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Abstract: In the present work we have introduced a new graph called Cyclotic graph G(n, k). We have given many examples of

Cyclotic graph G(n, k). We have proved some results about connectedness, planarity, regularity and number of edges in
Cyclotic graph. We have also proved that G(n, k) is not Eulerian graph and found some results which shows when G(n, k)

is bipartite and Hamiltonian.
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1. Introduction

We consider only simple, undirected and non-trivial graph G = (V,E) with the vertex set V and edge set E. For various

graph theoretic notations and terminology we follow Clark and Holton [2] whereas for number theory we follow D.M. Burton

[1]. We will give brief summary of definitions and other information which are useful for the present investigations.

1.1. Definitions and Examples

Definition 1.1. The cyclotic graph G(n, k) with a positive integer n > 1 and integer k such that 0 ≤ k ≤ n− 1 are defined

to be a graph with V (G(n, k)) = {vi : 1 ≤ i ≤ n} and E(G(n, k)) = EO ∪ EI where EO =
{
v2iv2i+1 : 1 ≤ i ≤

⌊n
2

⌋}
and

EI =
{
v1v1+(k+1), v1+(k+1)v1+2(k+1), . . . , vn−2k−1vn−k, vn−kv1

}
, here subscripts are taken modulo n. The elements of EO

are called outer edges and the elements of EI are called inner edges. Cycle formed by all the inner edges is called inner cycle.

ie = The number of inner edges in graph G(n, k).

Example 1.2. Following are some examples of G(n, k) for some n and k.

Figure 1. G(6,0)
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Figure 2. G(10,3)

Figure 3. G(14,2)

Figure 4. G(8,7)

Remark 1.3.

(1). No two outer edges have a vertex in common.

(2). G(n, k) has
n

2
outer edges if n is even and

n− 1

2
outer edges if n is odd.

(3). G(n, k1) = G(n, k2) iff k1 = k2 or k1 + k2 = n− 2. Hence we study graph G(n, k) for 0 ≤ k <
⌊n

2

⌋
and k = n− 1.

(4). Every G(n, k) has exactly one inner cycle. We call this cycle is starting and ending at v1.

(5). G(n, k) has inner cycle of length ie.

(6). Number of inner edges are always less then number of vertices.i.e., ie < n.

(7). G(n, n− 1) has exactly one loop which is formed by inner edge, it is the only inner edge of G(n, n− 1). The remaining

edges of G(n, n− 1) are outer edges. So, k = n− 1 is not much interesting case.
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(8). G(n, 0) has a cycle Cn. The remaining edges of G(n, 0) are outer edges. Also each of the outer edges is parallel to one

edge of the inner cycle. And no two outer edges are parallel. So, G(n, 0) is always planar.

2. Main Section

Theorem 2.1. For G(n, k), if n is odd then deg(v1) = 2.

Proof. v1 is a vertex of the inner cycle, so deg(v1) ≥ 2. If deg(v1) > 2 then v1 is incident at one of the outer edges of the

form v2iv2i+1 for some i ∈
{

1, 2, 3, ...,
⌊n

2

⌋}
. ∴ v2i+1 = v1. Thus, 2i + 1 ≡ 1 (mod n). So 2i ≡ 0 (mod n). As n is odd, we

have i ≡ 0 (mod n). So, n|i, which is not possible as 1 ≤ i ≤ n

2
. ∴ deg(v1) = 2.

Example 2.2. In the following graph deg(v1) = 2.

Figure 5. G(9,2)

Theorem 2.3. For G(n, k), if n is even then deg(v1) = 3.

Proof. v1 is a vertex of the inner cycle so deg(v1) ≥ 2. v1 is incident to an outer edge of the form v2iv2i+1 for some

i ∈
{

1, 2, 3, ...,
⌊n

2

⌋}
. ∴ 2i + 1 ≡ 1 (mod n). Thus, 2i ≡ 0 (mod n). So, n|2i. Hence,

n ≤ 2i. (1)

As 1 ≤ i ≤
⌊n

2

⌋
we have

2 ≤ 2i ≤ 2
⌊n

2

⌋
≤ n. (2)

From (1) and (2), 2i = n. Thus, i =
n

2
. Hence, v1 is incident to the outer edge vnv1. ∴ deg(v1) = 3.

Example 2.4. In the following graph deg(v1) = 2.

Figure 6. G(8,2)
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Remark 2.5. From Theorem 2.2 and Theorem 2.3 and Definition 1.1 we can say that all the vertices of G(n, k) are adjacent

to outer edges except v1, if n is odd. Hence degree of all the vertices of G(n, k) is atleast 1 for all n and k.

Theorem 2.6. G(n, k) is 3-regular iff n = ie, where n is even.

Proof. Suppose G(n, k) is 3-regular. Suppose if possible n 6= ie that is n > ie. The inner cycle does not pass through

atleast one vertex of G(n, k). Let one of the such vertices be vj . Then clearly deg(vj) = 1, which contradicts our hypotesis

that G(n, k) is 3-regular. Hence, n = ie.

Conversely, suppose that n = ie then every vertex of G(n, k) is a vertex of the inner cycle. Every outer edge is of the form

v2iv2i+1. So, degree of each vertex is 3. ∴ G(n, k) is 3-regular.

Example 2.7. In the following figure G(16, 6) is 3-regular.

Figure 7. G(16,6)

Theorem 2.8. If n is odd then G(n, k) is not regular.

Proof. From Theorem 2.2 deg(v1) = 2. Let vi be one of the vertices of the inner cycle other than v1. Clearly vi is incident

to one of the outer edges. So, deg(vi) = 3. ∴ G(n, k) is not regular.

Remark 2.9. deg(vi) ≤ 3 for each vertex vi of G(n, k).

Theorem 2.10. G(n, k) is not Eulerian graph.

Proof.

case 1: n is even.

Then from Theorem 2.3, deg(v1) = 3. Hence G(n, k) is not Eulerian if n is even.

case 2: n is odd.

Then from Theorem 2.2, deg(v1) = 2. Let vi be one of the vertices of the inner cycle other than v1. Clearly, vi is incident

to one of the outer edges. So, deg(vi) = 3. Hence G(n, k) is not Eulerian if n is odd.

Theorem 2.11. G(n, k) has inner cycle of length ie iff ie is the smallest positive integer such that n|ie(k + 1).

Proof. Suppose G(n, k) has inner cycle of length ie. All the end vertices of the inner edges are of the form v1+i(k+1)

where i ∈
{

0, 1, 2, 3, ...,
⌊n

2

⌋}
. 1 + ie(k + 1) is the smallest positive integer greater than 1 such that v1+ie(k+1) = v1.

i.e., 1 + ie(k + 1) ≡ 1 (mod n)⇒ ie(k + 1) ≡ 0 (mod n)⇒ n|ie(k + 1).
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Conversely, suppose that ie is the smallest positive integer such that n|ie(k+ 1). i.e.,ie(k+ 1) ≡ 0 (mod n)⇒ 1 + ie(k+ 1) ≡

1 (mod n). 1 + ie(k+ 1) is the smallest positive integer greater than 1 such that v1+ie(k+1) = v1. Thus the inner cycle which

is i.e; v1v1+(k+1), v1+(k+1)v1+2(k+1), . . . , v1+(IE−1)(k+1)v1, is of length ie.

Theorem 2.12. If (k + 1)|n then G(n, k) has inner cycle of length
n

k + 1
.

Proof.

(k + 1)|n⇒ n = m(k + 1). (3)

Suppose G(n, k) has cycle v1v1+(k+1), v1+(k+1)v1+2(k+1), . . . , v1+(x−1)(k+1)v1+x(k+1). Clearly, x is the smallest positive integer

such that 1 + x(k + 1) ≡ 1 (mod n)⇔ x(k + 1) ≡ 0 (mod n)⇔ n|x(k + 1)⇔ m(k + 1)|x(k + 1), (from (3)) ⇔ m|x. Since,

x is the smallest positive integer satisfying above condition, we have x = m. Therefore, length of given cycle is m that is

n

k + 1
.

Example 2.13. G(8, 3) has inner cycle of length 2 as shown in following figure.

Figure 8. G(8,3)

Theorem 2.14. If (k + 1)|n then G(n, k) has exactly
n

2

(
k − 1

k + 1

)
+ 1 components where n is even.

Proof. G(n, k) has
n

2
outer edges. G(n, k) has inner cycle of length ie =

n

k + 1
say C. Each of the vertices of C is incident

to exactly one outer edge. Also no two outer edges have a vertex in common. All such outer edges together with C forms

a connected component of G(n, k). From the remaining outer edges no two have a vertex in common. Hence, G(n, k) has

n

2
− n

k + 1
+ 1 =

n

2

(
k − 1

k + 1

)
+ 1 components.

Example 2.15. G(12, 2) has exactly 3 components as shown in the following figure.

Figure 9. G(12,2)

Theorem 2.16. G(n, 1) is always connected and unicyclic if n is even.
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Proof. By definition of G(n, k), V (G(n, 1)) = {v1, v2, . . . , vn} and E(G(n, 1)) = EO ∪ EI where EO =

{v2v3, v4v5, v6v7, . . . , vn−2vn−1, vnv1} and EI = {v1v3, v3v5, v5v7, . . . , vn−3vn−1, vn−1v1}. G(n, 1) has exactly one cycle

which is the inner cycle i.e; v1v3, v3v5, v5v7, . . . , vn−3vn−1, vn−1v1, of length
n

2
. Also each v2i is adjacent to v2i+1, where

1 ≤ i ≤
⌊n

2

⌋
. Hence G(n, 1) is connected and it has exactly one cycle.

Example 2.17. Following figure shows that G(8, 1) is connected and unicyclic.

Figure 10. G(8,1)

Remark 2.18. Theorem 2.16 is special case of Theorem 2.14.

Theorem 2.19. If n is odd and (k + 1)|n then G(n, k) has exactly
n

2

(
k − 1

k + 1

)
+

3

2
components.

Proof. G(n, k) has
n− 1

2
outer edges. G(n, k) has inner cycle of length ie =

n

k + 1
say C. Each of the vertices of this

cycle other than v1 is incident to exactly one outer edge and no two outer edges have a vertex in common. All such outer

edges together with C forms a connected component of G(n, k). From the remaining outer edges no two have a vertex in

common. Hence, G(n, k) has
n− 1

2
−
(

n

k + 1
− 1

)
+ 1 =

n

2

(
k − 1

k + 1

)
+

3

2
components.

Example 2.20. Following figure shows that G(15, 4) has 6 components.

Figure 11. G(15,4)

Theorem 2.21. If n is even and (k + 1)|n then G(n, k) has exactly
n

2

(
k + 3

k + 1

)
edges.

Proof. G(n, k) has
n

2
outer edges and inner cycle of length

n

k + 1
. Hence, G(n, k) has

n

2
+

n

k + 1
=

n

2

(
k + 3

k + 1

)
edges.

Example 2.22. G(20, 3) has 15 edges as shown in the following figure.
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Figure 12. G(20,3)

Theorem 2.23. If n is odd and (k + 1)|n then G(n, k) has exactly
n

2

(
k + 3

k + 1

)
− 1

2
edges.

Proof. G(n, k) has
n− 1

2
outer edges and inner cycle of length

n

k + 1
. Hence, G(n, k) has

n− 1

2
+

n

k + 1
=

n

2

(
k + 3

k + 1

)
− 1

2

edges.

Theorem 2.24. If n is odd then G(n, 1) has
3n− 1

2
edges.

Proof.

G(n, k) has
n− 1

2
outer edges. (4)

Suppose G(n, 1) has inner cycle v1v1+(1+1), v1+(1+1)v1+2(1+1), . . . , v1+(x−1)(1+1)v1+x(1+1). Clearly, x is the smallest positive

integer such that 1 + x(1 + 1) ≡ 1 (mod n) ⇔ x(1 + 1) ≡ 0 (mod n) ⇔ n|x(1 + 1) ⇔ n|2x. As gcd(n, 2) = 1, we have n|x.

Now, x ≤ n⇒ x = n.

∴ G(n, 1) has the inner cycle of length n. (5)

∴ From (4) and (5), G(n, 1) has
n− 1

2
+ n =

3n− 1

2
edges.

Theorem 2.25. G(4n, 2n− 2) has 6n edges.

Proof. G(4n, 2n − 2) has
4n

2
= 2n outer edges. Suppose G(4n, 2n − 2) has the inner cycle

v1v1+(2n−1), v1+(2n−1)v1+2(2n−1), . . . , v1+(x−1)(2n−1)v1+x(2n−1). Clearly, x is the smallest positive integer such that

1 + x(2n − 1) ≡ 1 (mod 4n) ⇔ x(2n − 1) ≡ 0 (mod n) ⇔ 4n|x(2n − 1). gcd(4n, 2n − 1) = gcd(n, 2n − 1) = gcd(n,−1) =

gcd(n, 1) = 1. Therefore 4n|x. Since x is the smallest positive integer satisfying 4n|x, we have x = 4n. Thus, the length of

the inner cycle is 4n. ∴ G(4n, 2n− 2) has 2n + 4n = 6n edges.

Theorem 2.26. If n is odd prime then G(n, 1) has
3n− 1

2
edges.

Proof. G(n, k) has
n− 1

2
outer edges. Suppose G(n, k) has the inner cycle

v1v1+(k+1), v1+(k+1)v1+2(k+1), . . . , v1+(x−1)(k+1)v1+x(k+1). Clearly, x is the smallest positive integer such that

1 + x(k + 1) ≡ 1 (mod n) ⇔ x(k + 1) ≡ 0 (mod n) ⇔ n|x(k + 1). Since n is prime and (k + 1) < n, we have

gcd(k + 1, n) = 1. Thus, n|x. Since x is the smallest positive integer satisfying n|x, we have x = n. Hence, the length of

the inner cycle is n. ∴ G(n, k) has
n− 1

2
+ n =

3n− 1

2
edges.

Example 2.27. G(11, 1) has 16 edges as shown in the following figure.
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Figure 13. G(11,1)

Theorem 2.28. G(n, k) is Hamiltonian iff ie = n.

Proof. Suppose ie = n. Hence the inner cycle passes through every vertex of G(n, k). Thus the inner cycle is Hamiltonian

cycle. i.e; G(n, k) is Hamiltonian.

Conversely, suppose that G(n, k) is Hamiltonian. Thus, there exist a cycle C of length n passes through every vertex of

G(n, k). If all the edges of cycle C are inner edges then cycle C is the inner cycle. Hence, n = ie and the result is proved.

Suppose there exist an edge e = vivj of C which is not an inner edge. Thus either vi or vj is not incident to any of the

inner edges. Hence either deg(vi) = 1 or deg(vj) = 1. It forces us that G(n, k) is not Hamiltonian, which contradicts our

hypothesis. Hence all the edges of cycle C are inner edges, i.e., C is inner cycle. So, ie = n.

Theorem 2.29. If n is even and ie =
n

2
, then G(n, k) is planar.

Proof. G(n, k) has the inner cycle of length
n

2
say C. Thus, for each vertex vi of C, we have deg(vi) ≥ 2 and vi is incident

to exactly one outer edge.

deg(vi) =

 3 ,if vi is vertex of C;

1 ,if vi is not a vertex of C.

Hence we can draw G(n, k) as

i.e; G(n, k) is a crown graph. ∴ G(n, k) is planar.

Example 2.30. G(18, 7) and it’s Plane drawing are shown in the following figures.
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Figure 14. G(18,7)
Figure 15. Plane drawing of G(18,7)

Theorem 2.31. If ie <
n

2
, then G(n, k) is planar.

Proof. Case 1: n is even.

G(n, k) has inner cycle of length ie say C. Thus, for each vertex vi of C, we have deg(vi) ≥ 2 and vi is incident to exactly

one outer edge.

deg(vi) =

 3 ,if vi is vertex of C;

1 ,if vi is not a vertex of C.

That means each vertex of C is adjacent to exactly one vertex which is not a vertex of C. This forms a crown graph with

2ie vertices. ie <
n

2
⇒ 2ie < n. Thus, every vertex of G(n, k) which is not a vertex of the crown graph has degree 1. Thus,

G(n, k) is a vertex disjoint union of a crown graph and several K2. Hence we can draw G(n, k) as

∴ G(n, k) is planar.

Case 2: n is odd.

G(n, k) has inner cycle of length ie say C′. Thus, for each vertex vi of C′, we have deg(vi) ≥ 2 and vi is incident to exactly

one outer edge.

deg(vi) =

 3 ,if vi is vertex of C′ and i 6= 1;

1 ,if vi is not a vertex of C′.

That means each vertex of C′ except v1 is adjacent to exactly one vertex which is not a vertex of C′. This forms a graph G1

which is a subgraph of a crown graph with 2ie − 1 vertices. ie <
n

2
⇒ 2ie < n⇒ 2ie − 1 < n. Thus every vertex of G(n, k)

9
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which is not a vertex of the graph G1 has degree 1. Thus G(n, k) is a vertex disjoint union of a graph G1 and several K2.

Hence we can draw G(n, k) as

∴ G(n, k) is planar.

Theorem 2.32. If (k + 1)|n then G(n, k) is bipartite iff
n

k + 1
is even.

Proof. Let G(n, k) be bipartite graph. Hence it does not have any odd cycle. Also (k + 1)|n we can say that G(n, k) has

the inner cycle of length
n

k + 1
. Therefore,

n

k + 1
is even.

Conversely, suppose
n

k + 1
is even. Now suppose if possible G(n, k) is not bipartite. Thus, G(n, k) has a cycle of odd length

say C. Since (k+1)|n, G(n, k) has the inner cycle C′ of length
n

k + 1
. Therefore, for each vertex vi of C′, we have deg(vi) ≥ 2

and vi is incident to exactly one outer edge.

deg(vi) =

 3 ,if vi is vertex of C′;

1 ,if vi is not a vertex of C′.
(6)

C 6= C′ implies that there exist atleast one outer edge e′ = v2jv2j+1 of C which is not in C′. Thus, deg(v2j) ≥ 2 and

deg(v2j+1) ≥ 2. So from (6), e′ must be an edge of C′, which is not possible because C′ contains only inner edges. Hence

G(n, k) is bipartite.

3. Conclusion and Open Problems

We have introduced a new graph namely Cyclotic graph. We have derived several results using the elementary concepts of

graph theory for the Cyclotic graph. However, large number of problems for the cyclotic graph remains open. Some of them

are following:

(1). Number of inner edges always divides number of vertices in G(n, k).

(2). Either number of inner edges are less than or equal to number of vertices of G(n, k) or exactly equal to number of

vertices of G(n, k).

(3). If n is even then G(n, k) is connected iff ie ≤
n

2
.

(4). If n is odd then G(n, k) is connected iff ie ≤
n− 1

2
.

(5). If n is odd and ie <
n− 1

2
then G(n, k) has

n− 1

2
− (ie − 1) components.

(6). If n is even and ie <
n

2
then G(n, k) has

(n
2
− ie

)
components.
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(7). G(n, k) is not planar if n is prime.

(8). If n is even and k is odd then G(n, k) is planar.

(9). If n is even and k is even then G(n, k) is not planar where k /∈ {0, n− 2}.

(10). If n is odd, composite and k ≡ 2 (mod 3) then G(n, k) is planar.
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