Volume 4, Issue 2-C (2016), 55-71.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Decompositions of \star -continuity and \mathcal{A}^{\star} - I_{ω} -continuity

Research Article

K.Vidhyalakshmi¹, P.Sekar² and O.Ravi³*

- 1 Research Scholar, University of Madras, Chennai, Tamil Nadu, India.
- 2 C.Kandaswami Naidu College for Men, Anna Nagar, Chennai, Tamil Nadu, India.
- 3 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce and study the notions of \mathcal{A}^* - I_{ω} -sets, I_{ω} -C-sets, η - I_{ω} -sets, \mathcal{A}^{**} - I_{ω} -sets, η^* - I_{ω} -sets, I_{ω} - C^* -sets, \mathcal{C}^{**} - I_{ω} -sets and \mathcal{C}^* - I_{ω} -sets in ideal topological spaces. Properties of such classes of sets are investigated. Moreover, decompositions of *-continuous functions and decompositions of \mathcal{A}^* - I_{ω} -continuous functions in ideal topological

spaces are established.

MSC: 54A05, 54A10, 54C05, 54C08, 54C10.

Keywords: A^* - I_{ω} -set, I_{ω} -C-set, C^* - I_{ω} -set, pre * - I_{ω} -open set, semi * - I_{ω} -open set, α^* - I_{ω} -open set, I_{ω^*} -submaximal space.

© JS Publication.

1. Introduction

In 1982, the class of ω -closed subsets of a space (X, τ) was defined to introduce ω -closed functions [7]. Several mathematicians have studied many weakened forms of continuous functions in topological spaces. Hdeib [8] introduced a new weakened form of continuous functions namely, ω -continuous functions. Noiri et al [11] introduced some new weakened forms of continuous functions, namely, pre- ω -continuous functions, α - ω -continuous functions, ω^* -continuous functions, etc.

In this paper, we introduce a new weakened form of continuous functions called \mathcal{A}^* - I_{ω} -continuous functions and obtain decompositions of \star -continuous functions and \mathcal{A}^* - I_{ω} -continuous functions.

2. Preliminaries

Throughout this paper, \mathbb{R} (resp. \mathbb{N} , \mathbb{Q} , \mathbb{Q}^*) denotes the set of all real numbers (resp. the set of all natural numbers, the set of all rational numbers, the set of all irrational numbers). By a space (X, τ) , we always mean a topological space (X, τ) with no separation properties assumed. If $H \subset X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) .

Definition 2.1 ([6]). A subset K of a space (X, τ) is said to be locally closed if $K = U \cap V$, where U is open and V is closed.

Definition 2.2 ([4]). A space (X,τ) is called submaximal if every dense subset is open.

^{*} E-mail: siingam@yahoo.com

Definition 2.3 ([19]). Let H be a subset of a space (X,τ) . A point p in X is called a condensation point of H if for each open set U containing p, $U \cap H$ is uncountable.

Definition 2.4 ([7]). A subset H of a space (X, τ) is called ω -closed if it contains all its condensation points. The complement of an ω -closed set is called ω -open.

It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets, denoted by τ_{ω} , is a topology on X, which is finer than τ . The interior and closure operator in (X, τ_{ω}) are denoted by int_{ω} and cl_{ω} respectively.

Definition 2.5 ([13]). A subset K of a space (X,τ) is said to be α^* - ω -open if $K \subset int(cl_{\omega}(int(K)))$.

Definition 2.6 ([13]). A subset K of a space (X, τ) is called

- (1). pre^* - ω -closed if $cl(int_{\omega}(K)) \subset K$.
- (2). pre^* - ω -open if $K \subset int(cl_{\omega}(K))$.

The complement of a pre^* - ω -open set is called pre^* - ω -closed.

Definition 2.7 ([2]). A subset K of a space (X, τ) is called ω -dense if $cl_{\omega}(K) = X$.

Definition 2.8 ([12]). A subset K of a space (X, τ) is called ω -codense if $X \setminus K$ is ω -dense.

An ideal I [18] on a space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions.

- (1). $H \in I$ and $G \subset H$ imply $G \in I$ and
- (2). $H \in I$ and $G \in I$ imply $H \cup G \in I$.

Given a space (X, τ) with an ideal I on X if $\mathbb{P}(X)$ is the set of all subsets of X, a set operator $(.)^* : \mathbb{P}(X) \to \mathbb{P}(X)$, called a local function of H with respect to τ and I is defined as follows: for $H \subset X$, $H^*(I,\tau) = \{x \in X : U \cap H \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$ [10]. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I,\tau)$, called the *-topology, finer than τ is defined by $cl^*(H) = H \cup H^*(I,\tau)$ [17]. We will simply write H^* for $H^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$. If I is an ideal on X, then (X,τ,I) is called an ideal topological space or an ideal space. $int^*(H)$ will denote the interior of H in (X,τ^*) .

Definition 2.9 ([9]). A subset H of an ideal topological space (X, τ, I) is said to be \star -closed if $H^{\star} \subset H$ or $cl^{\star}(H) = H$. The complement of an \star -closed set is called \star -open.

Lemma 2.10 ([1]). Let (X, τ, I) be an ideal topological space and H a subset of X. Then the following properties hold:

- (1). If O is open in (X, τ, I) , then $O \cap cl^*(H) \subset cl^*(O \cap H)$.
- (2). If $H \subset X_0 \subset X$, then $cl_{X_0}^{\star}(H) = cl^{\star}(H) \cap X_0$.

Proposition 2.11 ([1]). Let (X, τ, I) be an ideal topological space and H a subset of X. If $I = \{\phi\}$ (resp. $\mathbb{P}(X), \mathcal{N}$), then $H^* = cl(H)$ (resp. ϕ , cl(int(cl(H)))) and $cl^*(H) = cl(H)$ (resp. H, $H \cup cl(int(cl(H)))$) where \mathcal{N} is the ideal of all nowhere dense sets of (X, τ) .

Remark 2.12 ([5]). In any ideal topological space, every open set is \star -open but not conversely.

Definition 2.13 ([15]). A subset H of an ideal topological space (X, τ, I) is called

- (1). α - I_{ω} -open if $H \subset int_{\omega}(cl^{\star}(int_{\omega}(H)))$;
- (2). $pre-I_{\omega}$ -open if $H \subset int_{\omega}(cl^{\star}(H))$;
- (3). β - I_{ω} -open if $H \subset cl^{\star}(int_{\omega}(cl^{\star}(H)));$
- (4). $b\text{-}I_{\omega}\text{-}open \ if \ H \subset int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H)).$

Definition 2.14 ([14]). A subset K of an ideal topological space (X, τ, I) is said to be

- (1). semi- I_{ω} -closed if $int^{\star}(cl_{\omega}(K)) \subset K$.
- (2). semi- I_{ω} -open if $K \subset cl^{\star}(int_{\omega}(K))$.

This complement of a semi- I_{ω} -open set is called semi- I_{ω} -closed.

Remark 2.15 ([14, 15]). The diagram holds for any subset of an ideal topological space (X, τ, I) :

In this diagram, none of the implications is reversible.

Proposition 2.16 ([14]). A subset K of an ideal topological space (X, τ, I) is semi- I_{ω} -open if and only if $cl^{\star}(K) = cl^{\star}(int_{\omega}(K))$.

Proposition 2.17 ([15]). The intersection of a pre- I_{ω} -open set and an open set is pre- I_{ω} -open.

Definition 2.18 ([14]). A subset K of an ideal topological space (X, τ, I) is said to be semi*- I_{ω} -open if $K \subset cl_{\omega}(int^{\star}(K))$.

3. On New Subsets of τ_{ω} in Ideal Spaces

Definition 3.1. A subset K of an ideal topological space (X, τ, I) is called

- (1). pre^{\star} - I_{ω} -closed if $cl^{\star}(int_{\omega}(K)) \subset K$.
- (2). pre^{\star} - I_{ω} -open if $K \subset int^{\star}(cl_{\omega}(K))$.

The complement of a pre^* - I_{ω} -open set is called pre^* - I_{ω} -closed.

Example 3.2. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$,

- (1). $K = \mathbb{Q}^*$ is $pre^* I_{\omega}$ -open, since $int^*(cl_{\omega}(K)) = int^*(\mathbb{R}) = \mathbb{R} \supset \mathbb{Q}^* = K$.
- (2). $K = \mathbb{Q}$ is not $pre^{\star} I_{\omega}$ -open, since $int^{\star}(cl_{\omega}(K)) = int^{\star}(\mathbb{Q}) = \mathbb{R} \setminus cl^{\star}(\mathbb{Q}^{\star}) = \mathbb{R} \setminus (\mathbb{Q}^{\star} \cup \mathbb{R}) = \mathbb{R} \setminus \mathbb{R} = \phi \not\supseteq \mathbb{Q} = K$.

Proposition 3.3. In an ideal topological space (X, τ, I) ,

- (1). Every \star -open set is pre * - I_{ω} -open.
- (2). Every open set is pre^* - I_{ω} -open.

Proof. (1) Let K be an \star -open set in X. Then $K = int^*(K) \subset int^*(cl_{\omega}(K))$. Thus K is pre*- l_{ω} -open in X.

(2) Let K be an open set. Then K is \star -open. By (1), K is $\operatorname{pre}^{\star}$ - I_{ω} -open.

Example 3.4. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$,

- (1). $K = \mathbb{Q}^*$ is $pre^* I_{\omega}$ -open by (1) of Example 3.2. But $K = \mathbb{Q}^*$ is not \star -open, since $int^*(K) = \mathbb{R} \setminus cl^*(\mathbb{Q}) = \mathbb{R} \setminus (\mathbb{Q} \cup \mathbb{R}) = \mathbb{R} \setminus \mathbb{R} = \phi \neq \mathbb{Q}^* = K$.
- (2). $K = \mathbb{Q}^*$ is $pre^* I_{\omega}$ -open by (1) of Example 3.2. But K is not open, since $int(K) = \phi \neq \mathbb{Q}^* = K$.

Proposition 3.5. In an ideal topological space (X, τ, I) , every pre^* - ω -open set is pre^* - I_{ω} -open.

Proof. Let K be a pre*- ω -open set in X. Then $K \subset int(cl_{\omega}(K)) \subset int^*(cl_{\omega}(K))$. Thus K is pre*- I_{ω} -open in X.

Example 3.6. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathbb{P}(\mathbb{R})$, $K = \mathbb{Q}$ is $pre^* - I_{\omega}$ -open, since $int^*(cl_{\omega}(K)) = int^*(\mathbb{Q}) = \mathbb{R} \setminus cl^*(\mathbb{Q}^*) = \mathbb{R} \setminus \mathbb{Q}^* = \mathbb{Q} \supset \mathbb{Q} = K$. But $K = \mathbb{Q}$ is not $pre^* - \omega$ -open, since $int(cl_{\omega}(K)) = int(\mathbb{Q}) = \phi \not\supseteq \mathbb{Q} = K$.

Definition 3.7. A subset K of an ideal topological space (X, τ, I) is called an I_{ω} -t-set if $int^*(K) = int^*(cl_{\omega}(K))$.

Example 3.8.

- (1). In \mathbb{R} with usual topology τ_u and the ideal $I = \mathbb{P}(\mathbb{R})$, $K = \mathbb{Q}$ is an I_{ω} -t-set, since $int^*(K) = int^*(cl_{\omega}(K)) = \mathbb{Q}$ by Example 3.6.
- (2). In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}^*$ is not an I_ω -t-set, since $int^*(K) = \mathbb{R} \setminus cl^*(\mathbb{Q}) = \mathbb{R} \setminus cl(\mathbb{Q}) = \mathbb{R} \setminus cl(\mathbb{Q})$

Proposition 3.9. In an ideal topological space (X, τ, I) , a subset K of X is semi- I_{ω} -closed in X if and only if K is an I_{ω} -t-set in X.

Proof. K is semi- I_{ω} -closed in $X \iff X \setminus K$ is semi- I_{ω} -open in $X \iff cl^{\star}(X \setminus K) = cl^{\star}(int_{\omega}(X \setminus K))$ by Proposition 2.16 $\iff X \setminus int^{\star}(K) = cl^{\star}(X \setminus cl_{\omega}(K)) = X \setminus int^{\star}(cl_{\omega}(K)) \iff int^{\star}(K) = int^{\star}(cl_{\omega}(K)) \iff K$ is an I_{ω} -t-set in X.

Definition 3.10. A subset K of an ideal topological space (X, τ, I) is called a \mathcal{B} - I_{ω} -set if $K = U \cap V$, where U is an \star -open set and V is an I_{ω} -t-set.

Remark 3.11. In an ideal topological space (X, τ, I) ,

- (1). Every \star -open set is a \mathcal{B} - I_{ω} -set.
- (2). Every I_{ω} -t-set is a \mathcal{B} - I_{ω} -set.

Example 3.12.

- (1). In \mathbb{R} with usual topology τ_u and the ideal $I = \mathbb{P}(\mathbb{R})$, $K = \mathbb{Q}$ is a \mathcal{B} - I_{ω} -set by (2) of Remark 3.11 since $K = \mathbb{Q}$ is an I_{ω} -t-set by (1) of Example 3.8.
- (2). In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}^*$ is not a \mathcal{B} - I_ω -set. If $K = U \cap V$ where U is \star -open and V is an I_ω -t-set, then $K \subset U$. But \mathbb{R} is the only open $(= \star$ -open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}^*$ is not an I_ω -t-set by (2) of Example 3.8. This proves that $K = \mathbb{Q}^*$ is not a \mathcal{B} - I_ω -set.

Remark 3.13. The converses of (1) and (2) in Remark 3.11 are not true as seen from the following Example.

Example 3.14.

- (1). In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}, K = \mathbb{Q}$ is an I_{ω} -t-set, for $int^*(cl_{\omega}(K)) = int^*(K) = \mathbb{R} \setminus cl^*(\mathbb{Q}^*) = \mathbb{R} \setminus (\mathbb{Q}^* \cup \mathbb{R}) = \mathbb{R} \setminus \mathbb{R} = \phi$. Also $K = \mathbb{Q}$ is a \mathcal{B} - I_{ω} -set by (2) of Example 3.11. But $K = \mathbb{Q}$ is not \star -open, since $int^*(K) = \phi \neq \mathbb{Q} = K$.
- (2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and the ideal $I = \mathbb{P}(\mathbb{R})$, since $K = \mathbb{Q}^*$ is open and hence \star -open, $K = \mathbb{Q}^*$ is a \mathcal{B} - I_{ω} -set by (1) of Remark 3.11. But $K = \mathbb{Q}^*$ is not an I_{ω} -t-set, since $int^*(K) = \mathbb{R} \setminus cl^*(\mathbb{Q}) = \mathbb{R} \setminus \mathbb{Q} = \mathbb{Q}^*$; $int^*(cl_{\omega}(K)) = int^*(\mathbb{R}) = \mathbb{R}$ and $int^*(K) \neq int^*(cl_{\omega}(K))$.

Proposition 3.15. For a subset K of an ideal topological space (X, τ, I) , the following are equivalent:

- (1). K is \star -open.
- (2). K is pre^* - I_{ω} -open and a \mathcal{B} - I_{ω} -set.

Proof. (1) \Rightarrow (2): (2) follows by Proposition 3.3(1) and Remark 3.11(1).

(2) \Rightarrow (1): Given K is a \mathcal{B} - I_{ω} -set. So $K = U \cap V$ where U is \star -open and $int^{\star}(V) = int^{\star}(cl_{\omega}(V))$. Then $K \subset U = int^{\star}(U)$. Also K is pre * - I_{ω} -open implies $K \subset int^{\star}(cl_{\omega}(K)) \subset int^{\star}(cl_{\omega}(V)) = int^{\star}(V)$ by assumption. Thus $K \subset int^{\star}(U) \cap int^{\star}(V) = int^{\star}(U \cap V) = int^{\star}(K)$ and hence K is \star -open.

Remark 3.16. The following Examples show that the concepts of pre*- I_{ω} -openness and being a \mathcal{B} - I_{ω} -set are independent.

Example 3.17. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}^*$ is $pre^* - I_\omega$ -open, since $int^*(cl_\omega(K)) = int^*(\mathbb{R}) = \mathbb{R} \supset \mathbb{Q}^* = K$. But $K = \mathbb{Q}^*$ is not a \mathcal{B} - I_ω -set by (2) of Example 3.12.

Example 3.18. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, $K = \mathbb{Q}$ is a \mathcal{B} - I_{ω} -set by (1) of Example 3.14. But $K = \mathbb{Q}$ is not pre^* - I_{ω} -open by (2) of Example 3.2.

Definition 3.19. A subset K of an ideal topological space (X, τ, I) is called

- (1). α^* - I_ω -open if $K \subset int^*(cl_\omega(int^*(K)))$.
- (2). α^* - I_ω -closed if $cl^*(int_\omega(cl^*(K))) \subset K$.

The complement of an α^* - I_ω -open set is called α^* - I_ω -closed.

Example 3.20. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathbb{P}(\mathbb{R})$, $K = \mathbb{Q}$ is α^* - I_ω -open, since $int^*(cl_\omega(int^*(K))) = int^*(cl_\omega(\mathbb{R}\setminus cl_\omega(\mathbb{Q}))) = int^*(cl_\omega(\mathbb{Q})) = int^*(\mathbb{Q}) = \mathbb{Q} = K$.

Example 3.21. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$,

- (1). $K = \mathbb{Q}$ is not $\alpha^* I_{\omega}$ -open, since $int^*(cl_{\omega}(int^*(K))) = int^*(cl_{\omega}(\mathbb{R} \setminus cl^*(\mathbb{Q}^*))) = int^*(cl_{\omega}(\mathbb{R} \setminus (\mathbb{Q}^* \cup \mathbb{R}))) = int^*(cl_{\omega}(\phi)) = \phi \not\supseteq \mathbb{Q} = K.$
- (2). $K = \mathbb{Q}^*$ is not α^* - I_ω -closed, since $cl^*(int_\omega(cl^*(K))) = cl^*(int_\omega(\mathbb{R})) = \mathbb{R} \nsubseteq \mathbb{Q}^* = K$.

Proposition 3.22. In an ideal topological space (X, τ, I) ,

- (1). Every \star -open set is α^{\star} - I_{ω} -open.
- (2). Every open set is α^* - I_{ω} -open.

Proof. (1) Let K be an \star -open set in X. Then $K = int^{\star}(K) \subset cl_{\omega}(int^{\star}(K))$. It implies that $K = int^{\star}(K) \subset int^{\star}(cl_{\omega}(int^{\star}(K)))$. Hence K is α^{\star} - I_{ω} -open in X.

(2) Let K be an open set X. Then K is \star -open. By (1), K is α^{\star} - I_{ω} -open.

Example 3.23.

- (1). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and the ideal $I = \{\phi\}$, $K = \mathbb{R} \setminus \{1\}$ is not \star -open, since $int^*(K) = \mathbb{R} \setminus cl^*(\{1\}) = \mathbb{R} \setminus cl(\{1\}) = \mathbb{R} \setminus \mathbb{Q} = \mathbb{Q}^* \neq \mathbb{R} \setminus \{1\} = K$. But $K = \mathbb{R} \setminus \{1\}$ is $\alpha^* I_\omega$ -open, since $int^*(cl_\omega(int^*(K))) = int^*(cl_\omega(\mathbb{Q}^*)) = int^*(\mathbb{R}) = \mathbb{R} \supset \mathbb{R} \setminus \{1\} = K$.
- (2). In \mathbb{R} with usual topology τ_u and the ideal $I = \mathbb{P}(\mathbb{R})$, $K = \mathbb{Q}$ is α^* - I_ω -open by Example 3.20. But $K = \mathbb{Q}$ is not open, since $int(K) = \phi \neq \mathbb{Q} = K$.

Proposition 3.24. In an ideal topological space (X, τ, I) , every $\alpha^* \cdot I_\omega$ -open set is $pre^* \cdot I_\omega$ -open.

Proof. Let K be an α^* - I_{ω} -open set in X. Then $K \subset int^*(cl_{\omega}(int^*(K))) \subset int^*(cl_{\omega}(K))$. Thus K is pre * - I_{ω} -open in X.

Example 3.25. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}, K = \mathbb{Q}^*$ is $pre^* - I_{\omega}$ -open by (1) of Example 3.2. But K is not $\alpha^* - I_{\omega}$ -open, since $int^*(cl_{\omega}(int^*(K))) = int^*(cl_{\omega}(\mathbb{R} \setminus cl^*(\mathbb{Q}))) = int^*(cl_{\omega}(\mathbb{R} \setminus (\mathbb{Q} \cup \mathbb{R}))) = int^*(cl_{\omega}(\mathbb{R} \setminus \mathbb{R})) = int^*(cl_{\omega}(\phi)) = \phi \not\supseteq \mathbb{Q}^* = K$.

Proposition 3.26. In an ideal topological space (X, τ, I) , every α^* - ω -open set is α^* - I_{ω} -open.

Proof. Let K be an α^* - ω -open set in X. Then $K \subset int(cl_{\omega}(int(K))) \subset int^*(cl_{\omega}(int^*(K)))$. Thus K is an α^* - I_{ω} -open set in X.

Example 3.27. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathbb{P}(\mathbb{R})$, $K = \mathbb{Q}$ is α^* - I_ω -open by Example 3.20. But K is not α^* - ω -open, since $int(cl_\omega(int(K))) = int(cl_\omega(\phi)) = \phi \not\supseteq \mathbb{Q} = K$.

Proposition 3.28. Let K be a subset of an ideal topological space (X, τ, I) .

- (1). If $K = cl^*(int_{\omega}(K))$, then K is $\alpha^* I_{\omega}$ -closed in X.
- (2). If $K = cl(int_{\omega}(K))$, then K is α^{*} - I_{ω} -closed in X.

Proof. (1) If $K = cl^*(int_{\omega}(K))$, then we obtain that $cl^*(int_{\omega}(cl^*(K))) = cl^*(int_{\omega}(cl^*(int_{\omega}(K)))) = cl^*(int_{\omega}(K)) = K$. Hence K is an α^* - I_{ω} -closed set in X.

(2) If $K = cl(int_{\omega}(K))$, then we obtain that $cl^{\star}(int_{\omega}(cl^{\star}(K))) = cl^{\star}(int_{\omega}(cl^{\star}(cl(int_{\omega}(K))))) \subset cl(int_{\omega}(cl(int_{\omega}(K)))) = cl(int_{\omega}(K)) = K$. Hence K is an α^{\star} - I_{ω} -closed set in X.

Definition 3.29. A subset K of an ideal topological space (X, τ, I) is called $pre-I_{\omega}$ -regular if K is $pre-I_{\omega}$ -open and pre^*-I_{ω} -closed.

Example 3.30. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is $pre-I_{\omega}$ -regular, since $int_{\omega}(cl^{\star}(K)) = int_{\omega}(\mathbb{R}) = \mathbb{R} \supset \mathbb{Q} = K$; $cl^{\star}(int_{\omega}(K)) = cl^{\star}(\phi) = \phi \subset \mathbb{Q} = K$ and hence K is both $pre-I_{\omega}$ -open and $pre^{\star}-I_{\omega}$ -closed.
- (2). $K = \mathbb{Q}^*$ is not pre- I_{ω} -regular, since K is not pre * - I_{ω} -closed, for $cl^*(int_{\omega}(K)) = cl^*(\mathbb{Q}^*) = cl(\mathbb{Q}^*) = \mathbb{R} \not\subset \mathbb{Q}^* = K$.

Remark 3.31. In an ideal topological space (X, τ, I) ,

- (1). Every pre- I_{ω} -regular set is pre- I_{ω} -open.
- (2). Every pre- I_{ω} -regular set is pre^{\star} - I_{ω} -closed.

The converses of (1) and (2) in Remark 3.31 are not true as seen from the following Examples.

Example 3.32. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}, K = \mathbb{Q}^*$ is $pre-I_{\omega}$ -open, since $int_{\omega}(cl^*(K)) = int_{\omega}(cl(K)) = int_{\omega}(\mathbb{R}) = \mathbb{R} \supset \mathbb{Q}^* = K$. But K is not $pre-I_{\omega}$ -regular by (2) of Example 3.30.

Example 3.33. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{N}, \mathbb{Q}^*, \mathbb{Q}^* \cup \mathbb{N}\}$ and the ideal $I = \{\phi\}, K = \mathbb{Q}$ is $pre^* - I_{\omega}$ -closed, since $cl^*(int_{\omega}(K)) = cl^*(\mathbb{N}) = cl(\mathbb{N}) = \mathbb{Q} = K \subset K$. But $K = \mathbb{Q}$ is not $pre - I_{\omega}$ -open, since $int_{\omega}(cl^*(K)) = int_{\omega}(cl(K)) = int_{\omega}(K) = \mathbb{N} \not\supseteq \mathbb{Q} = K$. This implies $K = \mathbb{Q}$ is not $pre - I_{\omega}$ -regular.

Proposition 3.34. In an ideal topological space (X, τ, I) , every α^* - I_{ω} -open set is semi * - I_{ω} -open.

Proof. Let K be an α^* - I_{ω} -open set in X. Then $K \subset int^*(cl_{\omega}(int^*(K))) \subset cl_{\omega}(int^*(K))$. Thus K is semi * - I_{ω} -open in X.

Example 3.35. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, K = [0,1] is $semi^* - I_\omega$ -open for $cl_\omega(int^*([0,1])) = cl_\omega(\mathbb{R} \setminus cl^*(\mathbb{R} \setminus [0,1])) = cl_\omega(\mathbb{R} \setminus cl((-\infty,0) \cup (1,\infty))) = cl_\omega(\mathbb{R} \setminus ((-\infty,0] \cup [1,\infty))) = cl_\omega(\mathbb{R} \setminus (0,1)) = cl_\omega((0,1)) = [0,1] \supset [0,1]$. But K = [0,1] is not $\alpha^* - I_\omega$ -open, since $int^*(cl_\omega(int^*([0,1]))) = int^*([0,1]) = (0,1) \not\supseteq [0,1]$.

Theorem 3.36. Let K be a subset of an ideal topological space (X, τ, I) . Then K is α^* - I_{ω} -open if and only if K is semi*- I_{ω} -open and pre^* - I_{ω} -open.

Proof. Let K be an α^* - I_{ω} -open set in X. Then $K \subset int^*(cl_{\omega}(int^*(K)))$. It follows that $K \subset cl_{\omega}(int^*(K))$ and $K \subset int^*(cl_{\omega}(K))$. Thus, K is semi * - I_{ω} -open and pre * - I_{ω} -open.

Conversely, suppose that K is semi*- I_{ω} -open and pre*- I_{ω} -open in X. Then $K \subset cl_{\omega}(int^{*}(K))$ and $K \subset int^{*}(cl_{\omega}(K))$. It follows that $K \subset int^{*}(cl_{\omega}(K)) \subset int^{*}(cl_{\omega}(int^{*}(K)))$ which implies that K is α^{*} - I_{ω} -open in X.

Remark 3.37. The following Examples show that the concepts of semi*- I_{ω} -openness and pre*- I_{ω} -openness are independent.

Example 3.38. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, K = [0,1] is $semi^*$ - I_{ω} -open by Example 3.35. But K = [0,1] is not pre^* - I_{ω} -open, since $int^*(cl_{\omega}(K)) = int^*([0,1]) = (0,1) \not\supseteq [0,1] = K$.

Example 3.39. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, $K = \mathbb{Q}^*$ is $pre^* - I_{\omega}$ -open by (1) of Example 3.2. But $K = \mathbb{Q}^*$ is not $semi^* - I_{\omega}$ -open, since $cl_{\omega}(int^*(K)) = cl_{\omega}(\mathbb{R} \setminus cl^*(\mathbb{Q})) = cl_{\omega}(\mathbb{R} \setminus (\mathbb{Q} \cup \mathbb{R})) = cl_{\omega}(\mathbb{R} \setminus \mathbb{R}) = cl_{\omega}(\phi) = \phi \not\supseteq \mathbb{Q}^* = K$.

4. \mathcal{A}^* - I_{ω} -sets, I_{ω} - \mathcal{C} -sets and \mathcal{C}^* - I_{ω} -sets

Definition 4.1. A subset K of an ideal topological space (X, τ, I) is called a C^* - I_{ω} -set if $K = U \cap V$, where U is an open set and V is a pre- I_{ω} -regular set.

Remark 4.2. In an ideal topological space (X, τ, I) ,

- (1). Every open set is a C^* - I_{ω} -set.
- (2). Every pre- I_{ω} -regular set is a C^* - I_{ω} -set.

The converses of (1) and (2) in Remark 4.2 are not true as seen from the following Example.

Example 4.3. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is $pre-I_{\omega}$ -regular by (1) of Example 3.30 and hence is a \mathcal{C}^* - I_{ω} -set by (2) of Remark 4.2. But $K = \mathbb{Q}$ is not open, since $int(K) = \phi \neq \mathbb{Q} = K$.
- (2). K = (0,1) is a \mathcal{C}^* - I_{ω} -set by (1) of Remark 4.2, since K is open. But K = (0,1) is not pre^* - I_{ω} -closed, for $\operatorname{cl}^*(\operatorname{int}_{\omega}(K)) = \operatorname{cl}^*((0,1)) = \operatorname{cl}((0,1)) = [0,1] \nsubseteq (0,1) = K$ and hence not pre - I_{ω} -regular.

Example 4.4. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is $pre-I_{\omega}$ -regular by (1) of Example 3.30 and hence is a \mathcal{C}^*-I_{ω} -set by (2) of Remark 4.2.
- (2). $K = \mathbb{Q}^*$ is not a \mathcal{C}^* - I_{ω} -set. If $K = U \cap V$ where U is open and V is a pre- I_{ω} -regular set, then $K \subset U$. But \mathbb{R} is the only open set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}^*$ is not a pre- I_{ω} -regular set by (2) of Example 3.30. This proves that $K = \mathbb{Q}^*$ is not a \mathcal{C}^* - I_{ω} -set.

Theorem 4.5. In an ideal topological space (X, τ, I) , each C^* - I_{ω} -set is pre- I_{ω} -open.

Proof. Let K be a \mathcal{C}^* - I_{ω} -set in X. It follows that $K = L \cap M$, where L is an open set and M is a pre- I_{ω} -regular set in X. By Remark 3.31(1), M is pre- I_{ω} -open. Since M is pre- I_{ω} -open, by Proposition 2.17, $K = L \cap M$ is a pre- I_{ω} -open set in X.

Example 4.6. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}^*$ is pre- I_{ω} -open by Example 3.32. But $K = \mathbb{Q}^*$ is not a \mathcal{C}^* - I_{ω} -set by (2) of Example 4.4.

Remark 4.7. By Remark 4.2(2) and Theorem 4.5, the following diagram holds for any subset of an ideal topological space (X, τ, I) .

$$pre-I_{\omega}$$
-regular $\longrightarrow \mathcal{C}^{\star}$ - I_{ω} -set $\longrightarrow pre$ - I_{ω} -open

Definition 4.8. A subset K of an ideal topological space (X, τ, I) is called

- (1). an I_{ω} -C-set if $K = U \cap V$, where U is an open set and V is pre^{\star} - I_{ω} -closed.
- (2). $a \eta I_{\omega}$ -set if $K = U \cap V$, where U is an open set and V is $\alpha^{\star} I_{\omega}$ -closed.
- (3). an \mathcal{A}^* - I_{ω} -set if $K = U \cap V$, where U is an open set and $V = cl^*(int_{\omega}(V))$.

Remark 4.9. In an ideal topological space (X, τ, I) ,

- (1). Every pre^* - I_{ω} -closed set is an I_{ω} -C-set.
- (2). Every α^* - I_ω -closed set is a η - I_ω -set.
- (3). For a subset K of X if $K = cl^*(int_{\omega}(K))$, then K is an \mathcal{A}^* - I_{ω} -set.

Example 4.10. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is pre^{\star} - I_{ω} -closed, for $cl^{\star}(int_{\omega}(K)) = cl^{\star}(\phi) = \phi \subset \mathbb{Q} = K$ and hence is an I_{ω} - \mathcal{C} -set by (1) of Remark 4.9.
- (2). $K = \mathbb{Q}^*$ is not an I_{ω} -C-set. If $K = U \cap V$ where U is open and V is pre^* - I_{ω} -closed, then $K \subset U$. But \mathbb{R} is the only open set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}^*$ is not pre^* - I_{ω} -closed by (2) of Example 3.30. This proves that $K = \mathbb{Q}^*$ is not an I_{ω} -C-set.

Example 4.11. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$,

- (1). For K = [0,1], $cl^*(int_{\omega}(cl^*(K))) = cl^*(int_{\omega}(K)) = cl^*((0,1)) = [0,1] = K \subset K$. Thus K is α^* - I_{ω} -closed and hence is a η - I_{ω} -set by (2) of Remark 4.9.
- (2). $K = \mathbb{Q}^*$ is not a η - I_{ω} -set. If $K = U \cap V$ where U is open and V is α^* - I_{ω} -closed, then $K \subset U$. But \mathbb{R} is the only open set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}^*$ is not an α^* - I_{ω} -closed set by (2) of Example 3.21. This proves that $K = \mathbb{Q}^*$ is not a η - I_{ω} -set.
- (3). For K = [0,1], $cl^*(int_{\omega}(K)) = cl^*((0,1)) = [0,1] = K$. Thus K = [0,1] is an $\mathcal{A}^* I_{\omega}$ -set by (3) of Remark 4.9.
- (4). $K = \mathbb{Q}$ is not an \mathcal{A}^* - I_{ω} -set. If $K = U \cap V$ where U is open and $V = cl^*(int_{\omega}(V))$, then $K \subset U$. But \mathbb{R} is the only open set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $cl^*(int_{\omega}(K)) = cl^*(\phi) = \phi \neq \mathbb{Q} = K$. This proves that $K = \mathbb{Q}$ is not an \mathcal{A}^* - I_{ω} -set.

Remark 4.12. In an ideal topological space (X, τ, I) , every open set is an \mathcal{A}^* - I_{ω} -set.

Example 4.13. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, K = [0, 1] is an \mathcal{A}^* - I_{ω} -set by (3) of Example 4.11. But K is not open, since $int(K) = (0, 1) \neq [0, 1] = K$.

Remark 4.14. By Proposition 3.28(1), Proposition 3.24, Remark 3.31(2) and Definition 4.8, the following diagram holds for any subset of an ideal topological space (X, τ, I) .

$$\mathcal{C}^{\star}\text{-}I_{\omega}\text{-}set \longrightarrow I_{\omega}\text{-}\mathcal{C}\text{-}set$$

$$\uparrow$$
 $\mathcal{A}^{\star}\text{-}I_{\omega}\text{-}set \longrightarrow \eta\text{-}I_{\omega}\text{-}set$

Remark 4.15. The reverse implications in Remark 4.14 are not true as seen from the following Example.

Example 4.16.

- (1). In ℝ with the topology τ = {φ, ℝ, ℚ*} and the ideal I = {φ}, K = ℚ is pre*-I_ω-closed by Proposition 3.3(2) for K = ℚ is closed and hence is an I_ω-C-set by (1) of Remark 4.9. But K is not a C*-I_ω-set. If K = U ∩ V where U is open and V is pre-I_ω-regular, then K ⊂ U. But ℝ is the only open set containing K. Hence U = ℝ and K = ℝ ∩ V = V. This is a contradiction since K = ℚ is not pre-I_ω-regular, being not pre-I_ω-open for int_ω(cl*(K = ℚ)) = int_ω(cl(ℚ)) = int_ω(ℚ) = φ ⊉ ℚ = K. This proves that K = ℚ is not a C*-I_ω-set.
- (2). In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}$ is an I_{ω} -C-set by (1) of Example 4.10. But $K = \mathbb{Q}$ is not a η - I_{ω} -set. If $K = U \cap V$ where U is open and V is α^* - I_{ω} -closed, then $K \subset U$. But \mathbb{R} is the only open set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}$ is not α^* - I_{ω} -closed for $cl^*(int_{\omega}(cl^*(K))) = cl^*(int_{\omega}(\mathbb{R})) = \mathbb{R} \nsubseteq \mathbb{Q} = K$. This proves that $K = \mathbb{Q}$ is not a η - I_{ω} -set.
- (3). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and the ideal $I = \{\phi\}$, $K = \mathbb{N}$ is $\alpha^* I_\omega$ -closed for $cl^*(int_\omega(cl^*(K))) = cl^*(int_\omega(\mathbb{Q})) = cl^*(\phi) = \phi \subset \mathbb{N} = K$ and hence $K = \mathbb{N}$ is a η - I_ω -set by (2) of Remark 4.9. But $K = \mathbb{N}$ is not an $\mathcal{A}^* I_\omega$ -set. If $K = U \cap V$ where U is open and $V = cl^*(int_\omega(V))$, then $K \subset U$. But \mathbb{R} is the only open set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $cl^*(int_\omega(K)) = cl^*(\phi) = \phi \neq \mathbb{N} = K$. This proves that $K = \mathbb{N}$ is not an $\mathcal{A}^* I_\omega$ -set.

Theorem 4.17. For a subset K of an ideal topological space (X, τ, I) , the following are equivalent:

- (1). K is an I_{ω} -C-set and a semi- I_{ω} -open set in X.
- (2). $K = L \cap cl^*(int_{\omega}(K))$ for an open set L.
- Proof. (1) \Rightarrow (2): Since K is an I_{ω} -C-set, $K = L \cap M$, where L is an open set and M is a pre*- I_{ω} -closed set in X. We have $K \subset M$ and $cl^*(int_{\omega}(K)) \subset cl^*(int_{\omega}(M)) \subset M$ since M is pre*- I_{ω} -closed in X. Since K is semi- I_{ω} -open in X, we have $K \subset cl^*(int_{\omega}(K))$. It follows that $K = K \cap cl^*(int_{\omega}(K)) = L \cap M \cap cl^*(int_{\omega}(K)) = L \cap cl^*(int_{\omega}(K))$.
- (2) \Rightarrow (1): Let $K = L \cap cl^*(int_{\omega}(K))$ for an open set L. Then $K \subset cl^*(int_{\omega}(K))$ and thus K is semi- I_{ω} -open in X. Since $cl^*(int_{\omega}(K))$ is a \star -closed set, by Proposition 3.3(1), it is a pre * - I_{ω} -closed set in X. Hence, K is an I_{ω} -C-set in X.

Theorem 4.18. For a subset K of an ideal topological space (X, τ, I) , the following are equivalent:

- (1). K is an \mathcal{A}^* - I_{ω} -set.
- (2). K is semi- I_{ω} -open and a η - I_{ω} -set.
- (3). K is semi- I_{ω} -open and an I_{ω} -C-set.
- Proof. (1) \Rightarrow (2): Suppose that K is an \mathcal{A}^* - I_{ω} -set in X. It follows that $K = L \cap M$, where L is an open set and $M = cl^*(int_{\omega}(M))$. This implies that $K = L \cap M = L \cap cl^*(int_{\omega}(M)) \subset cl^*(L \cap int_{\omega}(M))$ (by Lemma 2.10) $= cl^*(int(L) \cap int_{\omega}(M)) \subset cl^*(int_{\omega}(L) \cap int_{\omega}(M)) = cl^*(int_{\omega}(L \cap M)) = cl^*(int_{\omega}(K))$. Thus $K \subset cl^*(int_{\omega}(K))$ and hence K is a semi- I_{ω} -open set. Moreover, by Remark 4.14, K is a η - I_{ω} -set in X.
- $(2) \Rightarrow (3)$: It follows from the fact that every η - I_{ω} -set is an I_{ω} -C-set in X by Remark 4.14.
- (3) \Rightarrow (1): Suppose K is semi- I_{ω} -open and an I_{ω} -C-set in X. By Theorem 4.17, $K = L \cap cl^*(int_{\omega}(K))$ for an open set L. We have $cl^*(int_{\omega}(cl^*(int_{\omega}(K)))) = cl^*(int_{\omega}(K))$. It follows that K is an \mathcal{A}^* - I_{ω} -set in X.

Remark 4.19. The following Example shows that

- (1). The concepts of semi- I_{ω} -openness and being a η - I_{ω} -set are independent.
- (2). The concepts of semi- I_{ω} -openness and being an I_{ω} -C-set are independent.

Example 4.20.

- (1). In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, $K = \mathbb{Q}^*$ is semi- I_ω -open, since $cl^*(int_\omega(K)) = cl^*(\mathbb{Q}^*) = \mathbb{R} \supset \mathbb{Q}^* = K$. But $K = \mathbb{Q}^*$ is not a η - I_ω -set by (2) of Example 4.11.
- (2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and the ideal $I = \{\phi\}$, $K = \mathbb{N}$ is a η - I_{ω} -set by (3) of Example 4.16. But $K = \mathbb{N}$ is not semi- I_{ω} -open, since $cl^*(int_{\omega}(K)) = cl^*(\phi) = \phi \not\supseteq \mathbb{N} = K$.
- (3). In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}, K = \mathbb{Q}$ is an I_ω -C-set by (1) of Example 4.10. But $K = \mathbb{Q}$ is not semi- I_ω -open, since $cl^*(int_\omega(K)) = cl^*(\phi) = \phi \not\supseteq \mathbb{Q} = K$.
- (4). In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}, K = \mathbb{Q}^*$ is semi- I_ω -open, since $cl^*(int_\omega(K)) = cl^*(\mathbb{Q}^*) = cl(\mathbb{Q}^*) = \mathbb{R} \supset \mathbb{Q}^* = K$. But $K = \mathbb{Q}^*$ is not an I_ω -C-set by (2) of Example 4.10.

5. $A^{\star\star}$ - I_{ω} -sets, I_{ω} - \mathcal{C}^{\star} -sets and $\mathcal{C}^{\star\star}$ - I_{ω} -sets

Definition 5.1. A subset K of an ideal topological space (X, τ, I) is called a $C^{\star\star}$ - I_{ω} -set if $K = U \cap V$, where U is an \star -open set and V is a pre- I_{ω} -regular set.

Remark 5.2. In an ideal topological space (X, τ, I) ,

- (1). Every \star -open set is a $C^{\star\star}$ - I_{ω} -set.
- (2). Every pre- I_{ω} -regular set is a $C^{\star\star}$ - I_{ω} -set.

The converses of (1) and (2) in Remark 5.2 are not true as seen from the following Example.

Example 5.3. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is pre- I_{ω} -regular by (1) of Example 3.30 and hence is a $\mathcal{C}^{\star\star}$ - I_{ω} -set by (2) of Remark 5.2. But $K = \mathbb{Q}$ is not \star -open, since $int^{\star}(K) = \mathbb{R} \backslash cl^{\star}(\mathbb{Q}^{\star}) = \mathbb{R} \backslash \mathbb{R} = \phi \neq \mathbb{Q} = K$.
- (2). K = (0,1) is a $C^{\star\star}$ - I_{ω} -set by (1) of Remark 5.2, since K is open and hence \star -open. But K = (0,1) is not pre^{\star} - I_{ω} -closed, for $cl^{\star}(int_{\omega}(K)) = cl^{\star}((0,1)) = cl((0,1)) = [0,1] \nsubseteq (0,1) = K$ and hence not pre- I_{ω} -regular.

Example 5.4. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is $pre-I_{\omega}$ -regular by (1) of Example 3.30 and hence is a $\mathcal{C}^{\star\star}$ - I_{ω} -set by (2) of Remark 5.2.
- (2). $K = \mathbb{Q}^*$ is not a \mathcal{C}^{**} - I_{ω} -set. If $K = U \cap V$ where U is *-open and V is a pre- I_{ω} -regular set, then $K \subset U$. But \mathbb{R} is the only open (= *-open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}^*$ is not a pre- I_{ω} -regular set by (2) of Example 3.30. This proves that $K = \mathbb{Q}^*$ is not a \mathcal{C}^{**} - I_{ω} -set.

Definition 5.5. A subset K of an ideal topological space (X, τ, I) is called

- (1). an I_{ω} - C^* -set if $K = U \cap V$, where U is an \star -open set and V is pre^* - I_{ω} -closed.
- (2). $a \eta^* I_\omega$ -set if $K = U \cap V$, where U is an \star -open set and V is $\alpha^* I_\omega$ -closed.
- (3). an $\mathcal{A}^{\star\star}$ - I_{ω} -set if $K = U \cap V$, where U is an \star -open set and $V = cl(int_{\omega}(V))$.

Remark 5.6. In an ideal topological space (X, τ, I) ,

- (1). Every pre^{\star} - I_{ω} -closed set is an I_{ω} - C^{\star} -set.
- (2). Every α^* - I_ω -closed set is a η^* - I_ω -set.
- (3). For a subset K of X if $K = cl(int_{\omega}(K))$, then K is an $\mathcal{A}^{\star\star}$ - I_{ω} -set.

Example 5.7. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is $pre^* I_{\omega}$ -closed, for $cl^*(int_{\omega}(K)) = cl^*(\phi) = \phi \subset \mathbb{Q} = K$ and hence is an I_{ω} - \mathcal{C}^* -set by (1) of Remark 5.6.
- (2). $K = \mathbb{Q}^*$ is not an I_{ω} - \mathcal{C}^* -set. If $K = U \cap V$ where U is \star -open and V is pre^* - I_{ω} -closed, then $K \subset U$. But \mathbb{R} is the only open $(= \star$ -open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}^*$ is not pre^* - I_{ω} -closed by (2) of Example 3.30. This proves that $K = \mathbb{Q}^*$ is not an I_{ω} - \mathcal{C}^* -set.

Example 5.8. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$,

- (1). Since K = [0,1] is α^* - I_ω -closed by (1) of Example 4.11, K = [0,1] is a η^* - I_ω -set by (2) of Remark 5.6.
- (2). For K = [0,1], $cl(int_{\omega}(K)) = cl((0,1)) = [0,1] = K$. Then K = [0,1] is an $\mathcal{A}^{\star\star}$ - I_{ω} -set by (3) of Remark 5.6.

Example 5.9. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is not a η^* - I_{ω} -set. If $K = U \cap V$, where U is \star -open and V is α^* - I_{ω} -closed, then $K \subset U$. But \mathbb{R} is the only open $(= \star$ -open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}$ is not α^* - I_{ω} -closed for $cl^*(int_{\omega}(cl^*(K = \mathbb{Q}))) = cl^*(int_{\omega}(cl(\mathbb{Q}))) = cl^*(int_{\omega}(\mathbb{R})) = \mathbb{R} \nsubseteq \mathbb{Q} = K$. This proves that $K = \mathbb{Q}$ is not a η^* - I_{ω} -set.
- (2). $K = \mathbb{Q}$ is not an $\mathcal{A}^{\star\star}$ - I_{ω} -set. If $K = U \cap V$, where U is \star -open and $V = cl(int_{\omega}(V))$, then $K \subset U$. But \mathbb{R} is the only open $(= \star$ -open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $cl(int_{\omega}(K = \mathbb{Q})) = cl(\phi) = \phi \neq \mathbb{Q} = K$. This proves that $K = \mathbb{Q}$ is not an $\mathcal{A}^{\star\star}$ - I_{ω} -set.

Remark 5.10. By Proposition 3.28(2), Proposition 3.24, Remark 3.31(2) and Definition 5.5, the following diagram holds for any subset of an ideal topological space (X, τ, I) .

$$\mathcal{C}^{\star\star} ext{-}I_{\omega} ext{-}set \longrightarrow I_{\omega} ext{-}\mathcal{C}^{\star} ext{-}set \ \uparrow \ \mathcal{A}^{\star\star} ext{-}I_{\omega} ext{-}set \longrightarrow \eta^{\star} ext{-}I_{\omega} ext{-}set \$$

Remark 5.11. The reverse implications in Remark 5.10 are not true as seen from the following Example.

- **Example 5.12.** (1). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and the ideal $I = \{\phi\}, K = \mathbb{Q}$ is pre^* - I_{ω} -closed by Proposition 3.3(2) for K is closed and hence is an I_{ω} - C^* -set by (1) of Remark 5.6. But $K = \mathbb{Q}$ is not a C^{**} - I_{ω} -set. If $K = U \cap V$ where U is *-open and V is pre- I_{ω} -regular, then $K \subset U$. But \mathbb{R} is the only open (= *-open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}$ is not pre- I_{ω} -regular, being not pre- I_{ω} -open for $int_{\omega}(cl^*(K = \mathbb{Q})) = int_{\omega}(cl(\mathbb{Q})) = int_{\omega}(\mathbb{Q}) = \phi \not\supseteq \mathbb{Q} = K$. This proves that $K = \mathbb{Q}$ is not a C^{**} - I_{ω} -set.
- (2). In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}$ is an I_ω - C^* -set by (1) of Example 5.7. But $K = \mathbb{Q}$ is not a η^* - I_ω -set. If $K = U \cap V$ where U is \star -open and V is α^* - I_ω -closed, then $K \subset U$. But \mathbb{R} is the only open (= \star -open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $K = \mathbb{Q}$ is not α^* - I_ω -closed for $cl^*(int_\omega(cl^*(K))) = cl^*(int_\omega(\mathbb{R})) = \mathbb{R} \nsubseteq \mathbb{Q} = K$. This proves that $K = \mathbb{Q}$ is not a η^* - I_ω -set.
- (3). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and the ideal $I = \{\phi\}, K = \mathbb{N}$ is $\alpha^* I_\omega$ -closed for $cl^*(int_\omega(cl^*(K))) = cl^*(int_\omega(\mathbb{Q})) = cl^*(\phi) = \phi \subset \mathbb{N} = K$ and hence $K = \mathbb{N}$ is a $\eta^* I_\omega$ -set by (2) of Remark 5.6. But $K = \mathbb{N}$ is not an $\mathcal{A}^{**} I_\omega$ -set. If $K = U \cap V$ where U is *-open and $V = cl(int_\omega(V))$, then $K \subset U$. But \mathbb{R} is the only open (= *-open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $cl(int_\omega(K)) = cl(\phi) = \phi \neq \mathbb{N} = K$. This proves that $K = \mathbb{N}$ is not an $\mathcal{A}^{**} I_\omega$ -set.

Remark 5.13. In an ideal topological space (X, τ, I) , every \star -open set is an $\mathcal{A}^{\star\star}$ - I_{ω} -set.

Example 5.14. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, K = [0,1] is an $\mathcal{A}^{\star\star}$ - I_{ω} -set by (2) of Example 5.8. But K = [0,1] is not \star -open, since $int^{\star}([0,1]) = \mathbb{R} \setminus cl^{\star}(\mathbb{R} \setminus [0,1]) = \mathbb{R} \setminus ((\mathbb{R} \setminus [0,1]) \cup (cl(int(cl(\mathbb{R} \setminus [0,1]))))) = \mathbb{R} \setminus ((\mathbb{R} \setminus [0,1])) \cup (\mathbb{R} \setminus [0,1]) \cup$

Proposition 5.15. For a subset K of an ideal topological space (X, τ, I) , the following are equivalent:

(1). K is \star -open.

- (2). K is α^* - I_ω -open and an \mathcal{A}^{**} - I_ω -set.
- (3). K is $pre^* I_{\omega}$ -open and an $\mathcal{A}^{**} I_{\omega}$ -set.

Proof. (1) \Rightarrow (2): (2) follows by Proposition 3.22(1) and Remark 5.13.

- $(2) \Rightarrow (3)$: (3) follows by Proposition 3.24.
- (3) \Rightarrow (1): Suppose K is $\operatorname{pre}^*-I_{\omega}$ -open and an $\mathcal{A}^{**}-I_{\omega}$ -set. Since K is an $\mathcal{A}^{**}-I_{\omega}$ -set, we have $K=L\cap M$, where L is an \star -open set and $M=\operatorname{cl}(\operatorname{int}_{\omega}(M))$. It follows that $\operatorname{int}^*(\operatorname{cl}_{\omega}(M))\subset\operatorname{cl}_{\omega}(M)\subset\operatorname{cl}(M)=\operatorname{cl}(\operatorname{cl}(\operatorname{int}_{\omega}(M)))=\operatorname{cl}(\operatorname{int}_{\omega}(M))=M$. This implies that M is semi- I_{ω} -closed. By Proposition 3.9, M is an I_{ω} -t-set in X. By Definition 3.10, K is a \mathcal{B} - I_{ω} -set. Since K is $\operatorname{pre}^*-I_{\omega}$ -open and a \mathcal{B} - I_{ω} -set, K is \star -open by Proposition 3.15.

Remark 5.16. The following Example shows that

- (1). The concepts of α^* - I_{ω} -openness and being an \mathcal{A}^{**} - I_{ω} -set are independent.
- (2). The concepts of pre*- I_{ω} -openness and being an $\mathcal{A}^{\star\star}$ - I_{ω} -set are independent.

Example 5.17.

- (1). In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, K = [0,1] is an $\mathcal{A}^{\star\star}$ - I_{ω} -set by Example 5.14. But K = [0,1] is not α^{\star} - I_{ω} -open, since $int^{\star}(cl_{\omega}(int^{\star}([0,1]))) = int^{\star}(cl_{\omega}((0,1))) = int^{\star}([0,1]) = (0,1) \not\supseteq [0,1] = K$.
- (2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and the ideal $I = \{\phi\}$, $K = \mathbb{R} \setminus \{1\}$ is $\alpha^* I_\omega$ -open by (1) of Example 3.23. But K is not an $\mathcal{A}^{**} I_\omega$ -set. If $K = U \cap V$ where U is **-open and $V = cl(int_\omega(V))$, then $K \subset U$. But \mathbb{R} is the only open (= *-open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $cl(int_\omega(K)) = cl(K) = \mathbb{R} \neq \mathbb{R} \setminus \{1\} = K$. This proves that $K = \mathbb{R} \setminus \{1\}$ is not an $\mathcal{A}^{**} I_\omega$ -set.
- (3). In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}^*$ is $\operatorname{pre}^* I_\omega$ -open by Example 3.17. But K is not an \mathcal{A}^{**} - I_ω -set. If $K = U \cap V$ where U is \star -open and $V = \operatorname{cl}(\operatorname{int}_\omega(V))$, then $K \subset U$. But \mathbb{R} is the only open $(= \star$ -open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since $\operatorname{cl}(\operatorname{int}_\omega(K)) = \operatorname{cl}(K) = \mathbb{R} \neq \mathbb{Q}^* = K$. This proves that $K = \mathbb{Q}^*$ is not an \mathcal{A}^{**} - I_ω -set.
- (4). In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, K = [0,1] is an $\mathcal{A}^{\star\star}$ - I_{ω} -set by Example 5.14. But K is not pre * - I_{ω} -open, since $int^{\star}(cl_{\omega}(K)) = int^{\star}([0,1]) = (0,1) \not\supseteq [0,1] = K$.

Theorem 5.18. For a subset K of an ideal topological space (X, τ, I) , the following are equivalent:

- (1). K is an I_{ω} - C^* -set and a semi- I_{ω} -open set in X.
- (2). $K = L \cap cl^*(int_{\omega}(K))$ for an *-open set L.
- Proof. (1) \Rightarrow (2): Since K is an I_{ω} - C^* -set, $K = L \cap M$, where L is an \star -open set and M is a pre * - I_{ω} -closed set in X. We have $K \subset M$ and $cl^*(int_{\omega}(K)) \subset cl^*(int_{\omega}(M)) \subset M$ since M is pre * - I_{ω} -closed in X. Since K is semi- I_{ω} -open in X, we have $K \subset cl^*(int_{\omega}(K))$. It follows that $K = K \cap cl^*(int_{\omega}(K)) = L \cap M \cap cl^*(int_{\omega}(K)) = L \cap cl^*(int_{\omega}(K))$.
- (2) \Rightarrow (1): Let $K = L \cap cl^*(int_{\omega}(K))$ for an \star -open set L. Then $K \subset cl^*(int_{\omega}(K))$ and thus K is semi- I_{ω} -open in X. Since $cl^*(int_{\omega}(K))$ is a \star -closed set, by Proposition 3.3(1), it is a pre * - I_{ω} -closed set in X. Hence, K is an I_{ω} - C^* -set in X.

6. I_{ω^*} -submaximal Spaces

Definition 6.1. A subset K of an ideal topological space (X, τ, I) is called locally I_{ω^*} -closed if $K = U \cap V$, where U is \star -open and V is ω -closed.

Remark 6.2. In an ideal topological space (X, τ, I) ,

- (1). Every \star -open set is locally $I_{\omega^{\star}}$ -closed.
- (2). Every ω -closed set is locally I_{ω^*} -closed.

Example 6.3. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is ω -closed and hence is locally I_{ω^*} -closed by (2) of Remark 6.2.
- (2). $K = \mathbb{Q}^*$ is not locally I_{ω^*} -closed. If $K = U \cap V$, where U is \star -open and V is ω -closed, then $K \subset U$. But \mathbb{R} is the only open $(=\star$ -open) set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since K is not ω -closed $((i.e) \ cl_{\omega}(K) = \mathbb{R} \neq \mathbb{Q}^* = K)$.

Remark 6.4. The converses of (1) and (2) in Remark 6.2 are not true as seen from the following Example.

Example 6.5. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}$ is locally I_{ω^*} -closed by (1) of Example 6.3. But K is not \star -open, since $int^*(K) = \mathbb{R} \backslash cl^*(\mathbb{Q}^*) = \mathbb{R} \backslash \mathbb{R} = \phi \neq \mathbb{Q} = K$.
- (2). K = (0,1) is locally I_{ω^*} -closed by (1) of Remark 6.2, since K is open and hence \star -open. But K is not ω -closed, since $cl_{\omega}(K) = [0,1] \neq (0,1) = K$.

Proposition 6.6. For a subset K of an ideal topological space (X, τ, I) , the following are equivalent:

- (1). K is \star -open.
- (2). K is pre^* - I_{ω} -open and locally I_{ω^*} -closed.

Proof. (1) \Rightarrow (2): (2) follows by Proposition 3.3(1) and Remark 6.2(1).

(2) \Rightarrow (1): Given K is locally I_{ω^*} -closed. So $K = U \cap V$ where U is \star -open and $V = cl_{\omega}(V)$. Then $K \subset U = int^*(U)$. Also K is pre * - I_{ω} -open implies $K \subset int^*(cl_{\omega}(K)) \subset int^*(cl_{\omega}(V)) = int^*(V)$ by assumption. Thus $K \subset int^*(U) \cap int^*(V) = int^*(U \cap V) = int^*(K)$ and hence K is \star -open.

Remark 6.7. The following Example shows that the concepts of pre^{\star} - I_{ω} -openness and locally $I_{\omega^{\star}}$ -closedness are independent.

Example 6.8. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$,

- (1). $K = \mathbb{Q}^*$ is $pre^* I_{\omega}$ -open by Example 3.17. But K is not locally I_{ω^*} -closed by (2) of Example 6.3.
- (2). $K = \mathbb{Q}$ is locally I_{ω^*} -closed by (1) of Example 6.3. But K is not pre^* - I_{ω} -open, since $int^*(cl_{\omega}(K)) = int^*(K) = \mathbb{R} \setminus cl^*(\mathbb{Q}^*) = \mathbb{R} \setminus cl(\mathbb{Q}^*) = \mathbb{R} \setminus \mathbb{R} = \phi \not\supseteq \mathbb{Q} = K$.

Proposition 6.9. Every locally closed set is locally I_{ω^*} -closed.

Proof. It follows from the facts that every closed set is ω -closed and every open set is \star -open.

The converse of Proposition 6.9 is not true as seen from the following Example.

Example 6.10. In \mathbb{R} with usual topology τ_u and the ideal $I = \{\phi\}$, $K = \mathbb{Q}$ is locally I_{ω^*} -closed by (1) of Example 6.3. But $K = \mathbb{Q}$ is not locally closed. If $K = U \cap V$ where U is open and V is closed, then $K \subset U$. But \mathbb{R} is the only open set containing K. Hence $U = \mathbb{R}$ and $K = \mathbb{R} \cap V = V$. This is a contradiction since K is not closed. ((i.e) $cl(K = \mathbb{Q}) = \mathbb{R} \neq \mathbb{Q} = K$).

Lemma 6.11. In an ideal topological space (X, τ, I) , if K is pre^* - I_{ω} -open, then $K = L \cap M$ for some $L \in \tau^*$ and an ω -dense subset M.

Proof. If K is $\operatorname{pre}^* - I_{\omega}$ -open, then $K \subset \operatorname{int}^*(\operatorname{cl}_{\omega}(K)) = L \in \tau^*$. Also, $L = \operatorname{int}^*(\operatorname{cl}_{\omega}(K)) \subset \operatorname{cl}_{\omega}(K)$ and $(X - \operatorname{cl}_{\omega}(K)) \subset (X - L)$. Let $M = X - (L - K) = (X - L) \cup K$. Then M is ω -dense, since $X = \operatorname{cl}_{\omega}(K) \cup (X - \operatorname{cl}_{\omega}(K)) \subset \operatorname{cl}_{\omega}(K) \cup (X - L) \subset \operatorname{cl}_{\omega}(K) \cup \operatorname{cl}_{\omega}(X - L) = \operatorname{cl}_{\omega}((X - L) \cup K) = \operatorname{cl}_{\omega}(M)$. Also, $L \cap M = L \cap ((X - L) \cup K) = (L \cap (X - L)) \cup (L \cap K) = \omega \cup (L \cap K) = L \cap K = K$.

Definition 6.12. An ideal topological space (X, τ, I) is called I_{ω^*} -submaximal if every ω -dense subset of X is \star -open.

Proposition 6.13. Every submaximal space is I_{ω^*} -submaximal.

Proof. Let K be ω -dense in X. Then $X = cl_{\omega}(K) \subset cl(K)$ and X = cl(K). Thus K is dense in X. Since X is submaximal, K is open and hence \star -open in X. Hence, X is $I_{\omega^{\star}}$ -submaximal.

Example 6.14. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{c\}, \{b, c\}\}$. Set $K = \{a, c\}$. Then cl(K) = X and $K \notin \tau$. Hence X is not submaximal, since the dense set K is not open. But it is I_{ω^*} -submaximal, since the only ω -dense set is X which is \star -open.

Theorem 6.15. For an ideal topological space (X, τ, I) , the following are equivalent.

- (1). X is I_{ω^*} -submaximal,
- (2). Every ω -codense subset K of X is \star -closed.

Proof. (1) \Rightarrow (2): Let K be a ω -codense subset of X. Since $X \setminus K$ is ω -dense, $X \setminus K$ is \star -open. Thus K is \star -closed.

(2) \Rightarrow (1): Let K be a ω -dense subset of X. Since $X \setminus K$ is ω -codense, $X \setminus K$ is \star -closed. Thus K is \star -open and hence X is $I_{\omega^{\star}}$ -submaximal.

Lemma 6.16. In an I_{ω^*} -submaximal space (X, τ, I) , $\tau^* = P_I^* \omega O(X)$ where $P_I^* \omega O(X)$ is the family of pre*- I_{ω} -open sets of X.

Proof. Clearly $\tau^* \subset P_I^* \omega O(X)$ by Proposition 3.3(1). Now if $K \in P_I^* \omega O(X)$, then by Lemma 6.11, $K = L \cap M$ for some $L \in \tau^*$ and M is ω -dense in X. Since (X, τ, I) is I_{ω^*} -submaximal, $M \in \tau^*$ and hence $K \in \tau^*$. Therefore $P_I^* \omega O(X) \subset \tau^*$ and $\tau^* = P_I^* \omega O(X)$.

Proposition 6.17. In an ideal topological space (X, τ, I) , every \star -open set is semi * - I_{ω} -open.

Proof. Let K be an \star -open set in X. Then $K = int^{\star}(K) \subset cl_{\omega}(int^{\star}(K))$. Thus K is a semi * -I_{\omega}-open set in X.

Example 6.18. In \mathbb{R} with usual topology τ_u and the ideal $I = \mathcal{N}$, K = [0, 1] is semi*- I_{ω} -open by using Example 5.14 but not \star -open.

Theorem 6.19. In an ideal topological space (X, τ, I) , the following are equivalent:

- (1). X is I_{ω^*} -submaximal.
- (2). Every $pre^* I_{\omega}$ -open set is \star -open.
- (3). Every $pre^* I_{\omega}$ -open set is $semi^* I_{\omega}$ -open and every $\alpha^* I_{\omega}$ -open set is \star -open.

Proof. $(1) \Rightarrow (2)$: (2) follows by Lemma 6.16.

(2) \Rightarrow (3): Let K be any pre*- I_{ω} -open set. By assumption K is \star -open and hence is semi*- I_{ω} -open by Proposition 6.17. Let $K \subset X$ be an α^{\star} - I_{ω} -open set. Then K is pre*- I_{ω} -open by Proposition 3.24 and hence is \star -open by assumption.

(3) \Rightarrow (1): Let K be a ω -dense subset of X. Since $cl_{\omega}(K) = X$, $int^{\star}(cl_{\omega}(K)) = X \supset K$ and so K is pre^{\star} - I_{ω} -open. By (3), K is $semi^{\star}$ - I_{ω} -open. Since K is both $semi^{\star}$ - I_{ω} -open and pre^{\star} - I_{ω} -open, by Theorem 3.36, K is α^{\star} - I_{ω} -open. By (3), K is \star -open in X. Hence X is $I_{\omega^{\star}}$ -submaximal.

7. Decompositions of *-continuity and A^*-I_{ω} -continuity

Definition 7.1. A function $f: X \to Y$ is called semi- I_{ω} -continuous [16] (resp. \star -continuous [3]) if $f^{-1}(V)$ is semi- I_{ω} -open (resp. \star -open) in X for each open set V in Y.

Definition 7.2. A function $f: X \to Y$ is called pre^*-I_{ω} -continuous (resp. α^*-I_{ω} -continuous, \mathcal{B} - I_{ω} -continuous, \mathcal{A}^*-I_{ω} -continuous, I_{ω} - \mathcal{C} -continuous, η - I_{ω} -continuous, contra locally I_{ω^*} -continuous, $\mathcal{A}^{**}-I_{\omega}$ -continuous if $f^{-1}(V)$ is pre^*-I_{ω} -open (resp. α^*-I_{ω} -open, a \mathcal{B} - I_{ω} -set, an \mathcal{A}^*-I_{ω} -set, an I_{ω} - \mathcal{C} -set, a η - I_{ω} -set, locally I_{ω^*} -closed, an \mathcal{A}^{**} - I_{ω} -set in X for each open set V in Y.

Theorem 7.3. For a function $f: X \to Y$, then the following are equivalent:

- (1). f is \star -continuous.
- (2). f is pre^* - I_{ω} -continuous and \mathcal{B} - I_{ω} -continuous.
- (3). f is α^* - I_ω -continuous and \mathcal{A}^{**} - I_ω -continuous.
- (4). f is pre^* - I_{ω} -continuous and \mathcal{A}^{**} - I_{ω} -continuous.
- (5). f is pre^* - I_{ω} -continuous and contra locally I_{ω^*} -continuous.

Proof. (1) \Leftrightarrow (2): This is obvious by Proposition 3.15. (1) \Rightarrow (3); (3) \Rightarrow (4); (4) \Rightarrow (1): This is obvious by Proposition 5.15. (1) \Leftrightarrow (5): This is obvious by Proposition 6.6.

Theorem 7.4. For a function $f: X \to Y$, then the following are equivalent:

- (1). f is \mathcal{A}^{\star} - I_{ω} -continuous.
- (2). f is semi- I_{ω} -continuous and η - I_{ω} -continuous.
- (3). f is $semi-I_{\omega}$ -continuous and I_{ω} -C-continuous.

References

^[1] A.Acikgoz, T.Noiri and S.Yuksel, On α -I-continuous and α -I-open functions, Acta Math. Hungar., 105(1-2)(2004), 27-37.

- [2] A.Al-Omari and M.S.M.Noorani, Contra-ω-continuous and Almost contra-ω-continuous, Intern. J. Math. Math. Sci., 2007(2007), Article ID 40469.
- [3] J.Antony Rex Rodrigo, O.Ravi and M.Sangeetha, Mildly-I-locally closed sets and decompositions of ⋆-continuity, International Journal of Advances in Pure and Applied Mathematics, 1(2)(2011), 67-80.
- [4] J.Dontchev, On submaximal spaces, Tamkang J. Math., 26(1995), 253-260.
- [5] E.Ekici, On I-Alexandroff and I_q-Alexandroff ideal topological spaces, Filomat, 25(4)(2011), 99-108.
- [6] M.Ganster and I.L.Reilly, Locally closed sets and LC-continuous functions, Int. J. Math. Math. Sci., 3(1989), 417-424.
- [7] H.Z.Hdeib, ω-closed mappings, Revista Colomb. De Matem., 16(1-2)(1982), 65-78.
- [8] H.Z.Hdeib, ω -continuous functions, Dirasat, 16(2)(1989), 136-142.
- [9] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [10] K.Kuratowski, Topology, Vol I. Academic Press (New York), (1966).
- [11] T.Noiri, A.Al-Omari and M.S.M.Noorani, Weak forms of ω -open sets and decompositions of continuity, Eur. J. Pure Appl. Math., 2(2009), 73-84.
- [12] O.Ravi, I.Rajasekaran, S.Satheesh Kanna and M.Paranjothi, New generalized classes of τ_{ω} , Eur. J. Pure Appl. Math., 9(2)(2016), 152-164.
- [13] O.Ravi, I.Rajasekaran, M.Rajakalaivanan and S.Satheesh Kanna, Decompositions of continuity and $\mathcal{A}_{\omega}^{\star}$ -continuity, Submitted.
- [14] O.Ravi, P.Sekar and K.Vidhyalakshmi, New generalized classes of τ_{ω} in ideal spaces, Submitted.
- [15] O.Ravi, P.Sekar and K.Vidhyalakshmi, ω-topology and ⋆-topology, Submitted.
- [16] O.Ravi, P.Sekar and K.Vidhyalakshmi, Decompositions of continuity via idealization, Submitted.
- [17] R.Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [18] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, (1946).
- [19] S.Willard, General Topology, Addison-Wesley, Reading, Mass, USA, (1970).