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1. Introduction

A simple model equation is the Korteweg-de Vries (KdV) equation [? ]

vt + 6vvx + δvxxx = 0 , (1)

which describe the long waves in shallow water. Its modified version is,

ut − 6u2ux + uxxx = 0 (2)

and again there is Miura tramsformation [? ]

v = u2 + ux , (3)

between the KdV equation (1) and its modified version (2). In 2002, Liu and Yang [? ] studied the bifurcation properties

of generalized KdV equation (GKdVE)

ut + aunux + uxxx = 0 , a ∈ R , n ∈ Z+ . (4)

Gungor and Winternitz [? ] transformed the Generalized Kadomtsev-Petviashvili Equation (GKPE) (ut + p(t)uux +

q(t)uxxx)x + σ(y, t)uyy + a(y, t)uy + b(y, t)uxy

+c(y, t)uxx + e(y, t)ux + f(y, t)u+ h(y, t) = 0 , (5)
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to its canonical form and established conditions on the coefficient functions under which (5) has an infinite dimensional

symmetry group having a Kac-Moody-Virasoro structure. In [? ], they carried out the symmetry analysis of Variable

Coefficient Kadomtsev Petviashvili Equation (VCKP) in the form,

(ut + f(x, y, t)uux + g(x, y, t)uxxx)x + h(x, y, t)uy = 0.

The equal width (EW) wave equation was suggested by Morrison and Meiss [? ] to be used as a model partial differential

equation for the simulation of one-dimensional wave propagation in a nonlinear medium with a dispersion process. The EW

wave equation is an alternative description of the nonlinear dispersive waves to the more usual Korteweg de Vries (KdV)

equation. It has been shown to have solitary wave solutions and to govern a large number of important physical phenomena

such as shallow water waves and plasma waves. In this chapter, we discuss the symmetry reductions of the (2+1)-dimensional

Equal Width wave equation with damping term

ut + u+ uux − µ(uxxt + uyyt) = 0 , where µ ∈ R . (6)

Our intention is to show that equation (6) admits a three-dimensional symmetry group and determine the corresponding

Lie algebra, classify the one- and two-dimensional subalgebras of the symmetry algebra of (6) in order to reduce (6) to

(1+1)-dimensional PDEs and then to ODEs. We shall establish that the symmetry generators form a closed Lie algebra

and this allowed us to use the recent method due to Ahmad, Bokhari, Kara and Zaman [? ] to successively reduce (6) to

(1+1)-dimensional PDEs and ODEs with the help of two-dimensional Abelian and non-Abelian solvable subalgebras. This

chapter is organised as follows: First, we determine the symmetry group of (6) and write down the associated Lie algebra.

secondly, we consider all one-dimensional subalgebras and obtain the corresponding reductions to (1+1)-dimensional PDEs.

Next, we show that the generators form a closed Lie algebra and use this fact to reduce (6) successively to (1+1)- dimensional

PDEs and ODEs. Finally, we summarises the conclusions of the present work.

2. The Symmetry Group & Lie Algebra of ut+u+uux−µ(uxxt+uyyt) = 0

If (6) is invariant under a one parameter Lie group of point transformations (Bluman and Kumei [3], Olver[? ])

x∗ = x+ ε ξ(x, y, t;u) +O(ε2) , (7)

y∗ = y + ε η(x, y, t;u) +O(ε2) , (8)

t∗ = t+ ε τ(x, y, t;u) +O(ε2) , (9)

u∗ = u+ ε φ(x, y, t;u) +O(ε2) . (10)

Then the third Prolongation Pr3(V ) of the corresponding vector field

V = ξ(x, y, t;u)
∂

∂x
+ η(x, y, t;u)

∂

∂y
+ τ(x, y, t;u)

∂

∂t
+ φ(x, y, t;u)

∂

∂u
, (11)

satisfies

pr3(V )Ω(x, y, t;u)|Ω(x,y,t;u=0 = 0. (12)
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The determining equations are obtained from (12) and solved for the infinitesimals ξ, η, τ and φ. They are as follows

ξ = k1 , (13)

η = k3 , (14)

τ = k2 , (15)

φ = 0 . (16)

At this stage, we construct the symmetry generators corresponding to each of the constants involved. Totally there are three

generators given by

V1 = ∂x ,

V2 = ∂t ,

V3 = ∂y.

The symmetry generators found in Eq.(17) form a closed Lie Algebra whose commutation table is shown below.

[Vi, Vj ] V1 V2 V3

V1 0 0 0

V2 0 0 0

V3 0 0 0

Table 1. Commutator Table

The commutation relations of the Lie algebra, determined by V1, V2 and V3 are shown in the above table. For this three-

dimensional Lie algebra the commutator table for Vi is a (3⊗ 3) table whose (i, j)th entry expresses the Lie Bracket [Vi, Vj ]

given by the above Lie algebra L. The table is skew-symmetric and the diagonal elements all vanish. The coefficient Ci,j,k

is the coefficient of Vi of the (i, j)th entry of the commutator table. The Lie algebra L is solvable. In the next section,

we derive the reduction of (6) to PDEs with two independent variables and ODEs. These are three one-dimensional Lie

subalgebras

Ls,1 = {V1} , Ls,2 = {V2} , Ls,3 = {V3} ,

and corresponding to each one-dimensional subalgebras we may reduce (6) to a PDE with two independent variables. Further

reductions to ODEs are associated with two-dimensional subalgebras. It is evident from the commutator table that there are

no two-dimensional solvable non-abelian subalgebras. And there are three two-dimensional Abelian subalgebras, namely,

LA,1 = {V1, V2} , LA,2 = {V1, V3} , LA,3 = {V2, V3} .

3. Homotopy Perturbation Method (HPM)

To describe the HPM, consider the following general nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω, (17)

under the boundary condition

B(u,
∂u

∂n
) = 0, r ∈ ∂Ω, (18)
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where A is a general differential operator, B is a boundary operator, f(r) is a known analytic function and ∂Ω is a boundary

of the domain Ω. The operator A can be divided into two parts L and N , where L is a linear operator while N is a nonlinear

operator. Then Eq. (17) can be rewrittten as

L(u) +N(u)− f(r) = 0, (19)

Using the homotopy technique, we construct a homotopy:

V (r, p) : Ω× [0, 1]→ R

which satisfies

H(V, p) = (1− p)[L(V )− L(u0)] + p[A(V )− f(r)]

or

H(V, p) = L(V )− L(u0) + pL(u0) + p[N(V )− f(r)], r ∈ Ω, p ∈ [0, 1], (20)

where p ∈ [0, 1] is an embedding parameter, u0 is the initial approximation of Eq. (17) which satisfies the boundary

conditions. Obviously, considering Eq. (20), we will have

H(V, 0) = L(V )− L(u0) = 0,

H(V, 1) = A(V )− f(r) = 0, (21)

changing the process of p from zero to unity is just that V (r, p) from u0(r) to u(r). In topology, this is called the deformation

also A(V )− f(r) and L(u) are called as homotopy. The homotopy perturbation method uses the homotopy parameter p as

an expanding parameter [? ? ? ] to obtain

V = v0 + pv1 + p2v2 + p3v3 + · · · =
∞∑
n=0

pnvn. (22)

p→ 1 results the approximate solution of eq (17) as

u = lim
p→1

V = v0 + v1 + v2 + · · · =
∞∑
n=0

vn. (23)

A comparison of like powers of p gives the solutions of various orders. Series (23) is convergent for most of the cases.

However, convergence rate depends on the nonlinear operator,N(V ). He [? ] suggested the following opinions:

(1). The second derivative of N(V ) with respect to v must be small as the parameter p may be relatively large.

(2). The norm of L−1 ∂N
∂u

must be smaller than one so that the series converges.

Now, we implement the HPM method to Eq.(??). According to HPM, we construct the following simple homotopy

ut + p[(−µ1ux1,x1t − µ2ux2,x2t − · · · − µnuxn,xnt)− νuux1 ] = 0. (24)

With the initial approximation u(x1, . . . , xn, 0) = u0(x1, x2, . . . , xn), we suppose that the solution has the following form

u(x1, . . . , xn, t) = u0(x1, . . . , xn, t) + pu1(x1, . . . , xn, t) + p2u2(x1, . . . , xn, t) + . . . . (25)
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Insertion of eqn. (25) into eqn. (24) and equating the term with like powers of p, we get

p0 :
∂u0

∂t
= 0. (26)

p1 :
∂u1

∂t
=

(
µ1

∂3u0

∂x2
1∂t

+ µ2
∂3u0

∂x2
2∂t

+ · · ·+ µn
∂3u0

∂x2
n∂t

)
+ νu0

∂u0

∂x1
. (27)

p2 :
∂u2

∂t
=

(
µ1

∂3u0

∂x2
1∂t

+ µ2
∂3u0

∂x2
2∂t

+ · · ·+ µn
∂3u0

∂x2
n∂t

)
+ ν

(
u0
∂u1

∂x1
+ u1

∂u0

∂x1

)
, (28)

and so on. We solve Eqs. (26)-(28), to get the values of u0, u1, u2 etc. Thus as considering Eq. (25) and letting p = 1, we

obtain the approximate analytic solution of Eq. (??) as

u(x1, . . . , xn, t) = u0(x1, . . . , xn, t) + u1(x1, . . . , xn, t) + u2(x1, . . . , xn, t) + . . . (29)

4. Computational Illustrations of HPM

In this section, we describe the above method by the following examples to validate the efficiency of the HPM.

Example 4.1. Consider the (n+1)-dimensional Equal Width wave equation and assuming the constants ν = µ′is = 1 as,

ut = ux1x1t + ux2x2t + · · ·+ uxnxnt + uux1 , (30)

under the initial condition

u(x1, x2, . . . , xn, 0) = u0(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn. (31)

Applying the homotopy perturbation method to Equation (30), we have

ut + p[(−ux1,x1t − ux2,x2t − · · · − uxn,xnt)− uux1 ] = 0. (32)

In the view of HPM, we use the homotopy parameter p to expand the solution

u(x1, x2, . . . , xn, t) = u0 + pu1 + p2u2 + . . . (33)

The approximate solution can be obtained by taking p = 1 in Eq. (33) as

u(x1, x2, . . . , xn, t) = u0 + u1 + u2 + . . . (34)

Now substituting from Eq. (32) into Equation (31) and equating the terms with identical powers of p, we obtain the series

of linear equations, which can be easily solved. First few linear equations are given as

p0 :
∂u0

∂t
= 0. (35)

p1 :
∂u1

∂t
=

(
∂3u0

∂x2
1∂t

+
∂3u0

∂x2
2∂t

+ · · ·+ ∂3u0

∂x2
n∂t

)
+ u0

∂u0

∂x1
. (36)

p2 :
∂u2

∂t
=

(
∂3u0

∂x2
1∂t

+
∂3u0

∂x2
2∂t

+ · · ·+ ∂3u0

∂x2
n∂t

)
+

(
u0
∂u1

∂x1
+ u1

∂u0

∂x1

)
. (37)
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Using the initial condition (31), the solution of Equation (35) is given by

u(x1, x2, . . . , xn, 0) = u0(x1, x2, . . . , xn) = (x1 + x2 + · · ·+ xn). (38)

Then the solution of Equation (36) will be

u1(x1, . . . , xn, t) =

t∫
0

((
∂3u0

∂x2
1∂t

+
∂3u0

∂x2
2∂t

+ · · ·+ ∂3u0

∂x2
n∂t

)
+ u0

∂u0

∂x1

)
dt. (39)

u1(x1, x2, . . . , xn, t) = (x1 + x2 + · · ·+ xn)t. (40)

Also, we can find the solution of Equation (37) by using the following formula

u2(x1, . . . , xn, t) =

t∫
0

(
∂3u0

∂x2
1∂t

+
∂3u0

∂x2
2∂t

+ · · ·+ ∂3u0

∂x2
n∂t

)
+

(
u0
∂u1

∂x1
+ u1

∂u0

∂x1

)
dt. (41)

u2(x1, x2, . . . , xn, t) = (x1 + x2 + · · ·+ xn)t2. (42)

etc. Therefore, from Equation (38), the approximate solution of Equation (30) is given as

u(x1, . . . , xn, t) = (x1 + · · ·+ xn) + (x1 + · · ·+ xn)t+ (x1 + · · ·+ xn)t2 + . . . (43)

Hence the exact solution can be expressed as

u(x1, x2, . . . , xn, t) =
(x1 + x2 + · · ·+ xn)

(1− t) , (44)

provided that 0 ≤ t < 1.

4.1. Illustration of HPM for (3+1)-dimensional Equal Width wave equation

Consider the (3+1)-dimensional Equal Width wave equation as,

ut = uxxt + uyyt + uzzt + uux, (45)

under the initial condition

u(x, y, z, 0) = u0(x, y, z) = x+ y + z. (46)

Applying the homotopy perturbation method to Equation (45), we have

ut + p[(−uxxt − uyyt − uzzt)− uux] = 0. (47)

In the view of HPM, we use the homotopy parameter p to expand the solution

u(x, y, z, t) = u0 + pu1 + p2u2 + . . . (48)

The approximate solution can be obtained by taking p = 1 in Equation (48) as

u(x, y, z, t) = u0 + u1 + u2 + . . . (49)
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Now, substituting Equation (48) into Equation (47) and equating the terms with identical powers of p, we obtain the series

of linear equations. First few linear equations are given as

p0 :
∂u0

∂t
= 0. (50)

p1 :
∂u1

∂t
=

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t
+

∂3u0

∂z2∂t

)
+ u0

∂u0

∂x
. (51)

p2 :
∂u2

∂t
=

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t
+

∂3u0

∂z2∂t

)
+

(
u0
∂u1

∂x
+ u1

∂u0

∂x

)
. (52)

Then the solution of Equation (50) using the initial condition (46) is given by

u(x, y, z, 0) = u0(x, y, z) = (x+ y + z). (53)

We derive the solution of Equation (51) in the following form

u1(x, y, z, t) =

t∫
0

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t
+

∂3u0

∂z2∂t

)
+ u0

∂u0

∂x
. (54)

u1(x, y, z, t) = (x+ y + z)t. (55)

Also, we can find the solution of Equation (52) by using the following formula

u2(x, y, z, t) =

t∫
0

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t
+

∂3u0

∂z2∂t

)
+

(
u0
∂u1

∂x
+ u1

∂u0

∂x

)
dt. (56)

u2(x, y, z, t) = (x+ y + z)t2. (57)

etc. Therefore, from Equation (49), the approximate solution of Equation (45) is given as

u(x, y, z, t) = (x+ y + z) + (x+ y + z)t+ (x+ y + z)t2 + . . . (58)

Thus, the exact solution can be expressed as

u(x, y, z, t) =
(x+ y + z)

(1− t) , (59)

provided that 0 ≤ t < 1.

4.2. Illustration of HPM for (2+1)-dimensional Equal Width wave equation

Consider the (2+1)-dimensional Equal Width wave equation as,

ut = uxxt + uyyt + uux, (60)

under the initial condition

u(x, y, 0) = u0(x, y) = x+ y. (61)

Applying the homotopy perturbation method to Equation (60), we have

ut + p[(−uxxt − uyyt)− uux] = 0. (62)
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In the view of HPM, we use the homotopy parameter p to expand the solution

u(x, y, t) = u0 + pu1 + p2u2 + . . . (63)

The approximate solution can be obtained by taking p = 1 in Equation (63) as

u(x, y, t) = u0 + u1 + u2 + . . . (64)

Now, substituting Equation (63) into Equation (62) and equating the terms with identical powers of p, we obtain the series

of linear equations. First few linear equations are given as

p0 :
∂u0

∂t
= 0. (65)

p1 :
∂u1

∂t
=

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t

)
+ u0

∂u0

∂x
. (66)

p2 :
∂u2

∂t
=

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t

)
+

(
u0
∂u1

∂x
+ u1

∂u0

∂x

)
. (67)

Then the solution of Equation (65) using the initial condition (46) is given by

u(x, y, 0) = u0(x, y) = (x+ y). (68)

We derive the solution of Equation (66) in the following form

u1(x, y, t) =

t∫
0

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t

)
+ u0

∂u0

∂x
. (69)

u1(x, y, t) = (x+ y)t. (70)

Also, we can find the solution of Equation (67) by using the following formula

u2(x, y, t) =

t∫
0

(
∂3u0

∂x2∂t
+

∂3u0

∂y2∂t

)
+

(
u0
∂u1

∂x
+ u1

∂u0

∂x

)
dt. (71)

u2(x, y, t) = (x+ y)t2. (72)

etc. Therefore, from Equation (64), the approximate solution of Equation (60) is given as

u(x, y, t) = (x+ y) + (x+ y)t+ (x+ y)t2 + . . . (73)

The exact solution can be expressed as

u(x, y, t) =
(x+ y)

(1− t) , (74)

provided that 0 ≤ t < 1.
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4.3. Illustration of HPM for (1+1)-dimensional Equal Width wave equation

Consider the (1+1)-dimensional Equal Width wave equation as,

ut = uxxt + uux, (75)

under the initial condition

u(x, 0) = u0(x) = 2x. (76)

Applying the homotopy perturbation method to Equation (75), we have

ut + p[−uxxt − uux] = 0. (77)

In the view of HPM, we use the homotopy parameter p to expand the solution

u(x, t) = u0 + pu1 + p2u2 + . . . (78)

The approximate solution can be obtained by taking p = 1 in Eq. (78) as

u(x, t) = u0 + u1 + u2 + . . . (79)

Now, substituting Equation (78) into Eq.(77) and equating the terms with identical powers of p, we obtain the series of

linear equations. First few linear equations are given as

p0 :
∂u0

∂t
= 0. (80)

p1 :
∂u1

∂t
=

(
∂3u0

∂x2∂t

)
+ u0

∂u0

∂x
. (81)

p2 :
∂u2

∂t
=

(
∂3u0

∂x2∂t

)
+

(
u0
∂u1

∂x
+ u1

∂u0

∂x

)
. (82)

Then the solution of Equation (80) using the initial condition (46) is given by

u(x, 0) = u0(x) = (2x). (83)

We derive the solution of Equation (81) in the following form

u1(x, t) =

t∫
0

(
∂3u0

∂x2∂t

)
+ u0

∂u0

∂x
. (84)

u1(x, t) = −4(x)t. (85)

Also, we can find the solution of Equation (82) by using the following formula

u2(x, t) =

t∫
0

(
∂3u0

∂x2∂t

)
+

(
u0
∂u1

∂x
+ u1

∂u0

∂x

)
dt. (86)

u2(x, t) = 8(x)t2. (87)

etc. Therefore, from Equation (79), the approximate solution of Equation (75) is given as

u(x, t) = 2x− 4xt+ 8xt2 + . . . (88)

Hence, the exact solution can be expressed as

u(x, t) =
(2x)

(1 + 2t)
. (89)
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5. Adomian Decomposition Method (ADM)

Consider the following linear operator and their inverse operators:

Lt =
∂

∂t
; Lxi,xi,t =

∂3

∂x2
i ∂t

, i = 1, 2, . . . , n.

L−1
t =

t∫
0

(.)dt, Lxi,xi,t =

xi∫
0

t∫
0

(.)dτdτdγ, i = 1, 2, . . . , n.

Using the above notations, Equation (??) becomes

Lt(u) =

(
n∑
i=1

αiLxi,xi,t(u)

)
+ νu

∂u

∂xi
, (90)

operating the inverse operators L−1
t to Equation (90) and using the initial condition gives

u(x1, . . . , xn, t) = u0(x1, . . . , xn, t) + L−1
t

(
n∑
i=1

αiLxi,xi,t(u)

)
+ νL−1

t u
∂u

∂x1
. (91)

The decomposition method consists of representing the solution u(x1, x2, . . . , xn, t) by the decomposition series

u(x1, x2, . . . , xn, t) =

∞∑
q=0

uq(x1, x2, . . . , xn, t). (92)

The nonlinear term u ∂u
∂x1

is represented by a series of the so called Adomian polynomials, given by

u
∂u

∂xi
=

∞∑
q=0

Aq(x1, x2, . . . , xn, t). (93)

The component uq(x1, x2, . . . , xn, t) of the solution u(x1, x2, . . . , xn, t) is determined in a recursive manner. Replacing the

decomposition series (92) and (93) for u into Equation (91) gives

∞∑
q=0

uq(x1, x2, . . . , xn, t) = u0(x1, . . . , xn, t) + L−1
t

(
n∑
i=1

αiLxi,xi,t(u)

)

+ νL−1
t

∞∑
q=0

Aq(x1, x2, . . . , xn, t). (94)

According to ADM the zero-th component u0(x1, . . . , xn, t) is identified from the initial or boundary conditions and from

the source terms. The remaining components of u(x1, . . . , xn, t) are determined in a recursion manner as follows

u0(x1, . . . , xn, t) = u0(x1, . . . , xn), (95)

uk(x1, . . . , xn, t) = L−1
t

(
n∑
i=1

αiLxi,xi,t(u)

)
+ νL−1

t (Ak) + γL−1(uk), k ≥ 0, (96)

where the Adomian polynomials for the nonlinear term u ∂u
∂x1

are derived from the following recursive formulation,

Ak =
1

k!

dk

dλk

((
∞∑
i=0

λiui

)(
∞∑
i=0

λiui

))
λ=0

, k = 0, 1, 2, . . . . (97)
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First few Adomian polynomials are given as

A0 = u0
∂u0

∂x1
, A1 = u0

∂u1

∂x1
+ u1

∂u0

∂x1
,

A2 = u2
∂u0

∂x1
+ u1

∂u1

∂x1
+ u0

∂u2

∂x1
, (98)

using Equation (96) for the adomian polynomials Ak, we get

u0(x1, . . . , xn, t) = u0(x1, . . . , xn), (99)

u1(x1, . . . , xn, t) = L−1
t

(
n∑
i=1

αiLxi,xi,t(u0)

)
+ νL−1

t (A0) + γL−1(u0), (100)

u2(x1, . . . , xn, t) = L−1
t

(
n∑
i=1

αiLxi,xi,t(u1)

)
+ νL−1

t (A1) + γL−1(u1), (101)

and so on. Then the q-th term, uq can be determined from

uq =

q−1∑
0

uk(x1, . . . , xn, t). (102)

Knowing the components of u, the analytical solution follows immediately.

6. Computational Illustrations of ADM for (n+1)-dimensional Equal
Width Wave Equation

Using Equations (97) and (98), first few components of the decomposition series are given by

u0(x1, . . . , xn, t) = (x1 + · · ·+ xn), (103)

u1(x1, . . . , xn, t) = (x1 + · · ·+ xn)t, (104)

u2(x1, . . . , xn, t) = (x1 + · · ·+ xn)t2, (105)

u3(x1, . . . , xn, t) = (x1 + · · ·+ xn)t3, (106)

Then by the decomposition series, we get the solution

u(x1, . . . , xn, t) =

∞∑
k=0

uk(x1, . . . , xn, t),

= u0(x1, . . . , xn, t) + u1(x1, . . . , xn, t) + u2(x1, . . . , xn, t) + . . . ,

= (x1 + · · ·+ xn)(1 + t+ t2 + . . . ) (107)

Hence, the exact solution can be expressed as

u(x1, . . . , xn, t) =
(x1 + · · ·+ xn)

(1− t) . (108)
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Similarity Reductions of (2+1)-dimensional Equal Width Wave Equation

6.1. Adomian Decomposition Method for (3+1)-dimensional Equal Width wave
equation

Using Equations (97) and (98), first few components of the decomposition series are given by

u0(x, y, z, t) = (x+ y + z), (109)

u1(x, y, z, t) = (x+ y + z)t, (110)

u2(x, y, z, t) = (x+ y + z)t2, (111)

u3(x, y, z, t) = (x+ y + z)t3, (112)

and so on. By the decomposition series, we get the solution

u(x, y, z, t) =

∞∑
k=0

uk(x, y, z, t),

= u0(x, y, z, t) + u1(x, y, z, t) + u2(x, y, z, t) + . . . ,

= (x+ y + z)(1 + t+ t2 + t3 + . . . ) (113)

Therefore the exact solution can be expressed as

u(x, y, z, t) =
(x+ y + z)

(1− t) , (114)

provided that 0 ≤ t < 1.

6.2. Adomian Decomposition Method for (2+1)-dimensional Equal Width wave
equation

Using Equations (97) and (98), first few components of the decomposition series are given by

u0(x, y, t) = (x+ y), (115)

u1(x, y, t) = (x+ y)t, (116)

u2(x, y, t) = (x+ y)t2, (117)

u3(x, y, t) = (x+ y)t3, (118)

and so on. By the decomposition series, we get the solution

u(x, y, t) =

∞∑
k=0

uk(x, y, t),

= u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + . . . ,

= (x+ y)(1 + t+ t2 + t3 + . . . ) (119)

Therefore the exact solution can be expressed as

u(x, y, t) =
(x+ y)

(1− t) , (120)

provided that 0 ≤ t < 1.
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6.3. Adomian Decomposition Method for (1+1)-dimensional Equal Width wave
equation

Using Equations (97) and (98), first few components of the decomposition series are given by

u0(x, t) = (2x), (121)

u1(x, t) = (−4x)t, (122)

u2(x, t) = (8x)t2, (123)

u3(x, t) = (−16x)t3, (124)

and so on. By the decomposition series, we get the solution

u(x, t) =

∞∑
k=0

uk(x, t),

= u0(x, t) + u1(x, t) + u2(x, t) + . . . ,

= 2x− 4xt+ 8xt2 − 16xt3 (125)

Finally, the exact solution can be expressed as

u(x, t) =
(2x)

(1 + 2t)
. (126)
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