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1. Introduction

Convergence concepts are the foundation of mathematical analysis while the convergence of fuzzy sets is the foundation

of fuzzy analysis. Since the introduction of fuzzy sets by Zadeh [5] researchers have been concerned with the calculus of

functions and the definition and generalization of convergence concepts in the domain of fuzzy sets and systems. We have

defined the concept of uniform integrability for the case of fuzzy random variables to derive. Mean convergence theorem for

fuzzy random variables.

The notion of a fuzzy random variables was introduced as a natural generalization of random set in order to represent

associations between the outcomes of random experiment and non-statistical in exact data.

Limit theorems for random sets and fuzzy random variables have received much attention in recent years because of its

application in several applied fields such as Mathematical economics system analysis and Stochastic Control theory.

Klementet.al., [2] provided a good intuition about the central limit theorem for fuzzy random variables which generalizes

the central limit theorem for random sets. Fuzzy random variables have been designed to deal with situations in which

both random performance and fuzzy perception must be considered.

The purpose of this paper is to generalize the convergence theorems of the basic probability theory to fuzzy random variables

as well as some fundamental theorems in the light of uniform integrability. The study of the theory of fuzzy random variables

was proposed by Kwakernack [1] and Puri and Relescu [3, 4].
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2. Fuzzy Random Variables

The concepts of a fuzzy random variables and its expectation were introduced by Puri and Ralescu [? ? ]. Let (Ω, A, P )

be a complete probability space, and fuzzy random variable is a Borel measurable function. If X : Ω → F (R) is a fuzzy

number valued function, where F(R) is a family of all fuzzy numbers, and B is the subset of R then X−1(B) denotes the

fuzzy subset of Ω defined by

X−1 (B) (W ) = sup
x∈B

X(w)(x) for each w ∈ Ω

The function X : Ω → F (R) is called a fuzzy random variable. If for every closed subset B of R, the fuzzy set X−1 (B) is

measurable when considered as a function from Ω to [0, 1]. If we denote

X (w) = {(X−α (w) , X+
α (w))|0 ≤ α ≤ 1}

then it is well known that X is a fuzzy random variable if and only if for each α ∈ [0, 1], X−α and X+
α are random variables.

3. Uniform Integrability and Mean Convergence Theorem

Let {xn, n ≥ 1} and x are fuzzy random variables on a probability space (Ω A, P)

Definition 3.1. A sequence of fuzzy random variables {xn, n ≥ 1} is called uniformly integrable if for every ε > 0 there

exists a γ > 0 such that δ > 0 such that

sup
n

∫
A

[(xn)−αV (xn)+α ]dP < ε (1)

Whenever P (A) < δ and sup
n≥1

E(α((xn)−αV (xn)+α )) ≤ C ≤ ∞ (2)

are satisfied, where A ∈ A.

Theorem 3.2 (Equivalence Relation of Uniform Integrability). Let {xn} be a sequence of a fuzzy random variables. Then

{xn} is uniformly integrable if and only if

lim
b→∞

∫
(|(xn)−α V (xn)

+
α ))≥b

α(|(xn)−α V (xn)+α |)dP = 0 (3)

uniformly in n.

Proof. Let {xn} is uniformly integrable. Then E(α(xn)−α V (xn)+α )≤C <∞. Hence

P (α|(xn)−α V (xn)+α |)≥b

≤1

b
E(α(|(xn)−α V (xn)+α |)

≤C
b
→ 0 as b→∞ uniformly in n.

Therefore from (1),

sup
n≥1

∫
(|(xn)−α V (xn)

+
α ))≥b

(α|(xn)−α V (xn)+α |)dP≤ε.

If b is large enough for a given ε > 0. So (1) and (2) implies (3)
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Conversely for ε > 0 let ∫
(|(xn)−α V (xn)

+
α ))>b

(α|(xn)−α V (xn)+α |)dP≤ε

for some large b > 0 and for every n≥1. Then

E(α(|(xn)−αV (xn)+α |) =

∫
(|(xn)−α V (xn)

+
α ))<b

α|(xn)−αV (xn)+α |dP

+

∫
(|(xn)−α V (xn)

+
α ))≥b

(α|(xn)−αV (xn)+α |)dP

< b+ ε from (3)

<∞ for all n ≥ 1.

Put δ = ε
b
, then for A ∈ A with P (A) < δ.

∫
A

α(|(xn)−αV (xn)+α |)dP =

∫
A(|(xn)−α V (xn)

+
α ))<b

(α|(xn)−αV (xn)+α |)dP

=

∫
A(|(xn)−α−(xn)

+
α |≥b

α(|(xn)−αV (xn)+α |)dP

< bP (A) +

∫
(|(xn)−α V (xn)

+
α |≥b

α(|(xn)−αV (xn)+α |)dP

< b
ε

b
+ ε

= 2ε

uniformly in n. So (1) holds.

Definition 3.3. A measurable fuzzy function f is said to be in Lp(0 < p <∞) if

∫
|(f)−α v(f)+α |

pdµ <∞.

Lemma 3.4. Let {xn} be a sequence of a fuzzy random variables which converges in mean (L1) to a fuzzy random variable

X. Then E(α | (xα)−v(xα)+|) <∞.

Proof.

E(α | (xα)−v(xα)+) ≤ E(α | (xn)−α v(xn)+α |)

+ E(α | (xn)−α − (xα)−v(xn)+α − (xα)+|) (Triangle the quality)

<∞.

4. Theorem Mean Convergence Theorem

Theorem 4.1. Let {xn} be a sequence of fuzzy random variables (integrable) and xn
P−→X. Then {xn} converges in mean

if and only if {xn} 15 uniformly integrable.
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Proof. First note that the limiting fuzzy random variable in our convergence is unique. If possible let xn → x1 in L1,

then xn
P−→x1 also. But xn

P−→x and hence X = X1 also. Now E(α | (xn)−α − (xα)−v(xn)+α − (xα)+|) → 0 as n → ∞ and

E(α | (xn)−v(xα)+|) < ∞. We need to prove that xn
Li−→x implies {xn} is uniformly integrable. Now supnE(α | (xn)−α −

(xα)−v(xα)+ − (xα)+|) + E(α | (x)−α v(xα)+|) <∞. Let ε > 0. For A ∈ A, P (A) < δ and n ≥ 0,

∫
A

α(|(xn)−αV (xn)+α |dP ≤
∫
A

α (| (xn)−α − (xα)−v(xn)+α − (xα)+|)dP

+

∫
A

α(|(xα)−V (xα)+|dP (Triangle inequality)

≤
∫
A

α(|(xα)−V (xα)+|dP

≤ 2ε = ε∗

So we have in other words
∫
A
α | (xn)−α v(xn)+α |dP < ε∗ (> 0) if n ≥ n0 and P (A) < δ since E(α (| (xn)−α v(xn)+α |) < ∞,∫

A
α (|(xn)−α v(xn)+α |)dP < εn for a fixed n ≥ 1 and P (A) < δ.

Conversely let {xn} is uniformly integrable. Then E(α(|(xn)−α v(xn)+α |) < C <∞. Since xn
P−→x there exists a subsequence

{xnk} such that |xnk| → |α| a.s. By Fatous Lemma

E(α|(x)−α v(xα)+|) = E( lim
k→∞

inf α|(xnk)−α v(xnk)+α |)

= E(α lim
k→∞

inf |(xnk)−α v(xnk)+α |)

= lim
k→∞

inf E(α|(xnk)−α v(xnk)+α |)

≤ C <∞

Corollary 4.2 (Lebesgue Dominated Convergence Theorem). Let {xn} be a sequence of fuzzy random variables xn
P−→x and

E(supn≥1 α |(xn)−α v(xn)+α |) <∞. Then E(α |(xn)−α − (xα)− v(xn)+α − (xα)+|)→ 0 as n→∞.

Proof. For ε > 0 choose δ > 0, A ∈ A and P (A) < δ. Which will imply
∫
A
α(|(xα)−v(xα)+|)dP < ε and

supm
∫
A
α(|(xn)−α v(xn)+α | <∈) < δ for n > N . Hence

E(α |(xn)−α − (xα)−v(xn)+α − (xα)+|) =

∫
(|(xn)−α−(xα)−V (xn)

+−(xα)+)≤ε
α|(xn)−α − (xα)−v(xn)+α − (xα)+|dP

=

∫
(|(xn)−α−(xα)−V (xn)

+−(xα)+)>ε
α(|(xn)−α − (xα)−v(xn)+α − (xα)+|dP

≤ε+

∫
(|(xn)−α−(x)−α V (xn)

+−(x)+α)>ε
α(|(xn)−α v(xn)+α |dP

+

∫
(|(xn)−α−(xα)−V | (xn)+α−(xα)+α |

|(xn)−α v(xn)+α |dP

+

∫
(|(xn)−α−(xα)−V | (xn)+α−(xα)+α |>ε

α(|(xα)−v(xα)+|dP

< ε+ ε+ ε

≥ 3ε if n > N at xn
Li−→x.
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Theorem 4.3 (Mean Ergodic Theorem). Let x1, x2,. . . , are independent identically distributed fuzzy random variables with

E(α|(x1)−α v(x1)+α |) = C <∞. Then E
(
Sn
n
−C
)
→ 0 as n→∞. That is Sn

n

Li−→C.

Proof. By Kolmogorovs strong law of large numbers for independent identically distributed fuzzy random variables Sn
n
→

C a.s. Since C = E(α|(x1)−α v(x1)+α |) <∞, we need to prove that Sn
n

is uniformly integrable

E

(
α|

(Sn)−α
n

v
(Sn)+α
n
|

)
≤

n∑
1

E

(
α|

(x1)−α
n

v
(x1)+α
n
|

)

= E
(
α|(x1)−α v(x1)+α |

)
<∞ (4)

and hence the first condition of uniform inerrability is satisfied. For ε > 0 choose N large enough such that∫
(|(x1)−α V (x1)

+
α |>N

α|(x1)−α v(x1)+α |dP < ε which implies
∫
A(|(xn)−α V (xn)

+
α |<N

α|(xn)−α v(xn)+α |dP < ε. Then for A ∈ A and

P (A) < δ put δ = ε
N

.

∫
A

α(|(xn)−α v(xn)+α |)dP =

∫
A(|(xn)−α V (xn)

+
α |)>N

α(|(xn)−α v(xn)+α |)dP

≤ε+NP (A)

< +N
ε

N

= 2ε for every n ≥ 1.

Hence

∫
A

|
(Sn)−α
n

v
(Sn)+α
n
|dP =

∫
A

[|(x1)−α v(x1)+α |+ . . . . + |(xn)
−
α
v(xn)+α |

n
dP

=

∫
A

|(xn)−α v(xn)+α |dP

≤2ε for every n ≥ 1 (5)

at Sn
n

is uniformly integrable.

Lemma 4.4. For every real x, Fn(x)→ F (x) a.s. and Fn(x−)→ F (x−) a.s. as n→∞.

Proof. Now F (x−)α = P (α|(x)−α v(x)+| < x) and F (x) = P (α|(xα)−v(xα)+|≤ε. Also Fn(x) = 1
n

∑n
k=1 I[xkx ≤x] and

Fn(x-) = 1
n

∑n
k=1 I[x<x]. Now Yk = I[xk ≤x] are independent identically distributed random variables and E(Yk) = F (x).

Then Yk −B(1, p), p = F (x).

So by Kolmogoras strong law of large numbers for independent identically distributed fuzzy random variables the result

follows:

Theorem 4.5 (Fuzzy Distribution Functions Fn(x)). P (sup−∞<x<∞jFn(x)− F (x) j → 0) = 1.

Proof. Let r be any positive integer ≥ 2. For K = 1, 2, . . . , r − 1 define

xr,k = min{x : (F (x))−α v(F (x))+α}≥
K

r
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the K
r

th
population quantile. Then −∞ = xr,0 < xr,1 < xr,2 · · · − << xr,r = ∞. We need to consider only those intervals

[xr,k, xr,k+1] which are non-empty. If x ∈ [xr,k, xr,k+1] then

(Fn(x))−α − (F (x))−αV ((Fn(x))+α − (F (x))+α )≤Fn( x−r , xk+1)
−
α − F ( xr,k) −αV Fn( x−r , xk+1)

+

α − F ( xr,k) +
α

= Fn( x−r , xk+1)
−
α − F ( x−r,k)

−
V Fn( x−r , xk+1)

+

α − F ( x−r,k+1)
+

+ F (x−r, k+1)
−
α
− F (xr,k) −αV F (x−r,k+1)

+

α
− F (xr,k) +

α

Note that

F (x−r, k+1)
−
α
− F (xr,k) −αV F (x−r,k+1)

+

α
− F (xr,k) +

α≤
k + 1

r
− k

r
=

1

r

F (x−r, 1)
−
α
V (x−r,1)

+

α
≤1

r

and

(F (xr,k) −αV F (xr,k) +
α≥1− 1

r

≤(Fn(
(
x−r, k+1

)−
α
− F

(
x−r,k

)−
α
V Fn

(
x−r,k+1

)+
α
− F

(
x−r,k+1

)+
α

) +
1

r
(6)

for almost all w, 1 ≤ k ≤ r − 1 and

(Fn(x))−α − (F (x))−αV ((Fn(x))+α − (F (x))+α )≥Fn(xr, k)−α − F (x−r,k+1)
−
V Fn(xr, k)+α − F (x−r,k+1)

+

= Fn(xr, k) −α − F (xr,k)−α V Fn(xr, k)+α − F (x−r,k)
+

α

−( F (x−r, k+1)
−
α
− F (xr,k)−α V F (x−r, k)

+

α
− F (xr,k)+α

≥( Fn(xr, k)−α − F (xr,k)−V Fn(xr, k)+α − F (xr,k)+ − 1

r
(7)

for almost all w, 1 ≤ k ≤ r − 1, Lemma says that for each x there is a Set A with P (Ax) = 0 such that

lim (Fn(x, w)−α − V (Fn(x, w))+α = (F (x))−αV (F (x))+α for xtAx

lim (Fn(x− w)−α − V (Fn(x, w)+α = (F (x−))−αV (F (x−))+α for xtAx

except on a set Bx with P (Bx) = 0. Similar arguments held for x < xr,1 and x < xr,1−1. From (7) and (8) for almost all

real x.

0≤(Fn(x))−α − (F (x))−αV (Fn(x))+α − (F (x))+α j

≤ max

1 ≤ k ≤ r

1 ≤ j ≤ r

{ |(Fn(xr, k)−α − F (xr,k)−αV Fn(xr, k)+α − F (xr,k)+α j, |(Fn(x−r, j)
−
α
− F (x−r,j)

−
α
V Fn(x−r,j)

+

α
− F (x−r,j)

+

α
+

1

r
}

Let

Dr,n(w) = max

1 ≤ k ≤ r

1 ≤ j ≤ r

[ |(Fn(xr, k)−α −F (xr,k)−αV Fn(xr, k)+α −F (xr,k)+α |, j, |(Fn(x−r, j)
−−F (x−r,j)

−
V Fn(x−r,j)

+−F (x−r,j)
+
j
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and

Dn = (Dr,n(w))−α v(Dr,n(w))+α = supxj(Fn(x))−α − (F (x))−αV (Fn(x))+α − (F (x))+α )j

Hence Dn(w) = (Dr,n(w))−α v(Dr,n(w))+α ) + r−1. If w lies outside the union A of all the countably many Axr,k and Bxr,k

then by lemma

lim
n→∞

(Dr,n(w))−α v(Dr,n(w))+α ) = 0 for w ∈ A and P (A) = 0

Therefore limn→∞ supDn≤ 1
r

a.s. Now by the arbitraryness and countability of the values of r the result follows by taking

lime r →∞.
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