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1. Introduction

Let Cn×n be the space of n × n complex matrices of order n. Let Cn be the space of complex n-tuples. For A ∈ Cn×n,

let AT , Ā, A∗, A†, R(A), N(A) and ρ(A) denote the transpose, conjugate, conjugate transpose, Moore-Penrose inverse, range

space, null space and rank of A respectively. We denote a solution X of the equation AXA = A by A−. Let J be the unit

perdiagonal matrix that has 1’s on the secondary diagonal and 0’s elsewhere. That is

J =



0 0 . . . 0 1

0 0 . . . 1 0

. . . . . . .

. . . . . . .

. . . . . . .

1 0 . . . 0 0


A matrix A = (aij) ∈ Cn×n is centrohermitian if aij = ān−i+1,n−j+1, for i, j = 1 to n or

A = JĀJ (1)

A theory for centrohermitian matrices is developed in [3]. In this paper, we introduce the concept of Cen-EP matrices as

a generalization of centrohermitian and EP matrices and extend many of the basic results on centrohermitian [3] and EP

matrices [1,5,7,9]. A matrix A ∈ Cn×n is EP if

N(A) = N(A∗) (2)
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2. Cen-EP Matrices

In this section, we present equivalent characterizations of a Cen-EP matrix. As an application, it is shown that the class of

all Cen-EP matrices having the same range spaces forms a group under multiplication. For x = (x1, x2, ..., xn)T ∈ Cn, let

us define the function j(x) = Jx and J satisfies the following properties :

J = JT = J−1 = J∗ (3)

(JA)† = A†J and (AJ)† = JA† for A ∈ Cn×n (by [2]) (4)

Definition 2.1. A matrix A ∈ Cn×n is said to Cen-EP if it satisfies the condition Ax = 0 ⇔ Āj(x) = 0 or equivalently,

N(A) = N(JĀJ) = N(ĀJ). If A is nonsingular, then A is Cen-EP.

Remark 2.2. Every centrohermitian matrix is Cen-EP matrix.But the converse need not be true.

Example 2.3. Let A =

 1 1

1 0

. Then, JĀJ =

 0 1

1 1

 6= A. Therefore, A is not centrohermitian. Since A is a

nonsingular matrix, A is a Cen-EP matrix.

Theorem 2.4. For A ∈ Cn×n, the following are equivalent :

(1). A is Cen-EP.

(2). JA is EP.

(3). AJ is EP.

(4). A† is Cen-EP.

(5). N(A) = N(A†J).

(6). N(Ā) = N(AJ).

(7). R(AT ) = R(JA∗).

(8). R(A∗) = R(JA).

(9). AA†J = JA†A.

(10). JAA† = A†AJ .

(11). A = JA∗JH for a non singular n× n matrix H.

(12). A = HJA∗J for a non singular n× n matrix H.

(13). A∗ = HJAJ for a non singular n× n matrix H.

(14). A∗ = JAJH for a non singular n× n matrix H.

(15). Cn = R(A)⊕N(AJ).

(16). Cn = R(JA)⊕N(A).
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Proof.

(1) ⇔ (2) ⇔ (3):

A is Cen-EP⇔ N(A) = N(JĀJ) (by (2.1))

⇔ N(JA) = N(ĀJ) (by (3))

⇔ N(JA) = N(JA)∗

⇔ JA is EP (by (2))

⇔ J(JA)J∗ is EP (by [1])

⇔ AJ is EP (by (3))

(2) ⇔ (4):

JA is EP⇔ (JA)† is EP (by [2])

⇔ A†J is EP (by (4))

⇔ A† is EP (by equivalence of (1) and (3) applied to A†)

(1) ⇔ (5):

A is Cen-EP⇔ N(A) = N(ĀJ) (by (2.1))

⇔ N(A) = N(JA)∗

⇔ N(A) = N(JA)†

⇔ N(A) = N(A†J)

(1) ⇔ (6) ⇔ (7): Now, we shall prove the equivalence of (1), (6) and (7) using ρ(A) = ρ(Ā) = ρ(ĀJ) = ρ(AJ) in the

following way :

A is Cen-EP⇔ N(A) = N(ĀJ)

⇔ N(A) ⊆ N(ĀJ)

⇔ ĀJ = ĀJA−A (by [2])

⇔ Ā = ĀJA−AJ

⇔ Ā = ĀJ−1A−AJ

⇔ Ā = Ā(AJ)−AJ (by (4))

⇔ N(AJ) ⊆ N(Ā) (by [2])

⇔ N(Ā) = N(AJ)

⇔ R(Ā)∗ = R(AJ)∗ (by [8])

⇔ R(AT ) = R(JA∗)
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(1) ⇔ (8):

A is Cen-EP⇔ N(A) = N(ĀJ)

⇔ N(A) = N(JA)∗

⇔ R(A∗) = R(JA) (by [8])

(3) ⇔ (9):

AJ is EP⇔ (AJ)(AJ)† = (AJ)†(AJ) (by [2])

⇔ (AJ)(JA†) = (JA†)(AJ) (by (4))

⇔ AA† = JA†AJ

⇔ AA†J = JA†A

(9) ⇔ (10): By (3), J2 = I, this equivalence follows by pre and post multiplying AA†J = JA†A by J .

(2) ⇔ (11) : JA is EP ⇔ (JA)∗ = (JA)H1 for a non singular n× n matrix H1 [2].

⇔ A∗J = JAH1

⇔ JA∗J = AH1

⇔ A = JA∗JH, where H = H−1
1 is a non singular n× n matrix.

(3) ⇔ (12): AJ is EP ⇔ (AJ)∗ = H1(AJ) for a non singular n× n matrix H1 [2].

⇔ JA∗ = H1AJ

⇔ JA∗J = H1A

⇔ A = HJA∗J, where H = H−1
1 is a non singular n× n matrix.

The equivalences (11) ⇔ (13) and (12) ⇔ (14) follow immediately by taking conjugate transpose and using J = J∗.

(13) ⇔ (16):

A∗ ⇔ HJAJ for a non singular n× n matrix H

⇔ A∗A = H(JA)(JA)

⇔ A∗A = H(JA)2

⇔ ρ(A∗A) = ρ(H(JA)2)

⇔ ρ(A∗A) = ρ((JA)2)

Over the complex field, A∗A and A have the same rank. Therefore,

ρ((JA)2) = ρ(A∗A) = ρ(A) = ρ(JA)⇔ R(JA) ∩N(JA) = {0}

⇔ R(JA) ∩N(A) = {0}

⇔ Cn = R(JA)⊕N(A)

(14) ⇔ (15): This can by proved along the same lines and using ρ(AA∗) = ρ(A). Hence the proof is omitted.
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Remark 2.5. It is well known that a complex normal matrix is EP. However, a normal matrix need not be Cen-EP.

Example 2.6.

(1). A =

 1 1

1 1

 is EP as well as Cen-EP.

(2). A =


1 0 1

0 1 0

0 0 0

 is Cen-EP but not EP.

(3). A =

 1 0

0 0

 is hermitian, normal and EP but not Cen-EP and hence not centrohermitian. This motivates the

following result.

Theorem 2.7. Let A ∈ Cn×n. Then any two of the following conditions imply the other one:

(1). A is EP.

(2). A is Cen-EP.

(3). R(A) = R(JA).

Proof. First, we prove that whenever (1) holds, then (2) and (3) are equivalent. Suppose (1) holds. Then A is EP

⇔ R(A) = R(A∗). Now, by theorem 2.4, A is Cen-EP ⇔ R(A∗) = R(JA). Therefore, A is Cen-EP ⇔ R(A) = R(JA). This

completes the proof of [(1) and (2)]⇒ (3) and [(1) and (3)]⇒(2).

Now, let us prove [(2) and (3)]⇒(1). Since A is Cen-EP, then R(A∗) = R(JA). By using (3), we have R(A) = R(A∗).

Therefore, A is EP. Thus (1) holds.

Corollary 2.8. If A ∈ Cn×n is normal and AA∗ is Cen-EP, then A is Cen-EP.

Proof. Since A is normal, [A is EP and AA∗ is Cen-EP]⇔ R(AA∗) = R(JAA∗)⇒ R(A) = R(JA). From Theorem 2.7, A

is Cen-EP.

Corollary 2.9. Let E = E∗ = E2 ∈ Cn×n be a hermitian idempotent that commutes with J . Then Hj(E) = {A;A is

Cen-EP and R(A) = R(E)} forms a maximal subgroup of Cn×n containing E as identity.

Proof. Since EJ = JE, by (iii) and (iv), we have E = JEJ and EE† = E2 = E = (JE)(EJ) = (JE)(JE)†; hence

R(E) = R(JE). Since E is hermitian, it is automatically EP and by theorem 2.7, E is Cen-EP. Thus, E ∈ Hj(E). For

A ∈ Hj(E), A is Cen-EP and R(A) = R(E) = R(JE) ⇒ AA† = EE† = E and AA† = E = (JE)(JE)† = JEE†J† =

JAA†J† = (JA)(JA)†. Therefore, R(A) = R(JA). Hence by Theorem 2.7, A is EP. Thus, Hj(E) = {A;A is EP and

R(A) = R(E)}. By [6], Hj(E) forms a maximal subgroup of Cn×n containing E as identity.

Remark 2.10. For A ∈ Cn×n, there exist unique centrohermitian matrices P and Q such that A = P + iQ, where

P = 1
2
(A+ JĀJ) and Q = 1

2i
(A− JĀJ) [4]. In the following theorem, an equivalent condition for a matrix A to be Cen-EP

is obtained in terms of P , the centrohermitian part of A.

Theorem 2.11. For A ∈ Cn×n, A is Cen-EP ⇔ N(A) ⊂ N(P ), where P is the centrohermitian part of A.
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Proof. If A is Cen-EP, then N(A) = N(JĀJ) = N(ĀJ). Therefore, for x ∈ N(A), both Ax = 0 and JĀJx = 0

which implies that Px = 1
2
(A + JĀJ)x = 0. Thus, N(A) ⊆ N(P ). Conversely, let N(A) ⊆ N(P ). Then Ax = 0

implies Px = 0 and hence Qx = 0. Therefore, N(A) ⊆ N(Q). Thus, N(A) ⊆ N(P ) ∩ N(Q). Since both P and Q are

centrohermitian, P = JP̄J and Q = JQ̄J . Hence, N(P ) = N(JP̄J) = N(P̄ J) and N(Q) = N(JQ̄J) = N(Q̄J). Now

N(A) ⊆ N(P ) ∩ N(Q) = N(P̄ J) ∩ N(Q̄J) ⊆ N((P̄ − iQ̄)J). Therefore, N(A) ⊆ N(ĀJ) and ρ(A) = ρ(ĀJ). Hence,

N(A) = N(ĀJ). Therefore, A is Cen-EP. Hence the theorem.
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