International Journal of Mathematics And its Applications

On Cen-EP Matrices

Research Article

R.Aruldoss ${ }^{1 *}$ and S.Suganya ${ }^{2}$
1 Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India.
2 Department of Mathematics, M.R.Government Arts College, Mannargudi, Tamilnadu, India.

```
Abstract: The concept of Cen-EP matrix is introduced and relations between Cen-EP and EP matrices are also discussed.
MSC: Primary 15A09 ; Secondary 15A18.
Keywords: EP matrix, Cen-EP matrix, Centrohermitian.
(C) JS Publication.
```


1. Introduction

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. Let C_{n} be the space of complex n-tuples. For $A \in C_{n \times n}$, let $A^{T}, \bar{A}, A^{*}, A^{\dagger}, R(A), N(A)$ and $\rho(A)$ denote the transpose, conjugate, conjugate transpose, Moore-Penrose inverse, range space, null space and rank of A respectively. We denote a solution X of the equation $A X A=A$ by A^{-}. Let J be the unit perdiagonal matrix that has 1's on the secondary diagonal and 0's elsewhere. That is

$$
J=\left(\begin{array}{ccccccc}
0 & 0 & . & . & . & 0 & 1 \\
0 & 0 & . & . & . & 1 & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & & . \\
1 & 0 & . & . & . & 0 & 0
\end{array}\right)
$$

A matrix $A=\left(a_{i j}\right) \in C_{n \times n}$ is centrohermitian if $a_{i j}=\bar{a}_{n-i+1, n-j+1}$, for $i, j=1$ to n or

$$
\begin{equation*}
A=J \bar{A} J \tag{1}
\end{equation*}
$$

A theory for centrohermitian matrices is developed in [3]. In this paper, we introduce the concept of Cen-EP matrices as a generalization of centrohermitian and EP matrices and extend many of the basic results on centrohermitian [3] and EP matrices $[1,5,7,9]$. A matrix $A \in C_{n \times n}$ is EP if

$$
\begin{equation*}
N(A)=N\left(A^{*}\right) \tag{2}
\end{equation*}
$$

[^0]
2. Cen-EP Matrices

In this section, we present equivalent characterizations of a Cen-EP matrix. As an application, it is shown that the class of all Cen-EP matrices having the same range spaces forms a group under multiplication. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in C_{n}$, let us define the function $j(x)=J x$ and J satisfies the following properties :

$$
\begin{align*}
J & =J^{T}=J^{-1}=J^{*} \tag{3}\\
(J A)^{\dagger} & =A^{\dagger} J \text { and }(A J)^{\dagger}=J A^{\dagger} \text { for } A \in C_{n \times n} \quad(b y[2]) \tag{4}
\end{align*}
$$

Definition 2.1. A matrix $A \in C_{n \times n}$ is said to $C e n-E P$ if it satisfies the condition $A x=0 \Leftrightarrow \bar{A} j(x)=0$ or equivalently, $N(A)=N(J \bar{A} J)=N(\bar{A} J)$. If A is nonsingular, then A is Cen-EP.

Remark 2.2. Every centrohermitian matrix is Cen-EP matrix. But the converse need not be true.
Example 2.3. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Then, $J \bar{A} J=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \neq A$. Therefore, A is not centrohermitian. Since A is a nonsingular matrix, A is a Cen-EP matrix.

Theorem 2.4. For $A \in C_{n \times n}$, the following are equivalent :
(1). A is Cen-EP.
(2). $J A$ is $E P$.
(3). $A J$ is $E P$.
(4). A^{\dagger} is Cen-EP.
(5). $N(A)=N\left(A^{\dagger} J\right)$.
(6). $N(\bar{A})=N(A J)$.
(7). $R\left(A^{T}\right)=R\left(J A^{*}\right)$.
(8). $R\left(A^{*}\right)=R(J A)$.
(9). $A A^{\dagger} J=J A^{\dagger} A$.
(10). $J A A^{\dagger}=A^{\dagger} A J$.
(11). $A=J A^{*} J H$ for a non singular $n \times n$ matrix H.
(12). $A=H J A^{*} J$ for a non singular $n \times n$ matrix H.
(13). $A^{*}=H J A J$ for a non singular $n \times n$ matrix H.
(14). $A^{*}=J A J H$ for a non singular $n \times n$ matrix H.
(15). $C_{n}=R(A) \oplus N(A J)$.
(16). $C_{n}=R(J A) \oplus N(A)$.

Proof.
$(1) \Leftrightarrow(2) \Leftrightarrow(3):$

$$
\begin{align*}
A \text { is Cen-EP } & \Leftrightarrow N(A)=N(J \bar{A} J) \tag{2.1}\\
& \Leftrightarrow N(J A)=N(\bar{A} J) \tag{3}\\
& \Leftrightarrow N(J A)=N(J A)^{*} \\
& \Leftrightarrow J A \text { is } \mathrm{EP} \tag{2}\\
& \Leftrightarrow J(J A) J^{*} \text { is } \mathrm{EP} \tag{1}\\
& \Leftrightarrow A J \text { is } \mathrm{EP}
\end{align*}
$$

$(2) \Leftrightarrow(4):$

$$
\begin{aligned}
J A \text { is } \mathrm{EP} & \Leftrightarrow(J A)^{\dagger} \text { is EP } & & (\text { by }[2]) \\
& \Leftrightarrow A^{\dagger} J \text { is EP } & & (\text { by }(4)) \\
& \Leftrightarrow A^{\dagger} \text { is EP } & & \text { (by equivalence of } \left.(1) \text { and }(3) \text { applied to } A^{\dagger}\right)
\end{aligned}
$$

$(1) \Leftrightarrow(5):$

$$
\begin{align*}
A \text { is Cen-EP } & \Leftrightarrow N(A)=N(\bar{A} J) \tag{2.1}\\
& \Leftrightarrow N(A)=N(J A)^{*} \\
& \Leftrightarrow N(A)=N(J A)^{\dagger} \\
& \Leftrightarrow N(A)=N\left(A^{\dagger} J\right)
\end{align*}
$$

$(1) \Leftrightarrow(6) \Leftrightarrow(7):$ Now, we shall prove the equivalence of (1), (6) and (7) using $\rho(A)=\rho(\bar{A})=\rho(\bar{A} J)=\rho(A J)$ in the following way :

$$
\begin{aligned}
A \text { is Cen-EP } & \Leftrightarrow N(A)=N(\bar{A} J) \\
& \Leftrightarrow N(A) \subseteq N(\bar{A} J) \\
& \Leftrightarrow \bar{A} J=\bar{A} J A^{-} A \\
& \Leftrightarrow \bar{A}=\bar{A} J A^{-} A J \\
& \Leftrightarrow \bar{A}=\bar{A} J^{-1} A^{-} A J \\
& \Leftrightarrow \bar{A}=\bar{A}(A J)^{-} A J \\
& \Leftrightarrow N(A J) \subseteq N(\bar{A}) \\
& \Leftrightarrow N(\bar{A})=N(A J) \\
& \Leftrightarrow R(\bar{A})^{*}=R(A J)^{*} \\
& \Leftrightarrow R\left(A^{T}\right)=R\left(J A^{*}\right)
\end{aligned}
$$

$(1) \Leftrightarrow(8):$

$$
\begin{align*}
A \text { is Cen-EP } & \Leftrightarrow N(A)=N(\bar{A} J) \\
& \Leftrightarrow N(A)=N(J A)^{*} \\
& \Leftrightarrow R\left(A^{*}\right)=R(J A) \tag{8}
\end{align*}
$$

$(3) \Leftrightarrow(9):$

$$
\begin{aligned}
A J \text { is } \mathrm{EP} & \Leftrightarrow(A J)(A J)^{\dagger}=(A J)^{\dagger}(A J) \\
& \Leftrightarrow(A J)\left(J A^{\dagger}\right)=\left(J A^{\dagger}\right)(A J) \\
& \Leftrightarrow A A^{\dagger}=J A^{\dagger} A J \\
& \Leftrightarrow A A^{\dagger} J=J A^{\dagger} A
\end{aligned}
$$

$(9) \Leftrightarrow(10)$: By (3), $J^{2}=I$, this equivalence follows by pre and post multiplying $A A^{\dagger} J=J A^{\dagger} A$ by J.
$(2) \Leftrightarrow(11): J A$ is $\mathrm{EP} \Leftrightarrow(J A)^{*}=(J A) H_{1}$ for a non singular $n \times n$ matrix H_{1} [2].

$$
\begin{aligned}
& \Leftrightarrow A^{*} J=J A H_{1} \\
& \Leftrightarrow J A^{*} J=A H_{1} \\
& \Leftrightarrow A=J A^{*} J H, \text { where } H=H_{1}^{-1} \text { is a non singular } n \times n \text { matrix. }
\end{aligned}
$$

$(3) \Leftrightarrow(12): A J$ is $\mathrm{EP} \Leftrightarrow(A J)^{*}=H_{1}(A J)$ for a non singular $n \times n$ matrix H_{1} [2].

$$
\begin{aligned}
& \Leftrightarrow J A^{*}=H_{1} A J \\
& \Leftrightarrow J A^{*} J=H_{1} A \\
& \Leftrightarrow A=H J A^{*} J, \text { where } H=H_{1}^{-1} \text { is a non singular } n \times n \text { matrix. }
\end{aligned}
$$

The equivalences (11) $\Leftrightarrow(13)$ and $(12) \Leftrightarrow(14)$ follow immediately by taking conjugate transpose and using $J=J^{*}$. $(13) \Leftrightarrow(16):$

$$
\begin{aligned}
A^{*} & \Leftrightarrow \text { HJAJ for a non singular } n \times n \text { matrix } H \\
& \Leftrightarrow A^{*} A=H(J A)(J A) \\
& \Leftrightarrow A^{*} A=H(J A)^{2} \\
& \Leftrightarrow \rho\left(A^{*} A\right)=\rho\left(H(J A)^{2}\right) \\
& \Leftrightarrow \rho\left(A^{*} A\right)=\rho\left((J A)^{2}\right)
\end{aligned}
$$

Over the complex field, $A^{*} A$ and A have the same rank. Therefore,

$$
\begin{aligned}
\rho\left((J A)^{2}\right)=\rho\left(A^{*} A\right)=\rho(A)=\rho(J A) & \Leftrightarrow R(J A) \cap N(J A)=\{0\} \\
& \Leftrightarrow R(J A) \cap N(A)=\{0\} \\
& \Leftrightarrow C_{n}=R(J A) \oplus N(A)
\end{aligned}
$$

$(14) \Leftrightarrow(15)$: This can by proved along the same lines and using $\rho\left(A A^{*}\right)=\rho(A)$. Hence the proof is omitted.

Remark 2.5. It is well known that a complex normal matrix is $E P$. However, a normal matrix need not be Cen-EP.

Example 2.6.

(1). $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ is $E P$ as well as $C e n-E P$.
(2). $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ is Cen-EP but not $E P$.
(3). $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is hermitian, normal and $E P$ but not Cen-EP and hence not centrohermitian. This motivates the
following result.

Theorem 2.7. Let $A \in C_{n \times n}$. Then any two of the following conditions imply the other one:
(1). A is $E P$.
(2). A is $C e n-E P$.
(3). $R(A)=R(J A)$.

Proof. First, we prove that whenever (1) holds, then (2) and (3) are equivalent. Suppose (1) holds. Then A is EP $\Leftrightarrow R(A)=R\left(A^{*}\right)$. Now, by theorem 2.4, A is Cen-EP $\Leftrightarrow R\left(A^{*}\right)=R(J A)$. Therefore, A is Cen-EP $\Leftrightarrow R(A)=R(J A)$. This completes the proof of $[(1)$ and $(2)] \Rightarrow(3)$ and $[(1)$ and $(3)] \Rightarrow(2)$.

Now, let us prove [(2) and (3)] $\Rightarrow(1)$. Since A is Cen-EP, then $R\left(A^{*}\right)=R(J A)$. By using (3), we have $R(A)=R\left(A^{*}\right)$. Therefore, A is EP. Thus (1) holds.

Corollary 2.8. If $A \in C_{n \times n}$ is normal and $A A^{*}$ is Cen-EP, then A is Cen-EP.
Proof. Since A is normal, $\left[A\right.$ is EP and $A A^{*}$ is Cen-EP $] \Leftrightarrow R\left(A A^{*}\right)=R\left(J A A^{*}\right) \Rightarrow R(A)=R(J A)$. From Theorem 2.7, A is Cen-EP.

Corollary 2.9. Let $E=E^{*}=E^{2} \in C_{n \times n}$ be a hermitian idempotent that commutes with J. Then $H_{j}(E)=\{A ; A$ is Cen-EP and $R(A)=R(E)$ forms a maximal subgroup of $C_{n \times n}$ containing E as identity.

Proof. Since $E J=J E$, by (iii) and (iv), we have $E=J E J$ and $E E^{\dagger}=E^{2}=E=(J E)(E J)=(J E)(J E)^{\dagger}$; hence $R(E)=R(J E)$. Since E is hermitian, it is automatically EP and by theorem 2.7, E is Cen-EP. Thus, $E \in H_{j}(E)$. For $A \in H_{j}(E), A$ is Cen-EP and $R(A)=R(E)=R(J E) \Rightarrow A A^{\dagger}=E E^{\dagger}=E$ and $A A^{\dagger}=E=(J E)(J E)^{\dagger}=J E E^{\dagger} J^{\dagger}=$ $J A A^{\dagger} J^{\dagger}=(J A)(J A)^{\dagger}$. Therefore, $R(A)=R(J A)$. Hence by Theorem 2.7, A is EP. Thus, $H_{j}(E)=\{A ; A$ is EP and $R(A)=R(E)\}$. By [6], $H_{j}(E)$ forms a maximal subgroup of $C_{n \times n}$ containing E as identity.

Remark 2.10. For $A \in C_{n \times n}$, there exist unique centrohermitian matrices P and Q such that $A=P+i Q$, where $P=\frac{1}{2}(A+J \bar{A} J)$ and $Q=\frac{1}{2 i}(A-J \bar{A} J)$ [4]. In the following theorem, an equivalent condition for a matrix A to be Cen-EP is obtained in terms of P, the centrohermitian part of A.

Theorem 2.11. For $A \in C_{n \times n}, A$ is Cen-EP $\Leftrightarrow N(A) \subset N(P)$, where P is the centrohermitian part of A.

Proof. If A is Cen-EP, then $N(A)=N(J \bar{A} J)=N(\bar{A} J)$. Therefore, for $x \in N(A)$, both $A x=0$ and $J \bar{A} J x=0$ which implies that $P x=\frac{1}{2}(A+J \bar{A} J) x=0$. Thus, $N(A) \subseteq N(P)$. Conversely, let $N(A) \subseteq N(P)$. Then $A x=0$ implies $P x=0$ and hence $Q x=0$. Therefore, $N(A) \subseteq N(Q)$. Thus, $N(A) \subseteq N(P) \cap N(Q)$. Since both P and Q are centrohermitian, $P=J \bar{P} J$ and $Q=J \bar{Q} J$. Hence, $N(P)=N(J \bar{P} J)=N(\bar{P} J)$ and $N(Q)=N(J \bar{Q} J)=N(\bar{Q} J)$. Now $N(A) \subseteq N(P) \cap N(Q)=N(\bar{P} J) \cap N(\bar{Q} J) \subseteq N((\bar{P}-i \bar{Q}) J)$. Therefore, $N(A) \subseteq N(\bar{A} J)$ and $\rho(A)=\rho(\bar{A} J)$. Hence, $N(A)=N(\bar{A} J)$. Therefore, A is Cen-EP. Hence the theorem.

References

[1] T.S.Baskett and I.J.Katz, Theorems on products of EPr matrices, Linear Algebra Appl., 2(1969), 87-103.
[2] A.Ben-Israel and T.N.E.Greville, Generalized Inverses, Theory and Applications, Wiley and sons, New york, (1974).
[3] R.D.Hill, R.G.Bates and S.R.Waters, On centrohermitian matrices, SIAM Journal Matrix Anal. Applications, 11(1990), 128-133.
[4] R.D.Hill and S.R.Waters, On k-real and k-Hermitian matrices, Linear Algebra Appl., 169(1992), 17-29.
[5] I.J.Katz and M.H.Pearl, On EPr and normal EP matrices, J. Res. Nat.Bur. Stds., 70(1966), 47-77.
[6] A.R.Meenakshi, On EPr matrices with entries from an arbitrary field, Linear and Multilinear Algebra, 9(1980), 159-164.
[7] M.H.Pearl, On normal and EP matrices, Michigan Math. J., 6(1959), 1-5.
[8] C.R.Rao and S.K.Mitra, Generalized inverse of matrices and its applications, Wiley and sons, New york, (1971).
[9] H.Schwerdtfeger, Introduction to linear algebra and the theory of matrices, Nordhoff, Groningen, (1962).

[^0]: * E-mail: krvarul@gmail.com

