Volume 4, Issue 2-C (2016), 73-83.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

$g^{\#}$ -closed Sets in Ideal Topological Spaces

Research Article

$\mathrm{O.Ravi^{1*}},\,\mathrm{M.Kamaraj^{2}}$ and $\mathrm{V.Ba.Vijeyrani^{3}}$

- 1 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, Government Arts and Science College, Sivakasi, Tamil Nadu, India.
- 3 Department of Mathematics, Yadava College, Madurai, Tamil Nadu, India.

Abstract: The notion of $g^{\#}$ -closed sets is introduced in ideal topological spaces. Characterizations and properties of $\mathcal{I}_{g^{\#}}$ -closed

sets and $\mathcal{I}_{g^\#}$ -open sets are given. A characterization of normal spaces is given in terms of $\mathcal{I}_{g^\#}$ -open sets. Älso, it is

established that an $\mathcal{I}_{a^\#}$ -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

MSC: 54A05, Secondary 54D15, 54D30.

Keywords: $g^{\#}$ -closed set, $\mathcal{I}_{q^{\#}}$ -closed set, \mathcal{I} -compact space.

© JS Publication.

1. Introduction and Preliminaries

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(1). $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and

(2). $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$ [15].

Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^*$: $\wp(X) \rightarrow \wp(X)$, called a local function [15] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[12], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the \star -topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I},\tau)$ [29]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$.

If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ, \mathcal{I})

 τ). A subset A of an ideal topological space (X, τ, \mathcal{I}) is \star -closed [12] (resp. \star -dense in itself [10]) if $A^{\star}\subseteq A$ (resp. $A\subseteq A^{\star}$).

A subset A of an ideal topological space (X, τ, \mathcal{I}) is \mathcal{I}_g -closed [2] if $A^*\subseteq U$ whenever $A\subseteq U$ and U is open.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A)

will, respectively, denote the closure and interior of A in (X, τ) and $int^{\star}(A)$ will denote the interior of A in (X, τ^{\star}) .

A subset A of a space (X, τ) is an α -open [24] (resp. a semi-open [16], a preopen [19], a regular open [28]) set if $A\subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ (resp. $A\subseteq \operatorname{cl}(\operatorname{int}(A))$, $A\subseteq \operatorname{int}(\operatorname{cl}(A))$).

^{*} E-mail: siingam@yahoo.com

The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$.

Definition 1.1. A subset A of a space (X, τ) is said to be

- (1). g-closed [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (2). g-open [17] if its complement is g-closed.
- (3). αg -closed [18] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (4). αg -open [18] if its complement is αg -closed.
- (5). $g^{\#}$ -closed [31] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is αg -open.
- (6). $g^{\#}$ -open [31] if its complement is $g^{\#}$ -closed.
- (7). \hat{g} -closed [30] or ω -closed [27] or $s^{\star}g$ -closed [14, 20, 25] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is semi-open.
- (8). \hat{g} -open [30] if its complement is \hat{g} -closed.

Definition 1.2. An ideal \mathcal{I} is said to be

- (1). codense [3] or τ -boundary [23] if $\tau \cap \mathcal{I} = \{\phi\}$,
- (2). completely codense [3] if $PO(X) \cap \mathcal{I} = \{\phi\}$, where PO(X) is the family of all preopen sets in (X, τ) .

Lemma 1.3. Every completely codense ideal is codense but not conversely [3].

The following Lemmas, Result, Definitions, Remarks and Theorem will be useful in the sequel.

Lemma 1.4 ([12]). Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (1). $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (2). $A^* = cl(A^*) \subseteq cl(A)$,
- $(3). (A^*)^* \subseteq A^*,$
- (4). $(A \cup B)^* = A^* \cup B^*$,
- (5). $(A \cap B)^* \subseteq A^* \cap B^*$.

Lemma 1.5. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$ [[26], Theorem 5].

Lemma 1.6. Let (X, τ, \mathcal{I}) be an ideal topological space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [[26], Theorem 3].

Lemma 1.7. Let (X, τ, \mathcal{I}) be an ideal topological space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^\alpha$ [[26], Theorem 6].

Result 1.8. For a subset of a topological space, the following properties hold:

- (1). Every closed set is $g^{\#}$ -closed but not conversely [31].
- (2). Every $g^{\#}$ -closed set is g-closed but not conversely [31].

- (3). Every closed set is \hat{g} -closed but not conversely [30].
- (4). Every \hat{g} -closed set is g-closed but not conversely [30].

Definition 1.9. An ideal topological space (X, τ, \mathcal{I}) is said to be a $T_{\mathcal{I}}$ -space [2] if every \mathcal{I}_g -closed subset of X is a \star -closed set.

Lemma 1.10. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space and A is an \mathcal{I}_g -closed set, then A is a \star -closed set [[21], Corollary 2.2].

Lemma 1.11. Every g-closed set is \mathcal{I}_g -closed but not conversely [[2], Theorem 2.1].

Definition 1.12. A subset G of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1). \mathcal{I}_{rg} -closed [22] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is regular open.
- (2). $pre_{\mathcal{I}}^{\star}$ -open [4] if $G \subseteq int^{\star}(cl(G))$.
- (3). $pre_{\mathcal{I}}^{\star}$ -closed [4] if $X \setminus G$ is $pre_{\mathcal{I}}^{\star}$ -open.
- (4). \mathcal{I} -R closed [1] if $G = cl^*(int(G))$.

Remark 1.13 ([5]). In any ideal topological space, every \mathcal{I} -R closed set is \star -closed but not conversely.

Definition 1.14 ([5]). Let (X, τ, \mathcal{I}) be an ideal topological space. A subset G of X is said to be a weakly \mathcal{I}_{rg} -closed set if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is a regular open set in X.

Remark 1.15 ([5]). Let (X, τ, \mathcal{I}) be an ideal topological space. The following diagram holds for a subset $G \subseteq X$:

$$\mathcal{I}_g\text{-}closed \longrightarrow \mathcal{I}_{rg}\text{-}closed \longrightarrow weakly \,\mathcal{I}_{rg}\text{-}closed$$

$$\uparrow \qquad \qquad \uparrow$$

$$\star\text{-}closed \longleftarrow \mathcal{I}\text{-}R\text{-}closed \qquad pre_{\mathcal{I}}^{\star}\text{-}closed$$

These implications are not reversible.

Definition 1.16 ([6, 7]). A subset K of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1). $semi^*$ -I-open if $K \subseteq cl(int^*(K))$,
- (2). $semi^*$ - \mathcal{I} -closed if its complement is $semi^*$ - \mathcal{I} -open.

Definition 1.17 ([6]). The semi*- \mathcal{I} -closure of a subset K of an ideal topological space (X, τ, \mathcal{I}) , denoted by $s_{\mathcal{I}}^{\star}cl(K)$, is defined by the intersection of all semi*- \mathcal{I} -closed sets of X containing K.

Theorem 1.18 ([6]). For a subset K of an ideal topological space (X, τ, \mathcal{I}) , $s_{\mathcal{I}}^{\star}cl(K) = K \cup int(cl^{\star}(K))$.

Definition 1.19 ([8]). Let (X, τ, \mathcal{I}) be an ideal topological space and $K \subseteq X$. K is called

- (1). generalized semi*- \mathcal{I} -closed ($gs_{\mathcal{I}}^{\star}$ -closed) in (X, τ, \mathcal{I}) if $s_{\mathcal{I}}^{\star}cl(K) \subseteq O$ whenever $K \subseteq O$ and O is an open set in (X, τ, \mathcal{I}) .
- (2). generalized semi*- \mathcal{I} -open ($gs_{\mathcal{I}}^*$ -open) in (X, τ, \mathcal{I}) if $X \setminus K$ is a $gs_{\mathcal{I}}^*$ -closed set in (X, τ, \mathcal{I}) .

2. $\mathcal{I}_{q^{\#}}$ -closed Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1). $\mathcal{I}_{q^{\#}}$ -closed if $A^{\star}\subseteq U$ whenever $A\subseteq U$ and U is αg -open.
- (2). $\mathcal{I}_{q^\#}$ -open if its complement is $\mathcal{I}_{q^\#}$ -closed.

Theorem 2.2. If (X, τ, \mathcal{I}) is any ideal topological space, then every $\mathcal{I}_{g^\#}$ -closed set is \mathcal{I}_g -closed but not conversely.

Proof. It follows from the fact that every open set is αg -open.

Example 2.3. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{a, b\}\}$. It is clear that $\{b\}$ is \mathcal{I}_g -closed but not $\mathcal{I}_{a\#}$ -closed.

Theorem 2.4. If (X, τ, \mathcal{I}) is any ideal topological space and $A \subseteq X$, then the following are equivalent.

- A is \$\mathcal{I}_{q#}\$-closed.
- (2). $cl^*(A)\subseteq U$ whenever $A\subseteq U$ and U is αg -open in X.

Proof. (1) \Rightarrow (2) Let $A \subseteq U$ where U is αg -open in X. Since A is $\mathcal{I}_{g\#}$ -closed, $A^* \subseteq U$ and so $cl^*(A) = A \cup A^* \subseteq U$.

 $(2) \Rightarrow (1)$ It follows from the fact that $A^* \subseteq cl^*(A) \subseteq U$.

Theorem 2.5. Every \star -closed set is $\mathcal{I}_{g^{\#}}$ -closed but not conversely.

Proof. Let A be a \star -closed set. To prove A is $\mathcal{I}_{g\#}$ -closed, let U be any αg -open set such that A \subseteq U. Since A is \star -closed, A $^{\star} \subseteq$ A \subseteq U. Thus A is $\mathcal{I}_{g\#}$ -closed.

Example 2.6. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $\mathcal{I} = \{\phi\}$. It is clear that $\{a, c, d\}$ is $\mathcal{I}_{a\#}$ -closed but not \star -closed.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space. For every $A \in \mathcal{I}$, A is $\mathcal{I}_{q^\#}$ -closed.

Proof. Let $A \in \mathcal{I}$ and let $A \subseteq U$ where U is αg -open. Since $A \in \mathcal{I}$, $A^* = \phi \subseteq U$. Thus A is $\mathcal{I}_{g^\#}$ -closed.

Theorem 2.8. If (X, τ, \mathcal{I}) is an ideal topological space, then A^{\star} is always $\mathcal{I}_{g^{\#}}$ -closed for every subset A of X.

Proof. Let $A^*\subseteq U$ where U is αg -open. Since $(A^*)^*\subseteq A^*$ [12], we have $(A^*)^*\subseteq U$. Hence A^* is $\mathcal{I}_{q^\#}$ -closed.

Theorem 2.9. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every $\mathcal{I}_{g^\#}$ -closed, αg -open set is \star -closed.

Proof. Let A be $\mathcal{I}_{g^{\#}}$ -closed and αg -open. We have A \subseteq A where A is αg -open. Since A is $\mathcal{I}_{g^{\#}}$ -closed, A* \subseteq A. Thus A is \star -closed.

Corollary 2.10. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space and A is an $\mathcal{I}_{q^\#}$ -closed set, then A is a \star -closed set.

Proof. By assumption A is $\mathcal{I}_{g^{\#}}$ -closed in (X, τ, \mathcal{I}) and so by Theorem 2.2, A is \mathcal{I}_{g} -closed. Since (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space, by Definition 1.9, A is \star -closed.

Corollary 2.11. Let (X, τ, \mathcal{I}) be an ideal topological space and A be an $\mathcal{I}_{q\#}$ -closed set. Consider the following statements.

(1). A is a \star -closed set,

- (2). $cl^*(A)-A$ is an αg -closed set,
- (3). A^*-A is an αg -closed set.

Then $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ hold.

Proof. (1) ⇒ (2) By (1) A is ★-closed. Hence $A^* \subseteq A$ and $cl^*(A) - A = (A \cup A^*) - A = \phi$ which is an αg-closed set. (2) ⇒ (3) $cl^*(A) - A = A^* \cup A - A = (A^* \cup A) \cap A^c = (A^* \cap A^c) \cup (A \cap A^c) = (A^* \cap A^c) \cup \phi = A^* - A$ which is an αg-closed set by (2).

Theorem 2.12. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every $g^{\#}$ -closed set is an $\mathcal{I}_{q^{\#}}$ -closed set but not conversely.

Proof. Let A be a $g^{\#}$ -closed set. Let U be any αg -open set such that $A \subseteq U$. Since A is $g^{\#}$ -closed, $cl(A) \subseteq U$. So, by Lemma 1.4, $A^{*} \subseteq cl(A) \subseteq U$ and thus A is $\mathcal{I}_{g^{\#}}$ -closed.

Example 2.13. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}\}$ and $\mathcal{I} = \{\phi, \{d\}\}$. It is clear that $\{d\}$ is $\mathcal{I}_{g^{\#}}$ -closed but not $g^{\#}$ -closed.

Theorem 2.14. If (X, τ, \mathcal{I}) is an ideal topological space and A is a \star -dense in itself, $\mathcal{I}_{g^\#}$ -closed subset of X, then A is $g^\#$ -closed.

Proof. Let A ⊆ U where U is αg -open. Since A is $\mathcal{I}_{g\#}$ -closed, A* ⊆ U. As A is \star -dense in itself, by Lemma 1.5, cl(A) = A*. Thus cl(A)⊆U and hence A is $g^{\#}$ -closed.

Corollary 2.15. If (X, τ, \mathcal{I}) is any ideal topological space where $\mathcal{I} = \{\phi\}$, then A is $\mathcal{I}_{g^{\#}}$ -closed if and only if A is $g^{\#}$ -closed.

Proof. In (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\phi\}$ then $A^* = cl(A)$ for the subset A. A is $\mathcal{I}_{g^\#}$ -closed $\Leftrightarrow A^* \subseteq U$ whenever $A \subseteq U$ and U is αg -open $\Leftrightarrow cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open $\Leftrightarrow cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open $\Leftrightarrow A$ is $g^\#$ -closed.

Corollary 2.16. In an ideal topological space (X, τ, \mathcal{I}) where \mathcal{I} is codense, if A is a semi-open and $\mathcal{I}_{g^\#}$ -closed subset of X, then A is $g^\#$ -closed.

Proof. By Lemma 1.6, A is \star -dense in itself. By Theorem 2.14, A is $g^{\#}$ -closed.

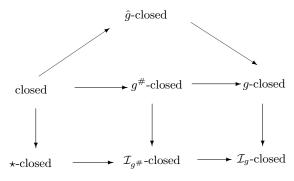
Example 2.17. In Example 2.3, $\{a\}$ is g-closed but not $\mathcal{I}_{q^\#}$ -closed.

Example 2.18. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{c\}, \{b, c\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $\mathcal{I} = \{\phi, \{c\}\}$. It is clear that $\{c\}$ is $\mathcal{I}_{q\#}$ -closed but not g-closed.

Remark 2.19. We see that from Examples 2.17 and 2.18, g-closedness and $\mathcal{I}_{g^\#}$ -closedness are independent.

Example 2.20. In Example 2.3, $\{a\}$ is \hat{g} -closed but not $g^{\#}$ -closed.

Remark 2.21. We have the following implications for the subsets stated above.



Theorem 2.22. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is \star -dense in itself.

Proof. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^* = B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

Theorem 2.23. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every subset of X is $\mathcal{I}_{g^\#}$ -closed if and only if every αg -open set is \star -closed.

Proof. Suppose every subset of X is $\mathcal{I}_{g^{\#}}$ -closed. Let U be αg -open in X. Then U \subseteq U \subseteq X and U is $\mathcal{I}_{g^{\#}}$ -closed by assumption. It implies U* \subseteq U. Hence U is *-closed.

Conversely, let $A \subseteq X$ and U be αg -open such that $A \subseteq U$. Since U is \star -closed by assumption, we have $A^{\star} \subseteq U^{\star} \subseteq U$. Thus A is $\mathcal{I}_{g\#}$ -closed.

Theorem 2.24. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is $\mathcal{I}_{g^\#}$ -open if and only if $F \subseteq int^*(A)$ whenever F is αg -closed and $F \subseteq A$.

Proof. Suppose A is $\mathcal{I}_{g^{\#}}$ -open. If F is αg -closed and F \subseteq A, then X-A \subseteq X-F and so $cl^{*}(X-A)\subseteq$ X-F by Theorem 2.4(2). Therefore F \subseteq X-cl*(X-A)=int*(A). Hence F \subseteq int*(A).

Conversely, suppose the condition holds. Let U be an αg -open set such that $X-A\subseteq U$. Then $X-U\subseteq A$ and so $X-U\subseteq int^*(A)$. Therefore $cl^*(X-A)\subseteq U$. By Theorem 2.4(2), X-A is $\mathcal{I}_{q\#}$ -closed. Hence A is $\mathcal{I}_{q\#}$ -open.

The following Theorem gives a characterization of normal spaces in terms of $\mathcal{I}_{g^\#}$ -open sets.

Theorem 2.25. Let (X, τ, \mathcal{I}) be an ideal topological space where \mathcal{I} is completely codense. Then the following are equivalent.

- (1). X is normal,
- (2). For any disjoint closed sets A and B, there exist disjoint $\mathcal{I}_{g\#}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- (3). For any closed set A and open set V containing A, there exists an $\mathcal{I}_{a^{\#}}$ -open set U such that $A \subseteq U \subseteq cl^{*}(U) \subseteq V$.

Proof. (1) \Rightarrow (2) The proof follows from the fact that every open set is $\mathcal{I}_{a^{\#}}$ -open.

- $(2)\Rightarrow(3)$ Suppose A is closed and V is an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint $\mathcal{I}_{g\#}$ -open sets U and W such that $A\subseteq U$ and X-V $\subseteq W$. Since X-V is αg -closed and W is $\mathcal{I}_{g\#}$ -open, X-V \subseteq int*(W). Then X-int*(W) \subseteq V. Again U \cap W= ϕ which implies that U \cap int*(W)= ϕ and so U \subseteq X-int*(W). Then cl*(U) \subseteq X-int*(W) \subseteq V and thus U is the required $\mathcal{I}_{g\#}$ -open sets with $A\subseteq U\subseteq$ cl*(U) \subseteq V.
- $(3)\Rightarrow(1)$ Let A and B be two disjoint closed subsets of X. Then A is a closed set and X B an open set containing A. By hypothesis, there exists an $\mathcal{I}_{g\#}$ -open set U such that $A\subseteq U\subseteq cl^*(U)\subseteq X-B$. Since U is $\mathcal{I}_{g\#}$ -open and A is αg -closed we have, by Theorem 2.24, $A\subseteq int^*(U)$. Since \mathcal{I} is completely codense, by Lemma 1.7, $\tau^*\subseteq \tau^\alpha$ and so $int^*(U)$ and $X-cl^*(U)\in \tau^\alpha$. Hence $A\subseteq int^*(U)\subseteq int(cl(int(int^*(U))))=G$ and $B\subseteq X-cl^*(U)\subseteq int(cl(int(X-cl^*(U))))=H$. G and H are the required disjoint open sets containing A and B respectively, which proves (1).

Definition 2.26. A subset A of a topological space (X, τ) is said to be an $\alpha g^{\#}$ -closed set if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open. The complement of an $\alpha g^{\#}$ -closed set is said to be an $\alpha g^{\#}$ -open set.

If $\mathcal{I}=\mathcal{N}$, it is not difficult to see that $\mathcal{I}_{q^{\#}}$ -closed sets coincide with $\alpha g^{\#}$ -closed sets and so we have the following Corollary.

Corollary 2.27. Let (X, τ, \mathcal{I}) be an ideal topological space where $\mathcal{I}=\mathcal{N}$. Then the following are equivalent.

(1). X is normal,

- (2). For any disjoint closed sets A and B, there exist disjoint $\alpha g^{\#}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- (3). For any closed set A and open set V containing A, there exists an $\alpha g^{\#}$ -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.

Definition 2.28. A subset A of an ideal topological space is said to be \mathcal{I} -compact [9] or compact modulo \mathcal{I} [23] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of A, there exists a finite subset Δ_0 of Δ such that $A - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 2.29. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact [[21], Theorem 2.17].

Corollary 2.30. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an $\mathcal{I}_{g^{\#}}$ -closed subset of X, then A is \mathcal{I} -compact.

Proof. The proof follows from the fact that every $\mathcal{I}_{q^{\#}}$ -closed is \mathcal{I}_{g} -closed.

Remark 2.31. Let (X, τ, \mathcal{I}) be an ideal topological space. By Remark 1.15, Definition 1.19, Definition 2.1 and Theorem 2.2, the following diagram holds for a subset $G \subseteq X$:

$$\begin{array}{ccc} g \mathbf{s}_{\mathcal{I}}^{\star}\text{-closed} & & \text{weakly } \mathcal{I}_{rg}\text{-closed} \\ & \uparrow & & \uparrow \\ \\ \mathcal{I}_{g\#}\text{-closed} & \longrightarrow & \mathcal{I}_{g}\text{-closed} & \longrightarrow & \mathcal{I}_{rg}\text{-closed} \end{array}$$

These implications are not reversible.

Example 2.32. In Example 2.3, $\{b\}$ is $gs_{\mathcal{I}}^{\star}$ -closed set but not $\mathcal{I}_{q^{\#}}$ -closed.

Definition 2.33. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be a $s^*C_{\mathcal{I}}$ -set if $A = L \cap M$, where $L \in \tau$ and M is a semi * - \mathcal{I} -closed set in X.

Theorem 2.34. Let (X, τ, \mathcal{I}) be an ideal topological space and $V \subseteq X$. Then V is a $s^*C_{\mathcal{I}}$ -set in X if and only if $V = G \cap s_{\mathcal{I}}^*cl(V)$ for an open set G in X.

Proof. If V is a s*C_{\mathcal{I}}-set, then V = G ∩ M for an open set G and a semi*-\mathcal{I}-closed set M. Then V ⊆ M and so V ⊆ s*_\mathcal{L}\closel(V) ⊆ M. It follows that V = V ∩ s*_\mathcal{L}\closed(V) = G ∩ M ∩ s*_\mathcal{L}\closed(V) = G ∩ s*_\mathcal{L}\closed(V). Conversely, it is enough to prove that s*_\mathcal{L}\closed(V) is a semi*-\mathcal{I}-closed set. Any semi*-\mathcal{L}\closed set containing V contains s*_\mathcal{L}\closed(V) also and any semi*-\mathcal{I}\closed set containing s*_\mathcal{L}\closed(V) contains V. Hence s*_\mathcal{L}\closed(V) = s*_\mathcal{L}\closed(V) = s*_\mathcal{L}\closed(V) \cdot \text{int}(cl*(s*_\mathcal{L}\closed(V))) and thus \text{int}(cl*(s*_\mathcal{L}\closed(V))) ⊆ s*_\mathcal{L}\closed(V). Thus s*_\mathcal{L}\closed(V) is semi*-\mathcal{L}\closed.

Theorem 2.35. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. The following properties are equivalent.

- (1). A is a semi*- \mathcal{I} -closed set in X.
- (2). A is a $s^* C_{\mathcal{I}}$ -set and a $gs_{\mathcal{I}}^*$ -closed set in X.

Proof. (1) \Rightarrow (2): It follows from the fact that any semi*- \mathcal{I} -closed set in X is a s*C $_{\mathcal{I}}$ -set and a gs $_{\mathcal{I}}$ -closed set in X.

(2) \Rightarrow (1): Suppose that A is a $s^*C_{\mathcal{I}}$ -set and a $gs_{\mathcal{I}}^*$ -closed set in X. Since A is a $s^*C_{\mathcal{I}}$ -set, then by Theorem 2.34, $A = G \cap s_{\mathcal{I}}^*\operatorname{cl}(A)$ for an open set G in (X, τ, \mathcal{I}) . Since $A \subseteq G$ and A is $gs_{\mathcal{I}}^*$ -closed in X, we have $s_{\mathcal{I}}^*\operatorname{cl}(A) \subseteq G$. It follows that $s_{\mathcal{I}}^*\operatorname{cl}(A) = A$ and hence A is $semi^*$ - \mathcal{I} -closed.

Proposition 2.36. Every $g^{\#}$ -closed set is $\alpha g^{\#}$ -closed but not conversely.

Proof. It follows from the fact that $cl_{\alpha}(A) \subseteq cl(A)$ for any subset A of X.

Example 2.37. In Example 2.6, it is clear that $\{b\}$ is $\alpha g^{\#}$ -closed but not $g^{\#}$ -closed.

3. αq - \mathcal{I} -locally Closed Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called an αg - \mathcal{I} -locally closed set (briefly, αg - \mathcal{I} -LC) if $A = U \cap V$ where U is αg -open and V is \star -closed.

Definition 3.2. [13] A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a weakly \mathcal{I} -locally closed set (briefly, weakly \mathcal{I} -LC) if $A = U \cap V$ where U is open and V is \star -closed.

Proposition 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. Then the following hold.

- (1). If A is αg -open, then A is αg - \mathcal{I} -LC-set.
- (2). If A is \star -closed, then A is αg - \mathcal{I} -LC-set.
- (3). If A is a weakly \mathcal{I} -LC-set, then A is an αg - \mathcal{I} -LC-set.

The converses of the above Proposition 3.3 need not be true as shown in the following Examples.

Example 3.4.

- (1). In Example 2.3, $\{b\}$ is an αg - \mathcal{I} - $\mathcal{L}C$ -set but not \star -closed.
- (2). Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}\$ and $\mathcal{I} = \{\phi, \{c\}\}\}$. It is clear that $\{c\}$ is an αg - \mathcal{I} - \mathcal{L} C-set but not αg -open.

Example 3.5. In Example 2.3, $\{b\}$ is an αg - \mathcal{I} -LC-set but not a weakly \mathcal{I} -LC-set.

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an αg - \mathcal{I} -LC-set and B is a \star -closed set, then $A \cap B$ is an αg - \mathcal{I} -LC-set.

Proof. Let B be \star -closed, then $A \cap B = (U \cap V) \cap B = U \cap (V \cap B)$, where $V \cap B$ is \star -closed. Hence $A \cap B$ is an $\alpha g - \mathcal{I}$ -LC-set.

Theorem 3.7. A subset of an ideal topological space (X, τ, \mathcal{I}) is \star -closed if and only if it is

- (1). weakly \mathcal{I} -LC and \mathcal{I}_g -closed. [11]
- (2). $\alpha g \text{-} \mathcal{I} \text{-} LC$ and $\mathcal{I}_{q\#} \text{-} closed$.

Proof. (2) Necessity is trivial. We prove only sufficiency. Let A be αg - \mathcal{I} -LC-set and $\mathcal{I}_{g\#}$ -closed set. Since A is αg - \mathcal{I} -LC, $A=U\cap V$, where U is αg -open and V is \star -closed. So, we have $A=U\cap V\subseteq U$. Since A is $\mathcal{I}_{g\#}$ -closed, $A^{\star}\subseteq U$. Also since $A=U\cap V\subseteq V$ and V is \star -closed, we have $A^{\star}\subseteq V$. Consequently, $A^{\star}\subseteq U\cap V=A$ and hence A is \star -closed.

Remark 3.8.

- (1). The notions of weakly \mathcal{I} -LC-set and \mathcal{I}_g -closed set are independent [11].
- (2). The notions of αg -I-LC-set and $\mathcal{I}_{q^{\#}}$ -closed set are independent.

Example 3.9. In Example 2.6, $\{a\}$ is αg - \mathcal{I} -LC-set but not $\mathcal{I}_{g^{\#}}$ -closed.

Example 3.10. In Example 2.6, it is clear that $\{a, c, d\}$ is $\mathcal{I}_{q\#}$ -closed set but not αg - \mathcal{I} - \mathcal{L} C-set.

Definition 3.11. Let A be a subset of a topological space (X, τ) . Then the αg -kernel of the set A, denoted by αg -ker(A), is the intersection of all αg -open supersets of A.

Definition 3.12. A subset A of a topological space (X, τ) is called $\Lambda_{\alpha g}$ -set if $A = \alpha g$ -ker(A).

Definition 3.13. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called $\lambda_{\alpha g}$ - \mathcal{I} -closed if $A = L \cap F$ where L is a $\Lambda_{\alpha g}$ -set and F is \star -closed.

Lemma 3.14.

- (1). Every \star -closed set is $\lambda_{\alpha g}$ - \mathcal{I} -closed but not conversely.
- (2). Every $\Lambda_{\alpha g}$ -set is $\lambda_{\alpha g}$ - \mathcal{I} -closed but not conversely.
- (3). Every αg - \mathcal{I} -LC-set is $\lambda_{\alpha g}$ - \mathcal{I} -closed.

Example 3.15. In Example 2.3, $\{b\}$ is $\lambda_{\alpha g}$ - \mathcal{I} -closed but not \star -closed.

Example 3.16. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{c\}\}$. It is clear that $\{c\}$ is $\lambda_{\alpha g}$ - \mathcal{I} -closed but not a $\Lambda_{\alpha g}$ -set.

Remark 3.17. It is easily observed from Examples 3.15 and 3.16, that the concepts of $\Lambda_{\alpha g}$ -set and \star -closed set are independent for $\{b\}$ is a $\Lambda_{\alpha g}$ -set but not a \star -closed set whereas $\{c\}$ is \star -closed but not a $\Lambda_{\alpha g}$ -set.

Lemma 3.18. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- (1). A is $\lambda_{\alpha g}$ - \mathcal{I} -closed.
- (2). $A=L\cap cl^*(A)$ where L is a $\Lambda_{\alpha g}$ -set.
- (3). $A = \alpha g ker(A) \cap cl^*(A)$.

Lemma 3.19. A subset $A \subseteq (X, \tau, \mathcal{I})$ is $\mathcal{I}_{g^\#}$ -closed if and only if $cl^*(A) \subseteq \alpha g\text{-ker}(A)$.

Proof. Suppose that $A \subseteq X$ is an $\mathcal{I}_{g^\#}$ -closed set. Suppose $x \notin \alpha g$ -ker(A). Then there exists an αg -open set U containing A such that $x \notin U$. Since A is an $\mathcal{I}_{g^\#}$ -closed set, $A \subseteq U$ and U is αg -open implies that $cl^*(A) \subseteq U$ and so $x \notin cl^*(A)$. Therefore $cl^*(A) \subseteq \alpha g$ -ker(A).

Conversely, suppose $\operatorname{cl}^*(A) \subseteq \alpha g\operatorname{-ker}(A)$. If $A \subseteq U$ and U is $\alpha g\operatorname{-open}$, then $\operatorname{cl}^*(A) \subseteq \alpha g\operatorname{-ker}(A) \subseteq U$. Therefore, A is $\mathcal{I}_{q\#}\operatorname{-closed}$.

Theorem 3.20. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- (1). A is \star -closed.
- (2). A is $\mathcal{I}_{q\#}$ -closed and αg - \mathcal{I} -LC.
- (3). A is $\mathcal{I}_{q\#}$ -closed and $\lambda_{\alpha g}$ - \mathcal{I} -closed.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ Obvious.

(3) \Rightarrow (1) Since A is $\mathcal{I}_{g\#}$ -closed, by Lemma 3.19, $\operatorname{cl}^{\star}(A)\subseteq \alpha g$ -ker(A). Since A is $\lambda_{\alpha g}$ - \mathcal{I} -closed, by Lemma 3.18, $A=\alpha g$ -ker(A) \cap cl $^{\star}(A)=\operatorname{cl}^{\star}(A)$. Hence A is \star -closed.

The following two Examples show that the concepts of $\mathcal{I}_{g\#}$ -closedness and $\lambda_{\alpha g}$ - \mathcal{I} -closedness are independent.

Example 3.21. In Example 3.10, $\{a, c, d\}$ is $\mathcal{I}_{q^\#}$ -closed but not $\lambda_{\alpha g}$ - \mathcal{I} -closed.

Example 3.22. In Example 2.3, $\{b\}$ is $\lambda_{\alpha g}$ - \mathcal{I} -closed but not $\mathcal{I}_{q^{\#}}$ -closed.

П

4. Decompositions of \star -continuity

Definition 4.1. A function $f:(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be \star -continuous [11] (resp. \mathcal{I}_g -continuous [11], $\alpha g - \mathcal{I} - LC$ -continuous, $\lambda_{\alpha g} - \mathcal{I}$ -continuous, $\mathcal{I}_{g\#}$ -continuous, weakly $\mathcal{I} - LC$ -continuous [13]) if $f^{-1}(A)$ is \star -closed (resp. \mathcal{I}_g -closed, $\alpha g - \mathcal{I} - LC$ -set, $\lambda_{\alpha g} - \mathcal{I}$ -closed, $\mathcal{I}_{g\#}$ -closed, weakly $\mathcal{I} - LC$ -set) in (X, τ, \mathcal{I}) for every closed set A of (Y, σ) .

Theorem 4.2. A function $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is \star -continuous if and only if it is

- (1). weakly \mathcal{I} -LC-continuous and \mathcal{I}_g -continuous [11].
- (2). αg - \mathcal{I} -LC-continuous and $\mathcal{I}_{g^{\#}}$ -continuous.

Proof. It is an immediate consequence of Theorem 3.7.

Theorem 4.3. For a function $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$, the following are equivalent.

- (1). f is \star -continuous.
- (2). f is $\mathcal{I}_{a\#}$ -continuous and αg - \mathcal{I} -LC-continuous.
- (3). f is $\mathcal{I}_{q^{\#}}$ -continuous and $\lambda_{\alpha g}$ - \mathcal{I} -continuous.

Proof. It is an immediate consequence of Theorem 3.20.

References

- [1] A.Acikgoz and S.Yuksel, Some new sets and decompositions of $A_{\mathcal{I}-R}$ -continuity, α - \mathcal{I} -continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79-89.
- [2] J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] J.Dontchev, M.Ganster and D.Rose, *Ideal resolvability*, Topology and its Applications, 93(1999), 1-16.
- [4] E.Ekici, On $\mathcal{AC}_{\mathcal{I}}$ -sets, $\mathcal{BC}_{\mathcal{I}}$ -sets, $\beta_{\mathcal{I}}^{\star}$ -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(1)(2011), 47-54.
- [5] E.Ekici and S.Ozen, A generalized class of τ^* in ideal spaces, Filomat, 27(4)(2013), 529-535.
- [6] E.Ekici and T.Noiri, ★-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al I. Cuza Din Iasi -Serie Noua-Matematica, Tomul LVIII, 1(2012), 121-129.
- [7] E.Ekici and T.Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122(1-2)(2009), 81-90.
- [8] E.Ekici, On R- \mathcal{I} -open sets and $\mathcal{A}_{\mathcal{I}}^{\star}$ -sets in ideal topological spaces, Annals of the University of Craiova, Mathematics and Computer Science Series, 38(2)(2011), 26-31.
- [9] T.R.Hamlett and D.Jankovic, Compactness with respect to an ideal, Boll. U. M. I., 7(4-B)(1990), 849-861.
- [10] E.Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [11] V.Inthumathi, S.Krishnaprakash and M.Rajamani, Strongly-I-Locally closed sets and decompositions of ★-continuity, Acta Math. Hungar., 130(4)(2011), 358-362.
- [12] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [13] A.Keskin, S.Yuksel and T.Noiri, Decompositions of *I*-continuity and continuity, Commun. Fac. Sci. Univ. Ank. Series A, 53(2004), 67-75.
- [14] M.Khan, T.Noiri and M.Hussain, On s*g-closed sets and s*-normal spaces, J. Natur. Sci. Math., 48(1-2)(2008), 31-41.

- [15] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [16] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [17] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [18] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [19] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [20] M.Murugalingam, A study of semi generalized topology, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India, (2005).
- [21] M.Navaneethakrishnan and J.Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371
- [22] M.Navaneethakrishnan, J.Paulraj Joseph and D.Sivaraj, \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces, Acta Math. Hungar., 125(2008), 327-340.
- [23] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph. D Dissertation, Univ. of Cal. at Santa Barbara, (1967).
- [24] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [25] K.C.Rao and K.Joseph, Semi-star generalized closed sets, Bull. Pure Appl. Sci., 19(E)(2)(2002), 281-290.
- [26] V.Renuka Devi, D.Sivaraj and T.Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [27] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D Thesis, Bharathiar University, Coimbatore, (2002).
- [28] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [29] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
- [30] M.K.R.S. Veerakumar, \hat{g} -closed sets intopological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.
- [31] M.K.R.S. Veerakumar, $g^{\#}$ -closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.)., 24(2003), 1-13.