

International Journal of Mathematics And its Applications

# Intuitionistic Fuzzy g'''-continuous Mappings

**Research Article** 

### S.Rose Mary<sup>1</sup>, R.Malarvizhi<sup>2</sup> and O.Ravi<sup>3</sup>\*

- 1 Department of Mathematics, Fatima College, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, Knowledge Institute of Technology, Kakapalayam, Salem, Tamil Nadu, India.
- 3 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

Abstract: In this paper, we introduce the concepts of intuitionistic fuzzy g<sup>'''</sup>-continuous mappings and intuitionistic fuzzy g<sup>'''</sup>irresolute mappings. Further, we study some of their properties.
MSC: 54A40, 03F55.
Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy g<sup>'''</sup>-continuous mapping, Intuitionistic fuzzy continuous mapping, Intuitionistic fuzzy generalized continuous mapping.
© JS Publication.

# 1. Introduction

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Coker [3] introduced the basic definitions and properties of intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets.

In this paper we introduce Intuitionistic fuzzy g'''-continuous mappings and Intuitionistic fuzzy g'''-irresolute mappings. Also the interconnections between the intuitionistic fuzzy continuous mappings and the intuitionistic fuzzy irresolute mappings are investigated. Some examples are given to illustrate the results.

### 2. Preliminaries

**Definition 2.1** ([1]). Let X be a non empty set. An intuitionistic fuzzy set (IFS in short) A in X can be described in the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}$$

where the function  $\mu_A : X \to [0, 1]$  is called the membership function and  $\mu_A(x)$  denotes the degree to which  $x \in A$  and the function  $\nu_A : X \to [0, 1]$  is called the non-membership function and  $\nu_A(x)$  denotes the degree to which  $x \notin A$  and  $0 \le \mu_A(x) + \nu_A(x) \le 1$  for each  $x \in X$ . Denote IFS(X), the set of all intuitionistic fuzzy sets in X.

<sup>\*</sup> E-mail: siingam@yahoo.com

Throughout the paper, X denotes a non empty set.

**Definition 2.2** ([1]). Let A and B be any two IFSs of the form  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$  and  $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$ .  $|x \in X\}$ . Then

(1).  $A \subseteq B$  if and only if  $\mu_A(x) \leq \mu_B(x)$  and  $\nu_A(x) \geq \nu_B(x)$  for all  $x \in X$ ,

- (2). A = B if and only if  $A \subseteq B$  and  $B \subseteq A$ ,
- (3).  $A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle \mid x \in X \},\$
- (4).  $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle \mid x \in X \},$
- (5).  $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle \mid x \in X \}.$

**Definition 2.3** ([1]). The intuitionistic fuzzy sets  $0_{\sim} = \{\langle x, 0, 1 \rangle \mid x \in X\}$  and  $1_{\sim} = \{\langle x, 1, 0 \rangle \mid x \in X\}$  are called the empty set and the whole set of X respectively.

**Definition 2.4** ([1]). Let A and B be any two IFSs of the form  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$  and  $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$ . Then

- (1).  $A \subseteq B$  and  $A \subseteq C \Rightarrow A \subseteq B \cap C$ ,
- (2).  $A \subseteq C$  and  $B \subseteq C \Rightarrow A \cup B \subseteq C$ ,
- (3).  $A \subseteq B$  and  $B \subseteq C \Rightarrow A \subseteq C$ ,
- (4).  $(A \cup B)^c = A^c \cap B^c$  and  $(A \cap B)^c = A^c \cup B^c$ ,
- (5).  $((A)^c)^c = A$ ,
- (6).  $(1_{\sim})^c = 0_{\sim} \text{ and } (0_{\sim})^c = 1_{\sim}.$

**Definition 2.5** ([3]). An intuitionistic fuzzy topology (IFT in short) on X is a family  $\tau$  of IFSs in X satisfying the following axioms :

- (1).  $\theta_{\sim}, \ 1_{\sim} \in \tau,$
- (2).  $G_1 \cap G_2 \in \tau$  for any  $G_1, G_2 \in \tau$ ,
- (3).  $\cup$   $G_i \in \tau$  for any family  $\{G_i \mid i \in J\} \subseteq \tau$ .

In this case the pair  $(X, \tau)$  is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in  $\tau$  is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement  $A^c$  of an IFOS A in an IFTS  $(X, \tau)$  is called an intuitionistic fuzzy closed set (IFCS in short) in X.

**Definition 2.6** ([3]). Let  $(X, \tau)$  be an IFTS and  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$  be an IFS in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined as follows:

 $int(A) = \bigcup \{G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A\},$  $cl(A) = \cap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$ 

**Proposition 2.7** ([3]). For any IFSs A and B in  $(X, \tau)$ , we have

- (1).  $int(A) \subseteq A$ ,
- (2).  $A \subseteq cl(A)$ ,
- (3). A is an IFCS in  $X \Leftrightarrow cl(A) = A$ ,
- (4). A is an IFOS in  $X \Leftrightarrow int(A) = A$ ,
- (5).  $A \subseteq B \Rightarrow int(A) \subseteq int(B)$  and  $cl(A) \subseteq cl(B)$ ,
- (6). int(int(A)) = int(A),
- (7). cl(cl(A)) = cl(A),
- (8).  $cl(A \cup B) = cl(A) \cup cl(B)$ ,
- (9).  $int(A \cap B) = int(A) \cap int(B)$ .

**Proposition 2.8** ([3]). For any IFS A in  $(X, \tau)$ , we have

- (1).  $int(0_{\sim}) = 0_{\sim}$  and  $cl(0_{\sim}) = 0_{\sim}$ ,
- (2).  $int(1_{\sim}) = 1_{\sim} and cl(1_{\sim}) = 1_{\sim},$
- (3).  $(int(A))^c = cl(A^c),$
- (4).  $(cl(A))^c = int(A^c)$ .

**Proposition 2.9** ([3]). If A is an IFCS in  $(X, \tau)$  then cl(A) = A and if A is an IFOS in  $(X, \tau)$  then int(A) = A. The arbitrary union of IFCSs is an IFCS in  $(X, \tau)$ .

**Definition 2.10** ([3]). Let X and Y be two nonempty sets and  $f: X \to Y$  be a mapping. If  $B = \{ \langle y, \mu_B(y), \nu_B(y) \rangle \mid y \in Y \}$  is an IFS in Y, then the preimage of B under f denoted by  $f^{-1}(B)$ , is an IFS in X defined by  $f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x) \rangle \mid x \in X \}$  where  $f^{-1}(\mu_B)(x) = \mu_B(f(x))$ .

**Definition 2.11** ([3]). Let X and Y be two nonempty sets and  $f: X \to Y$  be a mapping. If  $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$  is an IFS in X, then the image of A under f denoted by f(A), is an IFS in Y defined by  $f(A) = \{ \langle y, f(\mu_A)(y), f(\nu_A)(y) \rangle | y \in Y \}$ , where

$$f(\mu_A)(y) = \begin{cases} \sup \mu_A(x) & \text{if } f^{-1}(y) \neq \emptyset \text{ and } x \in f^{-1}(y) \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \\ f(\nu_A)(y) = \begin{cases} \inf \nu_A(x) & \text{if } f^{-1}(y) \neq \emptyset \text{ and } x \in f^{-1}(y) \\ 1 & \text{otherwise} \end{cases} \quad \text{for each } y \in Y. \end{cases}$$

**Result 2.12** ([3]). Let A,  $A_1$ ,  $A_2$  be IFSs in X and B,  $B_1$ ,  $B_2$  be IFSs in Y. Let  $f: X \to Y$  be a mapping. Then

- (1).  $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2),$
- (2).  $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2),$
- (3).  $A \subseteq f^{-1}(f(A)),$

- (4).  $f(f^{-1}(B)) \subseteq B$ ,
- (5). If f is injective mapping, then  $f^{-1}(f(A)) = A$ ,
- (6). If f is surjective mapping, then  $f(f^{-1}(B)) = B$ ,
- (7).  $f^{-1}(\theta_{\sim}) = \theta_{\sim},$
- (8).  $f^{-1}(1_{\sim}) = 1_{\sim},$
- (9).  $f(\theta_{\sim}) = \theta_{\sim},$
- (10). If f is surjective mapping, then  $f(1_{\sim}) = 1_{\sim}$ ,
- (11).  $f^{-1}(B^c) = (f^{-1}(B))^c$ ,
- (12). If f is bijective mapping, then  $(f(A))^c = f(A^c)$ .

**Definition 2.13.** An IFS A in an IFTS  $(X, \tau)$  is said to be an

- (1). intuitionistic fuzzy  $\alpha$ -closed set (IF $\alpha$ CS in short) if  $cl(int(cl(A))) \subseteq A$ , [5]
- (2). intuitionistic fuzzy semi closed set (IFSCS in short) if  $int(cl(A)) \subseteq A$ , [4]
- (3). intuitionistic fuzzy semi pre closed set (IFSPCS in short) if  $int(cl(int(A))) \subseteq A$ . [17]

The complement of an IF $\alpha$ CS (resp. an IFSCS, an IFSPCS) is called an IF $\alpha$ OS (resp. an IFSOS, an IFSPOS).

**Definition 2.14** ([14]). Let A be an IFS in an IFTS  $(X, \tau)$ . Then the  $\alpha$ -interior of A ( $\alpha$ int(A) in short) and the  $\alpha$ -closure of A ( $\alpha$ cl(A) in short) are defined as follows:

 $\alpha int(A) = \bigcup \{ G \mid G \text{ is an } IF\alpha OS \text{ in } (X, \tau) \text{ and } G \subseteq A \},$  $\alpha cl(A) = \cap \{ K \mid K \text{ is an } IF\alpha CS \text{ in } (X, \tau) \text{ and } A \subseteq K \}.$ 

sint(A), scl(A), spint(A) and spcl(A) are similarly defined. For any IFS A in  $(X, \tau)$ , we have  $\alpha cl(A^c) = (\alpha int(A))^c$  and  $\alpha int(A^c) = (\alpha cl(A))^c$ .

**Definition 2.15.** An IFS A in  $(X, \tau)$  is said to be an

- (1). intuitionistic fuzzy generalized closed set (IFGCS in short) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ , [17].
- (2). intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ , [13]. The complement of an IFGSCS is called an IFGSOS.
- (3). intuitionistic fuzzy semi generalized closed set (IFSGCS in short) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFSOS in  $(X, \tau)$ , [16].
- (4). intuitionistic fuzzy  $\alpha$  generalized closed set (IF $\alpha$ GCS in short) if  $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is an IFOS in  $(X, \tau), [14]$ .
- (5). intuitionistic fuzzy  $\alpha$  generalized semi closed set (IF $\alpha$ GSCS in short) if  $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is an IFSOS in (X,  $\tau$ ), [6].

- (6). intuitionistic fuzzy  $\omega$  closed set (IF $\omega$ CS in short) if cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is an IFSOS in (X,  $\tau$ ), [16]. The complement of an IF $\omega$ CS is called an IF $\omega$ OS.
- (7). intuitionistic fuzzy generalized semi pre closed set (IFGSPCS in short) if  $spcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFOS in  $(X, \tau)$ , [11].

The complements of the above mentioned intuitionistic fuzzy closed sets are called their respective intuitionistic fuzzy open sets. The family of all  $IF\omega OSs$  of  $(X, \tau)$  is denoted by  $IF\omega O(X)$ .

**Definition 2.16** ([9]). An IFS A in  $(X, \tau)$  is said to be an

- (1). intuitionistic fuzzy g'''-closed set (IFG'''CS in short) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFGSOS in  $(X, \tau)$ .
- (2). intuitionistic fuzzy  $g_s'''$ -closed set (IFG'''\_SCS in short) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFGSOS in  $(X, \tau)$ .
- (3). intuitionistic fuzzy  $g_{\alpha}^{\prime\prime\prime}$ -closed set (IFG\_{\alpha}^{\prime\prime\prime}CS in short) if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is an IFGSOS in  $(X, \tau)$ .

The complement of an IFG'''CS (resp. IFG'''CS, IFG'''CS) is called an IFG'''OS (resp. IFG'''CS, IFG'''OS).

**Definition 2.17.** Let f be a mapping from an IFTS  $(X, \tau)$  into an IFTS  $(Y, \sigma)$ . Then f is said to be an

- (1). intuitionistic fuzzy continuous (IF continuous in short) if  $f^{-1}(B) \in IFO(X)$  for every  $B \in \sigma$ , [4].
- (2). intuitionistic fuzzy semi continuous (IFS continuous in short) if  $f^{-1}(B) \in IFSO(X)$  for every  $B \in \sigma$ , [7].
- (3). intuitionistic fuzzy  $\omega$  continuous (IF $\omega$  continuous in short) if  $f^{-1}(B) \in IF\omega O(X)$  for every  $B \in \sigma$ , [16].
- (4). intuitionistic fuzzy generalized continuous (IFG continuous in short) if  $f^{-1}(B)$  is an IFGCS in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ , [17].
- (5). intuitionistic fuzzy generalized semi continuous (IFGS continuous in short) if  $f^{-1}(B)$  is an IFGSCS in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ , [13].
- (6). intuitionistic fuzzy generalized semi pre continuous (IFGSP continuous in short) if  $f^{-1}(B)$  is an IFGSPCS in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ , [12].
- (7). intuitionistic fuzzy  $\alpha$ -generalized continuous (IF $\alpha$ G continuous in short) if  $f^{-1}(B)$  is an IF $\alpha$ GCS in (X,  $\tau$ ) for every IFCS B of (Y,  $\sigma$ ), [10].
- (8). intuitionistic fuzzy  $\alpha$ -generalized semi continuous (IF $\alpha$ GS continuous in short) if  $f^{-1}(B)$  is an IF $\alpha$ GSCS in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ , [6].
- (9). intuitionistic fuzzy  $\alpha$ -continuous (IF $\alpha$  continuous in short) if  $f^{-1}(B)$  is an IF $\alpha$ CS in (X,  $\tau$ ) for every IFCS B of (Y,  $\sigma$ ), [7].

# 3. Intuitionistic Fuzzy g<sup>'''</sup>-continuous Mappings

In this section we introduce intuitionistic fuzzy g'''-continuous functions and study some of its properties.

**Definition 3.1.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called an intuitionistic fuzzy g'''-continuous (IFG''' continuous in short) if  $f^{-1}(B)$  is an IFG''' CS in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ .

**Example 3.2.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$  and  $T_2 = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f : (X, \tau) \to (Y, \sigma)$  by f(a) = u and f(b) = v. Then  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ . Therefore f is an IFG<sup>'''</sup> continuous function.

**Example 3.3.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$  and  $T_2 = \langle y, (0.6, 0.5), (0.3, 0.4) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.3, 0.4), (0.6, 0.5) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function.

**Theorem 3.4.** Every IF continuous function is an IFG''' continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IF continuous function. Let B be an IFCS in Y. Since f is an IF continuous function,  $f^{-1}(B)$  is an IFCS in X. Since every IFCS is an IFG<sup>'''</sup>CS [9],  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Hence f is an IFG<sup>'''</sup> continuous function.

The converse of Theorem 3.4 need not be true as seen from the following Example.

**Example 3.5.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$  and  $T_2 = \langle y, (0.8, 0.7), (0.1, 0.2) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.1, 0.2), (0.8, 0.7) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFCS in  $(X, \tau)$ . Therefore f is not an IF continuous function. But f is an IFG''' continuous function.

**Theorem 3.6.** Every IFG''' continuous function is an IFGSP continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let B be an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IFGSPCS [9],  $f^{-1}(B)$  is an IFGSPCS in X. Hence f is an IFGSP continuous function.

The converse of Theorem 3.6 need not be true as seen from the following Example.

**Example 3.7.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$  and  $T_2 = \langle y, (0.6, 0.5), (0.3, 0.4) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.3, 0.4), (0.6, 0.5) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG'''CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IFGSP continuous function.

**Theorem 3.8.** Every IFG''' continuous function is an IF $\omega$  continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let  $B^c$  be an IFOS in Y. Then B is an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IF $\omega$ CS [9],  $f^{-1}(B)$  is an IF $\omega$ CS in X and X \  $f^{-1}(B) = f^{-1}(B^c)$  is IF $\omega$ OS in X. Hence f is an IF $\omega$  continuous function.

The converse of Theorem 3.8 need not be true as seen from the following Example.

**Example 3.9.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$  and  $T_2 = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.7, 0.6), (0.2, 0.3) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IF $\omega$  continuous function. **Theorem 3.10.** Every IFG''' continuous function is an IFG continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let B be an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IFGCS [9],  $f^{-1}(B)$  is an IFGCS in X. Hence f is an IFG continuous function.

The converse of Theorem 3.10 need not be true as seen from the following Example.

**Example 3.11.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$  and  $T_2 = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.7, 0.6), (0.2, 0.3) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IFG continuous function.

**Theorem 3.12.** Every IFG''' continuous function is an IF $\alpha$ G continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let B be an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IF $\alpha$ GCS [9],  $f^{-1}(B)$  is an IF $\alpha$ GCS in X. Hence f is an IF $\alpha$ G continuous function.

The converse of Theorem 3.12 need not be true as seen from the following Example.

**Example 3.13.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$  and  $T_2 = \langle y, (0.3, 0.2), (0.6, 0.7) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.6, 0.7), (0.3, 0.2) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IF $\alpha$ G continuous function.

**Theorem 3.14.** Every IFG''' continuous function is an IFGS continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let B be an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IFGSCS [9],  $f^{-1}(B)$  is an IFGSCS in X. Hence f is an IFGS continuous function.

The converse of Theorem 3.14 need not be true as seen from the following Example.

**Example 3.15.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$  and  $T_2 = \langle y, (0.3, 0.2), (0.6, 0.7) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.6, 0.7), (0.3, 0.2) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IFGS continuous function.

**Definition 3.16.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called an intuituionistic fuzzy  $g_s'''$ -continuous (IFG''' continuous in short) if  $f^{-1}(B)$  is an IFG''' CS in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ .

**Theorem 3.17.** Every IFG''' continuous function is an  $IFG''_{S}$  continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let B be an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IFG<sup>'''</sup>CS [9],  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Hence f is an IFG<sup>'''</sup> continuous function.

The converse of Theorem 3.17 need not be true as seen from the following Example.

**Example 3.18.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$  and  $T_2 = \langle y, (0.6, 0.5), (0.3, 0.4) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.3, 0.4), (0.6, 0.5) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IFG''' continuous function.

**Theorem 3.19.** Every IFG''' continuous function is an  $IF\alpha GS$  continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let B be an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IF $\alpha$ GSCS [9],  $f^{-1}(B)$  is an IF $\alpha$ GSCS in X. Hence f is an IF $\alpha$ GS continuous function.

The converse of Theorem 3.19 need not be true as seen from the following Example.

**Example 3.20.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$  and  $T_2 = \langle y, (0.3, 0.2), (0.6, 0.7) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.6, 0.7), (0.3, 0.2) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IF $\alpha$ GS continuous function.

**Definition 3.21.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called an intuituionistic fuzzy  $g_{\alpha}^{'''}$ -continuous (IF $G_{\alpha}^{'''}$  continuous in short) if  $f^{-1}(B)$  is an IF $G_{\alpha}^{'''}CS$  in  $(X, \tau)$  for every IFCS B of  $(Y, \sigma)$ .

**Theorem 3.22.** Every IFG''' continuous function is an  $IFG'''_{\alpha}$  continuous function.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let B be an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous function,  $f^{-1}(B)$  is an IFG<sup>'''</sup>CS in X. Since every IFG<sup>'''</sup>CS is an IFG<sup>'''</sup><sub>\alpha</sub>CS [9],  $f^{-1}(B)$  is an IFG<sup>'''</sup><sub>\alpha</sub>CS in X. Hence f is an IFG<sup>'''</sup><sub>\alpha</sub> continuous function.

The converse of Theorem 3.22 need not be true as seen from the following Example.

**Example 3.23.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.3, 0.6), (0.6, 0.3) \rangle$  and  $T_2 = \langle y, (0.7, 0.6), (0.2, 0.3) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IFG''' continuous function.

**Remark 3.24.** IF $\alpha$  continuous functions and IFG''' continuous functions are independent.

**Example 3.25.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$  and  $T_2 = \langle y, (0.9, 0.6), (0.1, 0.4) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.1, 0.4), (0.9, 0.6) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IF $\alpha$  continuous function.

**Example 3.26.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$ ,  $T_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$  and  $T_3 = \langle y, (0.25, 0.15), (0.65, 0.75) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, T_2, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_3, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \rightarrow (Y, \sigma)$  by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.65, 0.75), (0.25, 0.15) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IF $\alpha$ CS in  $(X, \tau)$ . Therefore f is not an IF $\alpha$  continuous function. But f is an IFG''' continuous function.

Remark 3.27. IFS continuous functions and IFG''' continuous functions are independent.

**Example 3.28.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$  and  $T_2 = \langle y, (0.5, 0.4), (0.4, 0.5) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.4, 0.5), (0.5, 0.4) \rangle$  of  $(Y, \sigma), f^{-1}(B)$  is not an IFG''' CS in  $(X, \tau)$ . Therefore f is not an IFG''' continuous function. But f is an IFS continuous function.

**Example 3.29.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ ,  $T_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$  and  $T_3 = \langle y, (0.1, 0.2), (0.8, 0.7) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, T_2, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_3, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$  by f(a) = u and f(b) = v. Then for the IFCS  $B = \langle y, (0.8, 0.7), (0.1, 0.2) \rangle$  of  $(Y, \sigma)$ ,  $f^{-1}(B)$  is not an IFSCS in  $(X, \tau)$ . Therefore f is not an IFS continuous function. But f is an IFG''' continuous function.

**Theorem 3.30.** A function  $f: X \to Y$  is an IFG<sup>'''</sup> continuous if and only if the inverse image of every IFOS in Y is an IFG<sup>'''</sup> OS in X.

*Proof.* Necessary Part: Let A be an IFOS in Y. This implies  $A^c$  is an IFCS in Y. Since f is an IFG<sup>'''</sup> continuous,  $f^{-1}(A^c)$  is an IFG<sup>'''</sup>CS in X. Since  $f^{-1}(A^c) = (f^{-1}(A))^c$ ,  $f^{-1}(A)$  is an IFG<sup>'''</sup>OS in X. Hence the inverse image of an IFOS in Y is an IFG<sup>'''</sup>OS in X.

Sufficient Part: Let A be an IFCS in Y. Then  $A^c$  is an IFOS in Y. By hypothesis,  $f^{-1}(A^c)$  is an IFG<sup>'''</sup>OS in X. Since  $f^{-1}(A^c) = (f^{-1}(A))^c$ ,  $f^{-1}(A)$  is an IFG<sup>'''</sup>CS in X. Hence f is an IFG<sup>'''</sup> continuous function.

Let us introduce  $IF_{g'''}T_{1/2}$  and  $IF_{g'''a}T_{1/2}$  spaces.

**Definition 3.31.** An IFTS  $(X, \tau)$  is said to be an intuitionistic fuzzy  $_{g'''}T_{1/2}$  ( $IF_{g'''}T_{1/2}$  in short) if every IFG''' CS in  $(X, \tau)$  is an IFCS in  $(X, \tau)$ .

**Definition 3.32.** An IFTS  $(X, \tau)$  is said to be an intuitionistic fuzzy  $_{g'''a}T_{1/2}$  ( $IF_{g'''a}T_{1/2}$  in short) if every IFGCS in  $(X, \tau)$  is an IFG''' CS in  $(X, \tau)$ .

**Theorem 3.33.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Then f is an IF continuous function if X is an  $IF_{g'''}T_{1/2}$  space.

*Proof.* Let A be an IFCS in Y. By hypothesis,  $f^{-1}(A)$  is an IFG'''CS in X. Since X is an IF $_{g'''}T_{1/2}$  space,  $f^{-1}(A)$  is an IFCS in X. Hence f is an IF continuous function.

**Theorem 3.34.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG continuous function. Then f is an IFG''' continuous function if X is an  $IF_{g'''a}T_{1/2}$  space.

*Proof.* Let A be an IFCS in Y. By hypothesis,  $f^{-1}(A)$  is an IFGCS in X. Since X is an  $IF_{g'''a}T_{1/2}$  space,  $f^{-1}(A)$  is an IFG'''CS in X. Hence f is an IFG''' continuous function.

**Remark 3.35.** The composition of two IFG''' continuous functions need not be an IFG''' continuous function.

**Example 3.36.** Let  $X = \{a, b\}$ ,  $Y = \{c, d\}$  and  $Z = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$  and  $T_2 = \langle z, (0.8, 0.7), (0.1, 0.2) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$ ,  $\sigma = \{0_{\sim}, 1_{\sim}\}$  and  $\delta = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X, Y and Z respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$  by f(a) = c and f(b) = d, and define a function  $g: (Y, \sigma) \to (Z, \delta)$  by g(c) = u and g(d) = v. Then f and g are IFG''' continuous functions. Consider an IFS  $A = \langle z, (0.1, 0.2), (0.8, 0.7) \rangle$ . Then A is an IFCS in Z. But  $(g \circ f)^{-1}(A)$  is not an IFG''' CS in X. Hence the composition of two IFG''' continuous functions need not be an IFG''' continuous function.

**Theorem 3.37.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> continuous function. Let  $g: (Y, \sigma) \to (Z, \delta)$  be an IF continuous. Then  $g \circ f: (X, \tau) \to (Z, \delta)$  is an IFG<sup>'''</sup> continuous function.

*Proof.* Let A be an IFCS in Z. By hypothesis,  $g^{-1}(A)$  is an IFCS in Y. Since f is an IFG''' continuous function,  $f^{-1}(g^{-1}(A))$  is an IFG'''CS in X. Hence  $g \circ f$  is an IFG''' continuous function.

# 4. Intuitionistic Fuzzy g'''-irresolute Functions

In this section, we introduce intuitionistic fuzzy g'''-irresolute functions and study some of its properties.

**Definition 4.1.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called an intuitionistic fuzzy g'''-irresolute (IFG''' irresolute, in short) if  $f^{-1}(A)$  is an IFG''' CS in  $(X, \tau)$  for every IFG''' CS A in  $(Y, \sigma)$ .

**Example 4.2.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$  and  $T_2 = \langle y, (0.7, 0.8), (0.2, 0.1) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$  by f(a) = u and f(b) = v. Then f is not an IFG''' irresolute function.

**Theorem 4.3.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG''' irresolute. Then f is an IFG''' continuous function.

*Proof.* Let f be an IFG''' irresolute function. Let A be any IFCS in Y. Since every IFCS is an IFG'''CS [9], A is an IFG'''CS in Y. By hypothesis,  $f^{-1}(A)$  is an IFG'''CS in X. Hence f is an IFG''' continuous function.

The converse of Theorem 4.3 need not be true as seen from the following Example.

**Example 4.4.** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$ . Let  $T_1 = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$  and  $T_2 = \langle y, (0.8, 0.7), (0.2, 0.3) \rangle$ . Then  $\tau = \{0_{\sim}, T_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, T_2, 1_{\sim}\}$  are IFTs on X and Y respectively. Define a function  $f: (X, \tau) \to (Y, \sigma)$  by f(a) = 1-u and f(b) = 1-v. Then f is an IFG''' continuous function. But f is not an IFG''' irresolute function. We have the IFS  $A = \langle y, (0.1, 0.2), (0.9, 0.8) \rangle$  is an IFG''' CS in Y, but  $f^{-1}(A) = \langle x, (0.9, 0.8), (0.1, 0.2) \rangle$  is not an IFG''' CS in X. Hence f is not an IFG''' irresolute function.

**Theorem 4.5.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG''' irresolute. Then f is an IF continuous function if X is an  $IF_{g'''}T_{1/2}$  space.

*Proof.* Let A be an IFCS in Y. Then A is an IFG'''CS in Y. By hypothesis,  $f^{-1}(A)$  is an IFG'''CS in X. Since X is an IFg'''T<sub>1/2</sub> space,  $f^{-1}(A)$  is an IFCS in X. Hence f is an IF continuous function.

**Theorem 4.6.** Let  $f: (X, \tau) \to (Y, \sigma)$  and  $g: (Y, \sigma) \to (Z, \delta)$  be IFG''' irresolute functions. Then  $g \circ f: (X, \tau) \to (Z, \delta)$  is an IFG''' irresolute function.

*Proof.* Let A be an IFG<sup>'''</sup>CS in Z. Then, since g is an IFG<sup>'''</sup> irresolute function,  $g^{-1}(A)$  is an IFG<sup>'''</sup>CS in Y. Since f is an IFG<sup>'''</sup> irresolute function,  $f^{-1}(g^{-1}(A))$  is an IFG<sup>'''</sup>CS in X. Hence  $g \circ f$  is an IFG<sup>'''</sup> irresolute function.

**Theorem 4.7.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> irresolute function and  $g: (Y, \sigma) \to (Z, \delta)$  be an IFG<sup>'''</sup> continuous function. Then  $g \circ f: (X, \tau) \to (Z, \delta)$  is an IFG<sup>'''</sup> continuous function.

*Proof.* Let A be an IFCS in Z. Since g is an IFG<sup>'''</sup> continuous function,  $g^{-1}(A)$  is an IFG<sup>'''</sup>CS in Y. Since f is an IFG<sup>'''</sup> irresolute function,  $f^{-1}(g^{-1}(A))$  is an IFG<sup>'''</sup>CS in X. Hence  $g \circ f$  is an IFG<sup>'''</sup> continuous function.

**Theorem 4.8.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IFG<sup>'''</sup> irresolute function. Then f is an IFG continuous function if X is an  $IF_{g'''a}T_{1/2}$  space.

*Proof.* Let A be an IFCS in Y. Then A is an IFG'''CS in Y. By hypothesis,  $f^{-1}(A)$  is an IFG'''CS in X and hence IFGCS in X. Since X is an IF $_{g'''a}T_{1/2}$  space,  $f^{-1}(A)$  is an IFG'''CS in X and hence IFGCS in X. Hence f is an IFG continuous function.

#### References

- [1] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1986), 87-96.
- [2] K.K.Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, Jour. Math. Anal. Appl., 82(1981), 14-32.
- [3] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems, 88(1997), 81-89.
- [4] H.Gurcay, D.Coker and Es.A.Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 5(1997), 365-378.
- [5] K.Hur and Y.B.Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. J., 25(2003), 131-139.
- [6] M.Jeyaraman, A.Yuvarani and O.Ravi, Intuitionistic fuzzy α-generalized semi continuous and irresolute mappings, International Journal of Analysis and Applications, 3(2)(2013), 93-103.
- [7] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, Int. J. Mathematics and Mathematical Sciences, 19(2005), 3091-3101.
- [8] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [9] S.Rose Mary, R.Malarvizhi and O.Ravi, Intuitionistic fuzzy g'''-closed sets, submitted.
- [10] K.Sakthivel, Intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic fuzzy alpha generalized irresolute mappings, Applied Mathematics Sciences, 4(2010), 1831-1842.
- [11] R.Santhi and D.Jayanthi, Intuitionistic fuzzy generalized semipreclosed mappings, NIFS, 16(2010), 28-39.
- [12] R.Santhi and D.Jayanthi, Intuitionistic fuzzy generalized semi-pre continuous mappings, Int. J. Contemp. Math. Sciences, 5(2010), 1455-1469.
- [13] R.Santhi and K.Sakthivel, Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [14] R.Santhi and K.Arun Prakash, On intuitionistic fuzzy semi generalized closed sets and its applications, Int. J. Contemp. Math. Sci., 5(2010), 1677-1688.
- [15] N.Seenivasagan, O.Ravi, A.D.Ramesh Babu and M.Rajakalaivanan, Intuitionistic fuzzy *g*-closed sets, International Journal of Mathematics And its Applications, 4(1-D)(2016), 47-57.
- [16] S.S.Thakur and Jyoti Pandey Bajpai, Intuitionistic fuzzy w-closed sets and intuitionistic fuzzy w-continuity, International Journal of Contemporary Advanced Mathematics, 1(2010), 1-15.
- [17] S.S.Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [18] Young Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semi preopen sets and Intuitionistic semi pre continuous mappings, J. Appl. Math. & Computing, 19(2005), 467-474.
- [19] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.