(P_n \times P_2)$ is difference cordial graph.

Illustration 2.9. Difference cordial labeling of the graph $T^2(P_4 \times P_2)$ is shown in Figure 3.

Figure 3. The graph $T^2(P_4 \times P_2)$ and its difference cordial labeling.

Theorem 2.10. $T^2(T_n)$ is difference cordial graph.

Proof. Consider two copies of Triangular snake T_n . Let $u_1, u'_1, u_2, \ldots, u'_{n-1}, u_n$ be the vertices of the first copy of T_n and $v_1, v'_1, v_2, \ldots, v'_{n-1}, v_n$ be the vertices of the second copy of T_n . Let G be the graph $T^2(T_n)$. Then |V(G)| = 4n - 2 and |E(G)| = 8n - 7. Define $f: V(G) \to \{1, 2, 3, \ldots, 4n - 2\}$ as follows.

$$f(u_i) = 2i - 1; \ 1 \le i \le n$$

$$f(u'_i) = 2i; \ 1 \le i \le n - 1$$

$$f(v_i) = 4n - 2i; \ 1 \le i \le n$$

$$f(v'_i) = 4n - 1 - 2i; \ 1 \le i \le n - 1$$

With this labeling pattern we have,

$$e_{f^*}(0) = 4n - 4$$

 $e_{f^*}(1) = 4n - 3$

In view of the above defined labeling pattern f is a difference cordial labeling for $T^2(T_n)$. Hence $T^2(T_n)$ is a difference cordial graph.

Illustration 2.11. Difference cordial labeling of the graph $T^2(T_5)$ is shown in Figure 4.

Figure 4. The graph $T^2(T_5)$ and its difference cordial labeling.

Theorem 2.12. $T^2(Q_n)$ is difference cordial graph.

Proof. Consider two copies of Quadrilateral snake Q_n . Let $u_1, u'_1, u''_1, u_2, u'_2, u''_2, \dots, u_{n-1}, u'_{n-1}, u''_{n-1}$, u_n be the vertices of the first copy of T_n and $v_1, v'_1, v''_1, v_2, v'_2, v''_2, \dots, v_{n-1}, v''_{n-1}, v_n$ be the vertices of the second copy of Q_n . Let G be the graph $T^2(Q_n)$. Then |V(G)| = 6n - 4 and |E(G)| = 11n - 10. To define $f: V(G) \to \{1, 2, 3, \dots, 6n - 4\}$ we consider following six cases.

Case (i) $n \equiv 0 \pmod{6}$

$$f(u_i) = 3i - 2 ; \ 1 \le i \le n$$

$$f(u'_i) = 3i - 1 ; \ 1 \le i \le n - 1$$

$$f(u''_i) = 3i ; \qquad 1 \le i \le n - 1$$

$$\begin{array}{lll} f\left(v_{i}\right) = 3n - 4 + 3i; & 1 \leq i \leq \frac{5n}{6} \\ f\left(v_{\frac{5n}{6}-1+2i}\right) = 6n - 2 - 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = \frac{11n}{2} - 4 + 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = 6n - 1 - 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = 6n - 1 - 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = \frac{11n}{2} - 5 + 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = \frac{11n}{2} - 6 + 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = 6n - 3 - 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = 6n - 3 - 3i; & 1 \leq i \leq \left\lceil \frac{n}{12} \right\rceil \\ f\left(v_{\frac{5n}{6}-2+2i}\right) = 6n - 1 - 3i; & 1 \leq i \leq n - 1 \\ f\left(u_{i}'\right) = 3i - 1; & 1 \leq i \leq n - 1 \\ f\left(u_{i}'\right) = 3i; & 1 \leq i \leq n - 1 \\ f\left(v_{\frac{5n-5}{6}-1+2i}\right) = 6n - 1 - 3i; & 1 \leq i \leq \left\lceil \frac{n+5}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}-1+2i}\right) = \frac{11n}{2} - \frac{13}{2} + 3i; & 1 \leq i \leq \left\lceil \frac{n+5}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}-1+2i}\right) = 6n - 3 - 3i; & 1 \leq i \leq \left\lceil \frac{n+5}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}-1+2i}\right) = 6n - 3 - 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}+2i}\right) = 6n - 3 - 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}+2i}\right) = 6n - 2 - 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}+2i}\right) = \frac{11n}{2} - \frac{9}{2} + 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}+2i}\right) = \frac{11n}{2} - \frac{9}{2} + 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}+2i}\right) = \frac{11n}{2} - \frac{9}{2} + 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}+2i}\right) = \frac{11n}{2} - \frac{9}{2} + 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{\frac{5n-5}{6}+2i}\right) = \frac{11n}{2} - \frac{9}{2} + 3i; & 1 \leq i \leq \left\lceil \frac{n-1}{12} \right\rceil \\ f\left(v_{i}\right) = 3i - 1; & 1 \leq i \leq n - 1 \\ f\left(u_{i}\right) = 3i - 1; & 1 \leq i \leq n - 1 \\ f\left(u_{i}\right) = 3i - 1; & 1 \leq i \leq n - 1 \\ f\left(v_{i}\right) = 3i - 1; & 1 \leq i \leq n - 1 \\ f\left(v_{i}\right) = 3i - 1; & 1 \leq i \leq n - 1 \\ f\left(v_{i}\right) = 3n - 4 + 3i; & 1 \leq i \leq \left\lceil \frac{n+4}{12} \right\rceil \\ f\left(v_{\frac{5n-4}{6}+2i}\right) = \frac{11n}{2} - 5 + 3i; & 1 \leq i \leq \left\lceil \frac{n+4}{12} \right\rceil \\ f\left(v_{\frac{5n-4}{6}+2i}\right) = \frac{11n}{2} - 5 + 3i; & 1 \leq i \leq \left\lceil \frac{n+4}{12} \right\rceil$$

$$f(v_i') = 3n - 3 + 3i; \qquad 1 \le i \le \frac{5n - 4}{6}$$
$$f\left(v'_{\frac{5n - 4}{6} - 1 + 2i}\right) = \frac{11n}{2} - 6 + 3i; \ 1 \le i \le \left\lceil\frac{n - 2}{12}\right\rceil$$
$$f\left(v'_{\frac{5n - 4}{6} + 2i}\right) = 6n - 3 - 3i; \qquad 1 \le i \le \left\lfloor\frac{n - 2}{12}\right\rfloor$$

Case (ii) $n \equiv 1 \pmod{6}$

Case (iii) $n \equiv 2 \pmod{6}$

$$f(v_i'') = 3n - 2 + 3i; \qquad 1 \le i \le \frac{5n - 4}{6}$$
$$f\left(v_{\frac{5n - 4}{6} - 1 + 2i}'\right) = 6n - 2 - 3i; \ 1 \le i \le \left\lceil\frac{n - 2}{12}\right\rceil$$
$$f\left(v_{\frac{5n - 4}{6} + 2i}'\right) = \frac{11n}{2} - 4 + 3i; \quad 1 \le i \le \left\lfloor\frac{n - 2}{12}\right\rfloor$$

Case (iv) $n \equiv 3 \pmod{6}$

$$f(u_i) = 3i - 2; 1 \le i \le n$$

$$f(u'_i) = 3i - 1; 1 \le i \le n - 1$$

$$f(u''_i) = 3i; 1 \le i \le n - 1$$

$$\begin{aligned} &f\left(v_{i}\right) = 3n - 4 + 3i; & 1 \le i \le \frac{5n - 3}{6} \\ &f\left(v_{\frac{5n - 3}{6} - 1 + 2i}\right) = \frac{11n}{2} - \frac{13}{2} + 3i \ ; \ 1 \le i \le \left\lceil \frac{n + 3}{12} \right\rceil \\ &f\left(v_{\frac{5n - 3}{6} + 2i}\right) = 6n - 3 - 3i \ ; & 1 \le i \le \left\lfloor \frac{n + 3}{12} \right\rfloor \end{aligned}$$

$$\begin{split} f\left(v_{i}'\right) &= 3n - 3 + 3i; & 1 \le i \le \frac{5n - 3}{6} \\ f\left(v_{\frac{5n - 3}{6} - 1 + 2i}\right) &= 6n - 2 - 3i; & 1 \le i \le \left\lceil\frac{n - 3}{12}\right\rceil \\ f\left(v_{\frac{5n - 3}{6} + 2i}\right) &= \frac{11n}{2} - \frac{9}{2} + 3i; & 1 \le i \le \left\lfloor\frac{n - 3}{12}\right\rfloor \end{split}$$

$$\begin{split} f\left(v_{i}''\right) &= 3n - 2 + 3\mathbf{i}; & 1 \le i \le \frac{5n - 9}{6} \\ f\left(v_{\frac{5n - 9}{6} - 1 + 2i}'\right) &= 6n - 1 - 3i \;; & 1 \le i \le \left\lceil\frac{n + 3}{12}\right\rceil \\ f\left(v_{\frac{5n - 9}{6} + 2i}'\right) &= \frac{11n}{2} - \frac{11}{2} + 3i \;; & 1 \le i \le \left\lfloor\frac{n + 3}{12}\right\rfloor \end{split}$$

Case (v) $n \equiv 4 \pmod{6}$

$$f(u_i) = 3i - 2; 1 \le i \le n$$

$$f(u'_i) = 3i - 1; 1 \le i \le n - 1$$

$$f(u''_i) = 3i; 1 \le i \le n - 1$$

$$f(v_i) = 3n - 4 + 3i; \qquad 1 \le i \le \frac{5n - 2}{6}$$

$$f\left(v_{\frac{5n - 2}{6} - 1 + 2i}\right) = \frac{11n}{2} - 6 + 3i; \quad 1 \le i \le \left\lfloor\frac{n + 2}{12}\right\rfloor$$

$$f\left(v_{\frac{5n - 2}{6} + 2i}\right) = 6n - 3 - 3i; \qquad 1 \le i \le \left\lfloor\frac{n + 2}{12}\right\rfloor$$

$$f(v_i') = 3n - 3 + 3i; \qquad 1 \le i \le \frac{5n-2}{6}$$
$$f\left(v'_{\frac{5n-2}{6}-1+2i}\right) = 6n - 2 - 3i; \quad 1 \le i \le \left\lceil\frac{n-4}{12}\right\rceil$$
$$f\left(v'_{\frac{5n-2}{6}+2i}\right) = \frac{11n}{2} - 4 + 3i; \quad 1 \le i \le \left\lfloor\frac{n-4}{12}\right\rfloor$$

$$\begin{split} f\left(v_{i}''\right) &= 3n - 2 + 3i; & 1 \leq i \leq \frac{5n - 8}{6} \\ f\left(v_{\frac{5n - 8}{6} - 1 + 2i}'\right) &= 6n - 1 - 3i; & 1 \leq i \leq \left\lceil \frac{n + 2}{12} \right\rceil \\ f\left(v_{\frac{5n - 8}{6} + 2i}''\right) &= \frac{11n}{2} - 5 + 3i; & 1 \leq i \leq \left\lfloor \frac{n + 2}{12} \right\rfloor \end{split}$$

Case (vi) $n \equiv 5 \pmod{6}$

$$f(u_i) = 3i - 2 ; \ 1 \le i \le n$$

$$f(u'_i) = 3i - 1 ; \ 1 \le i \le n - 1$$

$$f(u''_i) = 3i ; \qquad 1 \le i \le n - 1$$

$$\begin{aligned} f\left(v_{i}\right) &= 3n - 4 + 3i; & 1 \leq i \leq \frac{5n - 1}{6} \\ f\left(v_{\frac{5n - 1}{6} - 1 + 2i}\right) &= 6n - 2 - 3i ; & 1 \leq i \leq \left\lceil \frac{n + 1}{12} \right\rceil \\ f\left(v_{\frac{5n - 1}{6} + 2i}\right) &= \frac{11n}{2} - \frac{9}{2} + 3i ; & 1 \leq i \leq \left\lfloor \frac{n + 1}{12} \right\rfloor \\ f\left(v_{i}'\right) &= 3n - 3 + 3i; & 1 \leq i \leq \left\lfloor \frac{n + 1}{12} \right\rceil \\ f\left(v_{\frac{5n - 7}{6} - 1 + 2i}\right) &= 6n - 1 - 3i ; & 1 \leq i \leq \left\lceil \frac{n + 1}{12} \right\rceil \\ f\left(v_{\frac{5n - 7}{6} - 1 + 2i}\right) &= \frac{11n}{2} - \frac{11}{2} + 3i ; & 1 \leq i \leq \left\lfloor \frac{n + 1}{12} \right\rfloor \\ f\left(v_{\frac{5n - 7}{6} - 1 + 2i}\right) &= \frac{11n}{2} - \frac{13}{2} + 3i ; & 1 \leq i \leq \left\lceil \frac{n + 1}{12} \right\rceil \\ f\left(v_{\frac{5n - 7}{6} - 1 + 2i}\right) &= \frac{11n}{2} - \frac{13}{2} + 3i ; & 1 \leq i \leq \left\lceil \frac{n + 1}{12} \right\rceil \\ f\left(v_{\frac{5n - 7}{6} - 1 + 2i}\right) &= 6n - 3 - 3i ; & 1 \leq i \leq \left\lfloor \frac{n + 1}{12} \right\rfloor \end{aligned}$$

With this labeling pattern we have, In view of the above defined labeling pattern f admits difference cordial labeling for

Nature of n	$e_{f^{*}}\left(0 ight)$	$e_{f^{*}}(1)$
$n \equiv 0 (\bmod 2)$	$\frac{11n-10}{2}$	$\frac{11n-10}{2}$
$n \equiv 1 (\bmod 2)$	$\frac{11n-9}{2}$	$\frac{11n-11}{2}$

 $T^{2}(Q_{n})$. Hence $T^{2}(Q_{n})$ is a difference cordial graph.

Illustration 2.13. Difference cordial labeling of graph $T^2(Q_4)$ is shown in Figure 5.

Figure 5. The graph $T^{2}(Q_{4})$ and its difference cordial labeling.

3. Concluding Remarks

In this paper, we have defined 2-tuple graphs of simple graphs. We discussed behavior of 2-tuple graphs of some graphs in the context of difference cordial labeling.

References

- [1] I.Cahit, Cordial graphs : a weaker version of graceful and harmonious graphs, Ars combinatoria., 23(1987), 201-207.
- [2] R.Ponraj, M.Sivakumar and M.Sundaram, k-product cordial labeling of Graphs, Int. J. Contemp. Math. Sciences, 7(15)(2012), 733-742.
- [3] R.Ponraj, S.Sathish Narayanan and R.Kala, *Difference Cordial Labeling of Graphs*, Global Journal of Mathematical Sciences, 5(3) (2013), 185-196.

- [4] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference Cordial Labeling of Graphs obtained from Double Snakes, International Journal of Mathematics Research, 5(3)(2013), 317-322.
- [5] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference Cordial Labeling of Subdivision of Snake Graphs, Universal Journal of Applied Mathematics, 2(1)(2014), 40-45.
- [6] R.Ponraj, S.Sathish Narayanan and R.Kala, A note on Difference Cordial Graphs, Palestine Journal of Mathematics, 4(1)(2015), 189-197.
- [7] J.A.Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015), #DS6.
- [8] J.Gross and J.Yellen, Graph Theory and its applications, CRC Press, (1999).