International Journal of Mathematics And its Applications

Difference Cordial Labeling of 2-tuple Graphs of Some Graphs

Research Article

P.L.Vihol ${ }^{1 *}$ and P.H.Shah ${ }^{2}$
1 Department of Mathematics, Government Engineering College, Rajkot, Gujarat, India.
2 Department of Mathematics, L.E Polytechnic College, Morbi, Gujarat, India.

Abstract

In this paper, we introduce new notion called 2-tuple graph of an undirected simple graph and we investigate the difference cordiality of 2-tuple graphs of Crown $C r_{n}$, Wheel W_{n}, Ladder graph $P_{n} \times P_{2}$, Triangular snake T_{n}, Quadrilateral snake Q_{n}, Middle graph of path P_{n} and cycle C_{n} etc.

\section*{MSC: 05C78.}

Keywords: Triangular snake, Quadrilateral snake,Crown,Ladder,Wheel,Path,Cycle. (c) JS Publication.

1. Introduction

Through out this paper we consider simple, finite, connected and undirected graphs. $G=(V(G), E(G))$ with p vertices and q edges. G is also called a (p, q) graph. Graph labeling, where the vertices are assigned values to certain conditions have been motivated by practical problems as labeled graphs play vital role in the study of X-rays, crystallography, to determine optimal circuit layouts. I.Cahit [1] introduced the concept of cordial labeling of graphs. Subsequently K-product labeling has been introduced by R.Ponraj et al. [2] Motivated by these works R.Ponraj et al. [3] introduced notion of difference cordial labeling. R.Ponraj, S.Sathish Narayanan and R.Kala [4-6] investigated difference cordial behavior of various graphs in the context of graph operations. For a dynamic survey of various graph labeling problems along with extensive bibliography we refer to Gallian [7].

In this paper we introduce the notion of 2-tuple graphs and we investigate difference cordial behavior of 2-tuple graphs of various graphs. For standard terminology and notations we follow Gross and Yellen [8]. We will provide brief summary of definitions and other information which are necessary for the present investigations.

Definition 1.1. A function f is called difference cordial labeling of a graph G if $f: V(G) \rightarrow\{1,2, \ldots, p\}$ is bijective and the induced function $f^{*}: E(G) \rightarrow\{0,1\}$ defined as $f^{*}(e=u v)=1 ;$ if $|f(u)-f(v)|=1$ and $f^{*}(e=u v)=0$; otherwise,such that $\left|e_{f^{*}}(0)-e_{f^{*}}(v)\right| \leq 1$.Where $e_{f^{*}}(0)$ and $e_{f^{*}}(1)$ denote the number of edges labeled with 0 and 1 respectively. A graph which admits difference cordial labeling is called a difference cordial graph.

[^0]Definition 1.2. Let $G=(V, E)$ be a simple graph and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be another copy of graph G. Join each vertex v of G to the corresponding vertex v^{\prime} of G^{\prime} by an edge. The new graph thus obtained we call 2- tuple graph of G. We denote 2-tuple graph of G by the notation $T^{2}(G)$. Further we note that if $G=(p, q)$ then $\left|V\left(T^{2}(G)\right)\right|=2 p$ and $\left|E\left(T^{2}(G)\right)\right|=2 q+p$.

Definition 1.3. The middle graph $M(G)$ of a graph G is a graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is vertex of G and other is an edge incident on it.

Definition 1.4. The crown graph $C r_{n}=C_{n} \odot K_{1}$ is obtained by joining a pendant edge to each vertex of cycle C_{n}.

Definition 1.5. The triangular snake graph T_{n} is obtained from the path P_{n} by replacing each edge $v_{i} v_{i+1}$ by cycle $C_{3}\left(v_{i} v_{i}^{\prime} v_{i+1}\right)$ for $1 \leq i \leq n-1$.

Definition 1.6. The quadrilateral snake graph Q_{n} is obtained from the path P_{n} by replacing each edge $v_{i} v_{i+1}$ by cycle $C_{4}\left(v_{i} v_{i}^{\prime} v^{\prime \prime}{ }_{i} v_{i+1}\right)$ for $1 \leq i \leq n-1$.

Definition 1.7. The Ladder graph L_{n} is defined as $P_{n} \times P_{2}$.

Proposition 1.8 ([3]). If G is a (p, q) difference cordial graph then $q \leq 2 p-1$.

2. Main Results

Theorem 2.1. Let G be $a(p, q)$ graph. If $T^{2}(G)$ is difference cordial then $2 q \leq 3 p-1$.

Proof. Let G be a (p, q) graph. Take two copies of G, in order to obtain $T^{2}(G)$. For convenience, we say $G^{\prime}=T^{2}(G)$. Clearly, $\left|V\left(G^{\prime}\right)\right|=2 p$ and $\left|E\left(G^{\prime}\right)\right|=2 q+p$. If we consider the graph G^{\prime} to be difference cordial then, by Proposition 1.8, $2 q+p \leq 2(2 p)-1 \Rightarrow 2 q+p \leq 4 p-1$. Hence $2 q \leq 3 p-1$.

Theorem 2.2. $T^{2}\left(M\left(P_{n}\right)\right)$ is difference cordial graph.

Proof. Consider two copies of $M\left(P_{n}\right)$. Let $u_{1}, e_{1}, u_{2}, e_{2}, \ldots, e_{n-1}, u_{n}$ be the vertices of the first copy of $M\left(P_{n}\right)$ and v_{1}, e_{1}^{\prime}, $v_{2}, e_{2}^{\prime}, \ldots, e_{n-1}^{\prime}, v_{n}$ be the vertices of the second copy of $M\left(P_{n}\right)$. Let G be the graph $T^{2}\left(M\left(P_{n}\right)\right)$. Then $|V(G)|=4 n-2$ and $|E(G)|=8 n-9$. Define $f: V(G) \rightarrow\{1,2,3, \ldots, 4 n-2\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i-1 ; \quad 1 \leq i \leq n \\
& f\left(e_{i}\right)=2 i ; \quad 1 \leq i \leq n-1 \\
& f\left(v_{i}\right)=2 n-2+2 i ; \quad 1 \leq i \leq n \\
& f\left(e_{i}^{\prime}\right)=2 n-1+2 i ; \quad 1 \leq i \leq n-1
\end{aligned}
$$

With this labeling pattern we have,

$$
\begin{aligned}
& e_{f^{*}}(0)=4 n-5 \\
& e_{f^{*}}(1)=4 n-4
\end{aligned}
$$

In view of the above defined labeling pattern f is difference cordial labeling for $T^{2}\left(M\left(P_{n}\right)\right)$. Hence $T^{2}\left(M\left(P_{n}\right)\right)$ is difference cordial graph.

Illustration 2.3. Difference cordial labeling of the graph $T^{2}\left(M\left(P_{4}\right)\right)$ is shown in Figure 1.

Figure 1. The graph $T^{2}\left(M\left(P_{4}\right)\right)$ and its difference cordial labeling.

Theorem 2.4. $T^{2}\left(M\left(C_{n}\right)\right)$ is not difference cordial graph.

Proof. Let $G=M\left(C_{n}\right)$. Then we have $|V(G)|=2 n$ and $|E(G)|=3 n$. Suppose $T^{2}(G)$ is difference cordial then, by Theorem 2.1, $2 q \leq 3 p-1$. This implies $6 n \leq 6 n-1$. This is impossible. Hence $T^{2}\left(M\left(C_{n}\right)\right)$ is not difference cordial graph.

Theorem 2.5. $T^{2}\left(W_{n}\right)$ is not difference cordial graph.

Proof. Consider $G=W_{n}$. Then we have $|V(G)|=n+1$ and $|E(G)|=2 n$. Suppose $T^{2}(G)$ is difference cordial. Then, by Theorem 2.1, $2 q \leq 3 p-1$. This implies, $4 n \leq 3(n+1)-1$. Hence, $4 n \leq 3 n+2$. Thus we have, $n \leq 2$. This is impossible. Hence $T^{2}\left(W_{n}\right)$ is not difference cordial graph.

Theorem 2.6. $T^{2}\left(C r_{n}\right)$ is difference cordial graph.

Proof. Consider two copies of crown $C r_{n}$. Let $u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ be the vertices of the first copy of $C r_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be the vertices of the second copy of $C r_{n}$. Let G be the graph $T^{2}\left(C r_{n}\right)$. Then $|V(G)|=4 n$ and $|E(G)|=6 n$. Define $f: V(G) \rightarrow\{1,2,3, \ldots, 4 n\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)=i ; \quad 1 \leq i \leq n \\
& f\left(u_{i}^{\prime}\right)=2 n+2 i ; \quad 1 \leq i \leq n \\
& f\left(v_{i}\right)=2 n+1-i ; \quad 1 \leq i \leq n \\
& f\left(v_{i}^{\prime}\right)=2 n-1+2 i ; \quad 1 \leq i \leq n
\end{aligned}
$$

With this labeling pattern we have,

$$
\begin{aligned}
& e_{f^{*}}(0)=3 n \\
& e_{f^{*}}(1)=3 n
\end{aligned}
$$

In view of the above defined labeling pattern f is a difference cordial labeling for $T^{2}\left(C r_{n}\right)$. Hence $T^{2}\left(C r_{n}\right)$ is a difference cordial graph.

Illustration 2.7. Difference cordial labeling of the graph $T^{2}\left(C r_{3}\right)$ is shown in Figure 2.

Figure 2. The graph $T^{2}\left(C r_{3}\right)$ and its difference cordial labeling.

Theorem 2.8. $T^{2}\left(P_{n} \times P_{2}\right)$ is difference cordial graph.
Proof. Consider two copies of $P_{n} \times P_{2}$. Let $u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, \ldots, u_{n}, u_{n}^{\prime}$ be the vertices of the first copy of $P_{n} \times P_{2}$ and v_{1}, v_{1}^{\prime}, $v_{2}, v_{2}^{\prime}, \ldots, v_{n}, v_{n}^{\prime}$ be the vertices of the second copy of $P_{n} \times P_{2}$. Let G be the graph $T^{2}\left(P_{n} \times P_{2}\right)$. Then $|V(G)|=4 n$ and $|E(G)|=6 n-4$. Define $f: V(G) \rightarrow\{1,2,3, \ldots, 4 n\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =i ; \quad 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right) & =3 n+i ; \quad 1 \leq i \leq n-2 \\
f\left(u_{n-2+i}^{\prime}\right) & =4 n+1-i ; \quad 1 \leq i \leq 2 \\
f\left(v_{i}\right) & =2 n+1-i ; \quad 1 \leq i \leq n \\
f\left(v_{i}^{\prime}\right) & =2 n+i ; \quad 1 \leq i \leq n
\end{aligned}
$$

With this labeling pattern we have,

$$
\begin{aligned}
& e_{f^{*}}(0)=4 n-2 \\
& e_{f^{*}}(1)=4 n-2
\end{aligned}
$$

In view of the above defined labeling pattern f is difference cordial labeling for $T^{2}\left(P_{n} \times P_{2}\right)$. Hence $T^{2}\left(P_{n} \times P_{2}\right)$ is difference cordial graph.

Illustration 2.9. Difference cordial labeling of the graph $T^{2}\left(P_{4} \times P_{2}\right)$ is shown in Figure 3.

Figure 3. The graph $T^{2}\left(P_{4} \times P_{2}\right)$ and its difference cordial labeling.

Theorem 2.10. $T^{2}\left(T_{n}\right)$ is difference cordial graph.

Proof. Consider two copies of Triangular snake T_{n}. Let $u_{1}, u_{1}^{\prime}, u_{2}, \ldots, u_{n-1}^{\prime}, u_{n}$ be the vertices of the first copy of T_{n} and $v_{1}, v_{1}^{\prime}, v_{2}, \ldots, v_{n-1}^{\prime}, v_{n}$ be the vertices of the second copy of T_{n}. Let G be the graph $T^{2}\left(T_{n}\right)$. Then $|V(G)|=4 n-2$ and $|E(G)|=8 n-7$. Define $f: V(G) \rightarrow\{1,2,3, \ldots, 4 n-2\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i-1 ; \quad 1 \leq i \leq n \\
& f\left(u_{i}^{\prime}\right)=2 i ; \quad 1 \leq i \leq n-1 \\
& f\left(v_{i}\right)=4 n-2 i ; \quad 1 \leq i \leq n \\
& f\left(v_{i}^{\prime}\right)=4 n-1-2 i ; \quad 1 \leq i \leq n-1
\end{aligned}
$$

With this labeling pattern we have,

$$
\begin{aligned}
& e_{f^{*}}(0)=4 n-4 \\
& e_{f^{*}}(1)=4 n-3
\end{aligned}
$$

In view of the above defined labeling pattern f is a difference cordial labeling for $T^{2}\left(T_{n}\right)$. Hence $T^{2}\left(T_{n}\right)$ is a difference cordial graph.

Illustration 2.11. Difference cordial labeling of the graph $T^{2}\left(T_{5}\right)$ is shown in Figure 4.

Figure 4. The graph $T^{2}\left(T_{5}\right)$ and its difference cordial labeling.

Theorem 2.12. $T^{2}\left(Q_{n}\right)$ is difference cordial graph.
Proof. Consider two copies of Quadrilateral snake Q_{n}. Let $u_{1}, u_{1}^{\prime}, u_{1}^{\prime \prime}, u_{2}, u_{2}^{\prime}, u_{2}^{\prime \prime}, \ldots, u_{n-1}, u_{n-1}^{\prime}, u_{n-1}^{\prime \prime}, u_{n}$ be the vertices of the first copy of T_{n} and $v_{1}, v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{2}, v_{2}^{\prime}, v_{2}^{\prime \prime}, \ldots, v_{n-1}, v_{n-1}^{\prime}, v_{n-1}^{\prime \prime}, v_{n}$ be the vertices of the second copy of Q_{n}. Let G be the graph $T^{2}\left(Q_{n}\right)$. Then $|V(G)|=6 n-4$ and $|E(G)|=11 n-10$. To define $f: V(G) \rightarrow\{1,2,3, \ldots, 6 n-4\}$ we consider following six cases.

Case (i) $n \equiv 0(\bmod 6)$

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-2 ; & 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right)=3 i-1 ; & 1 \leq i \leq n-1 \\
f\left(u_{i}^{\prime \prime}\right)=3 i ; & 1 \leq i \leq n-1
\end{array}
$$

$$
\begin{array}{ll}
f\left(v_{i}\right)=3 \mathrm{n}-4+3 \mathrm{i} ; & 1 \leq i \leq \frac{5 n}{6} \\
f\left(v_{\frac{5 n}{6}-1+2 i}\right)=6 n-2-3 i ; & 1 \leq i \leq\left\lceil\frac{n}{12}\right\rceil \\
f\left(v_{\frac{5 n}{6}+2 i}\right)=\frac{11 n}{2}-4+3 i ; & 1 \leq i \leq\left\lfloor\frac{n}{12}\right\rfloor \\
f\left(v_{i}^{\prime}\right)=3 \mathrm{n}-3+3 \mathrm{i} ; & 1 \leq i \leq \frac{5 n}{6}-1 \\
f\left(v_{\frac{5 n}{6}-2+2 i}^{\prime}\right)=6 n-1-3 i ; & 1 \leq i \leq\left\lceil\frac{n}{12}\right\rceil \\
f\left(v_{\frac{5 n}{6}-1+2 i}^{\prime}\right)=\frac{11 n}{2}-5+3 i ; 1 \leq i \leq\left\lfloor\frac{n}{12}\right\rfloor \\
& 1 \leq i \leq \frac{5 n}{6}-1 \\
f\left(v_{i}^{\prime \prime}\right)=3 \mathrm{n}-2+3 \mathrm{i} ; & 1 \leq\left\lceil\frac{n}{12}\right\rceil \\
f\left(v_{\frac{5 n}{6}-2+2 i}^{\prime \prime}\right)=\frac{11 n}{2}-6+3 i ; 1 \leq i \leq\left\lfloor\frac{n}{12}\right\rfloor \\
f\left(v_{\frac{5 n}{\prime}-1+2 i}^{\prime \prime}\right)=6 n-3-3 i ; & 1 \leq i \leq
\end{array}
$$

Case (ii) $n \equiv 1(\bmod 6)$

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-2 ; & 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right)=3 i-1 ; & 1 \leq i \leq n-1 \\
f\left(u_{i}^{\prime \prime}\right)=3 i ; & 1 \leq i \leq n-1
\end{array}
$$

$$
\left.\begin{array}{ll}
f\left(v_{i}\right)=3 \mathrm{n}-4+3 \mathrm{i} ; & 1 \leq i \leq \frac{5 n-5}{6} \\
f\left(v_{\frac{5 n-5}{}-1+2 i}^{6}\right)=6 n-1-3 i ; & 1 \leq i \leq\left\lceil\frac{n+5}{12}\right\rceil \\
f\left(v_{\frac{5 n-5}{}}^{6}+2 i\right.
\end{array}\right)=\frac{11 n}{2}-\frac{11}{2}+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n+5}{12}\right\rfloor .
$$

$$
f\left(v_{i}^{\prime}\right)=3 \mathrm{n}-3+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-5}{6}
$$

$$
f\left(v_{\frac{5 n-5}{\prime}-1+2 i}^{\prime}\right)=\frac{11 n}{2}-\frac{13}{2}+3 i ; 1 \leq i \leq\left\lceil\frac{n-1}{12}\right\rceil
$$

$$
f\left(v_{\frac{5 n-5}{6}+2 i}^{\prime}\right)=6 n-3-3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n-1}{12}\right\rfloor
$$

$$
f\left(v_{i}^{\prime \prime}\right)=3 \mathrm{n}-2+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-5}{6}
$$

$$
f\left(v_{\frac{5 n-5}{6}-1+2 i}^{\prime \prime}\right)=6 n-2-3 i ; \quad 1 \leq i \leq\left\lceil\frac{n-1}{12}\right\rceil
$$

$$
f\left(v_{\frac{5 n-5}{\prime \prime}+2 i}^{\prime \prime}\right)=\frac{11 n}{2}-\frac{9}{2}+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n-1}{12}\right\rfloor
$$

Case (iii) $n \equiv 2(\bmod 6)$

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-2 ; & 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right)=3 i-1 ; & 1 \leq i \leq n-1 \\
f\left(u_{i}^{\prime \prime}\right)=3 i ; & 1 \leq i \leq n-1 \\
f\left(v_{i}\right)=3 \mathrm{n}-4+3 \mathrm{i} ; & 1 \leq i \leq \frac{5 n-4}{6} \\
f\left(v_{\frac{5 n-4}{6}-1+2 i}\right)=6 n-1-3 i ; & 1 \leq i \leq\left\lceil\frac{n+4}{12}\right\rceil \\
f\left(v_{\frac{5 n-4}{6}+2 i}\right)=\frac{11 n}{2}-5+3 i ; & 1 \leq i \leq\left\lfloor\frac{n+4}{12}\right\rfloor \\
& \\
f\left(v_{i}^{\prime}\right)=3 \mathrm{n}-3+3 \mathrm{i} ; & 1 \leq i \leq \frac{5 n-4}{6} \\
f\left(v_{\frac{5 n-4}{\prime}-1+2 i}^{\prime}\right)=\frac{11 n}{2}-6+3 i ; 1 \leq i \leq\left\lceil\frac{n-2}{12}\right\rceil \\
f\left(v_{\frac{5 n-4}{6}+2 i}^{\prime}\right)=6 n-3-3 i ; & 1 \leq i \leq\left\lfloor\frac{n-2}{12}\right\rfloor
\end{array}
$$

$$
\left.\begin{array}{ll}
f\left(v_{i}^{\prime \prime}\right)=3 \mathrm{n}-2+3 \mathrm{i} ; & 1 \leq i \leq \frac{5 n-4}{6} \\
f\left(v_{\frac{5 n-4}{\prime \prime}-1+2 i}^{6}\right)=6 n-2-3 i ; & 1 \leq i \leq\left\lceil\frac{n-2}{12}\right\rceil \\
f\left(v_{\frac{5 n-4}{\prime}}^{6}+2 i\right.
\end{array}\right)=\frac{11 n}{2}-4+3 i ; ~ 1 \leq i \leq\left\lfloor\frac{n-2}{12}\right\rfloor .
$$

Case (iv) $n \equiv 3(\bmod 6)$

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-2 ; & 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right)=3 i-1 ; & 1 \leq i \leq n-1 \\
f\left(u_{i}^{\prime \prime}\right)=3 i ; & 1 \leq i \leq n-1
\end{array}
$$

$$
\begin{array}{ll}
f\left(v_{i}\right)=3 \mathrm{n}-4+3 \mathrm{i} ; & 1 \leq i \leq \frac{5 n-3}{6} \\
f\left(v_{\frac{5 n-3}{6}-1+2 i}\right)=\frac{11 n}{2}-\frac{13}{2}+3 i ; & 1 \leq i \leq\left\lceil\frac{n+3}{12}\right\rceil \\
f\left(v_{\frac{5 n-3}{6}+2 i}\right)=6 n-3-3 i ; & 1 \leq i \leq\left\lfloor\frac{n+3}{12}\right\rfloor
\end{array}
$$

$$
f\left(v_{i}^{\prime}\right)=3 \mathrm{n}-3+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-3}{6}
$$

$$
f\left(v_{\frac{5 n-3}{\prime}-1+2 i}^{\prime}\right)=6 n-2-3 i ; \quad 1 \leq i \leq\left\lceil\frac{n-3}{12}\right\rceil
$$

$$
f\left(v_{\frac{5 n-3}{\prime}+2 i}^{\prime}\right)=\frac{11 n}{2}-\frac{9}{2}+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n-3}{12}\right\rfloor
$$

$$
f\left(v_{i}^{\prime \prime}\right)=3 \mathrm{n}-2+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-9}{6}
$$

$$
f\left(v_{\frac{5 n-9}{6}-1+2 i}^{\prime \prime}\right)=6 n-1-3 i ; \quad 1 \leq i \leq\left\lceil\frac{n+3}{12}\right\rceil
$$

$$
f\left(v_{\frac{5 n-9}{6}+2 i}^{\prime \prime}\right)=\frac{11 n}{2}-\frac{11}{2}+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n+3}{12}\right\rfloor
$$

Case (v) $n \equiv 4(\bmod 6)$

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-2 ; & 1 \leq i \leq n \\
f\left(u_{i}^{\prime}\right)=3 i-1 ; & 1 \leq i \leq n-1 \\
f\left(u_{i}^{\prime \prime}\right)=3 i ; & 1 \leq i \leq n-1
\end{array}
$$

$$
f\left(v_{i}\right)=3 \mathrm{n}-4+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-2}{6}
$$

$$
f\left(v_{\frac{5 n-2}{6}-1+2 i}\right)=\frac{11 n}{2}-6+3 i ; 1 \leq i \leq\left\lceil\frac{n+2}{12}\right\rceil
$$

$$
f\left(v_{\frac{5 n-2}{6}+2 i}\right)=6 n-3-3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n+2}{12}\right\rfloor
$$

$$
f\left(v_{i}^{\prime}\right)=3 \mathrm{n}-3+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-2}{6}
$$

$$
f\left(v_{\frac{5 n-2}{6}-1+2 i}^{\prime}\right)=6 n-2-3 i ; \quad 1 \leq i \leq\left\lceil\frac{n-4}{12}\right\rceil
$$

$$
f\left(v_{\frac{5 n-2}{6}+2 i}^{\prime}\right)=\frac{11 n}{2}-4+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n-4}{12}\right\rfloor
$$

$$
f\left(v_{i}^{\prime \prime}\right)=3 \mathrm{n}-2+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-8}{6}
$$

$$
f\left(v_{\frac{5 n-8}{\prime \prime}-1+2 i}^{\prime \prime}\right)=6 n-1-3 i ; \quad 1 \leq i \leq\left\lceil\frac{n+2}{12}\right\rceil
$$

$$
f\left(v_{\frac{5 n-8}{\prime \prime}+2 i}^{\prime \prime}\right)=\frac{11 n}{2}-5+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n+2}{12}\right\rfloor
$$

Case (vi) $n \equiv 5(\bmod 6)$

$$
\begin{aligned}
& f\left(u_{i}\right)=3 i-2 ; 1 \leq i \leq n \\
& f\left(u_{i}^{\prime}\right)=3 i-1 ; 1 \leq i \leq n-1 \\
& f\left(u_{i}^{\prime \prime}\right)=3 i ; \quad 1 \leq i \leq n-1
\end{aligned}
$$

$$
\begin{aligned}
& f\left(v_{i}\right)=3 \mathrm{n}-4+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-1}{6} \\
& f\left(v_{\frac{5 n-1}{6}-1+2 i}\right)=6 n-2-3 i ; \quad 1 \leq i \leq\left\lceil\frac{n+1}{12}\right\rceil \\
& f\left(v_{\frac{5 n-1}{6}+2 i}\right)=\frac{11 n}{2}-\frac{9}{2}+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n+1}{12}\right\rfloor \\
& f\left(v_{i}{ }^{\prime}\right)=3 \mathrm{n}-3+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-7}{6} \\
& f\left(v_{\frac{5 n-7}{6}-1+2 i}^{\prime}\right)=6 n-1-3 i ; \quad 1 \leq i \leq\left\lceil\frac{n+1}{12}\right\rceil \\
& f\left(v_{\frac{5 n-7}{6}+2 i}^{\prime}\right)=\frac{11 n}{2}-\frac{11}{2}+3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n+1}{12}\right\rfloor \\
& f\left(v_{i}^{\prime \prime}\right)=3 \mathrm{n}-2+3 \mathrm{i} ; \quad 1 \leq i \leq \frac{5 n-7}{6} \\
& f\left(v_{\frac{5 n-7}{6}-1+2 i}^{\prime \prime}\right)=\frac{11 n}{2}-\frac{13}{2}+3 i ; 1 \leq i \leq\left\lceil\frac{n+1}{12}\right\rceil \\
& f\left(v_{\frac{5 n-7}{\prime \prime}+2 i}^{\prime \prime}\right)=6 n-3-3 i ; \quad 1 \leq i \leq\left\lfloor\frac{n+1}{12}\right\rfloor
\end{aligned}
$$

With this labeling pattern we have, In view of the above defined labeling pattern f admits difference cordial labeling for

Nature of n	$e_{f^{*}}(0)$	$e_{f^{*}}(1)$
$n \equiv 0(\bmod 2)$	$\frac{11 n-10}{2}$	$\frac{11 n-10}{2}$
$n \equiv 1(\bmod 2)$	$\frac{11 n-9}{2}$	$\frac{11 n-11}{2}$

$T^{2}\left(Q_{n}\right)$. Hence $T^{2}\left(Q_{n}\right)$ is a difference cordial graph.

Illustration 2.13. Difference cordial labeling of graph $T^{2}\left(Q_{4}\right)$ is shown in Figure 5.

Figure 5. The graph $T^{2}\left(Q_{4}\right)$ and its difference cordial labeling.

3. Concluding Remarks

In this paper, we have defined 2-tuple graphs of simple graphs. We discussed behavior of 2-tuple graphs of some graphs in the context of difference cordial labeling.

References

[1] I.Cahit, Cordial graphs : a weaker version of graceful and harmonious graphs, Ars combinatoria., 23(1987), 201-207.
[2] R.Ponraj, M.Sivakumar and M.Sundaram, k-product cordial labeling of Graphs, Int. J. Contemp. Math. Sciences, $7(15)(2012), 733-742$.
[3] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference Cordial Labeling of Graphs, Global Journal of Mathematical Sciences, 5(3) (2013), 185-196.
[4] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference Cordial Labeling of Graphs obtained from Double Snakes, International Journal of Mathematics Research, 5(3)(2013), 317-322.
[5] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference Cordial Labeling of Subdivision of Snake Graphs, Universal Journal of Applied Mathematics, 2(1)(2014), 40-45.
[6] R.Ponraj, S.Sathish Narayanan and R.Kala, A note on Difference Cordial Graphs, Palestine Journal of Mathematics, 4(1)(2015), 189-197.
[7] J.A.Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015), \#DS6.
[8] J.Gross and J.Yellen, Graph Theory and its applications, CRC Press, (1999).

[^0]: * E-mail: viholprakash@yahoo.com

