International Journal of Mathematics And its Applications

Total Global Domination in Permutation Graphs

S.Vijayakumar ${ }^{1 *}$ and C.V.R.Harinarayanan ${ }^{2}$
1 Department of Mathematics, PRIST University, Thanjavur, Tamilnadu, India.
2 Department of Mathematics, Government Arts College, Paramakudi, Tamilnadu, India.

Abstract

A total dominating set D of a graph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ is a total global dominating set if D is also a total dominating set of \bar{G}_{π}. The total global domination number $\gamma_{t g}\left(G_{\pi}\right)$ of G_{π} is the minimum cardinality of a total global dominating set. In this paper, we permutation characterize total global dominating sets and bounds are obtained for $\gamma_{t g}\left(G_{\pi}\right)$. we exhibit inequalities involving variations on domination numbers and vertex covering number. Finally we found the total global domination number of a permutation and also derived the total global domination number of permutation graph through the permutation.

Keywords: Permutation graph, Global domination, Total domination-Total global domination, Total global domination number. (C) JS Publication.

1. Introduction

Sampathkumar [5] introduced the Global Domination Number of a Graph. V.R.Kulli and B.Janakiram [4] introduced the Total Global Domination Number of a Graph. J.Chithra, S.P.Subbiah and V.Swaminathan [2] introduced the concept of Domination in Permutation graphs. If i, j belongs to a permutation on n symbols $\{1,2, \ldots, n\}$ and i is less than j then there is an edge between i and j in the permutation graph if i appears after j. (i. e) inverse of i is greater than the inverse of j. So the line of i crosses the line of j in the permutation. So there is a one to one correspondence between crossing of lines in the permutation and the edges of the corresponding permutation graph. S.Vijayakumar and C.V.R. Harinarayanan [3] introduced global domination in permutation graphs. In this paper we found the total global domination number of a permutation and also derived the total global domination number of permutation graph through the permutation.

2. Permutation Graphs

Definition 2.1. Let π be a permutation on n symbols $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ where image of a_{i} is a_{i}^{\prime}. Then the permutation graph G_{π} is given by $\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $a_{i}, a_{j} \in E_{\pi}$ if $\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)<0$.

Definition 2.2. Let π be a permutation on a finite set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ given by

$$
\pi=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} \ldots & a_{n} \\
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & a_{4}^{\prime} \ldots & a_{n}^{\prime}
\end{array}\right)
$$

[^0]where $\left|a_{i+1}-a_{i}\right|=c, c>0,0<i \leq n-1$. The sequence of π is given by $s(\pi)=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n}^{\prime}\right\}$. When elements of A are ordered in L_{1} and the sequence of π are represented in L_{2}, then a line joining a_{i} in L_{1} and a_{i} in L_{2} is represented by l_{i}. This is known as line representation of a_{i} in π.

Example 2.3. Let $\pi=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2\end{array}\right)$, Then the line l_{1} crosses l_{3} and $l_{5} ; l_{2}$ crosses l_{3}, l_{4} and $l_{5} ; l_{3}$ crosses l_{1} and $l_{2} ; l_{4}$ crosses l_{2} and $l_{5} ; l_{5}$ crosses l_{1}, l_{2} and l_{4}.

Definition 2.4. Let $a_{i}, a_{j} \in A$. Then the residue of a_{i} and a_{j} in π is denoted by Res $\left(a_{i}, a_{j}\right)$ and is given by ($a_{i}-$ $\left.a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)$.

Definition 2.5. Let l_{i} and l_{j} denote the lines corresponding to the elements a_{i} and a_{j} respectively. Then l_{i} crosses l_{j} if $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$. If l_{i} crosses l_{j} then $\left(a_{i}, a_{j}\right) \in E_{\pi}$.
Example 2.6. Let π be a permutation on a finite set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right\}$ given by $\pi=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & a_{4} \ldots & a_{p} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & a_{4}^{\prime} \ldots & a_{p}^{\prime}\end{array}\right)$, where $\left|a_{i+1}-a_{i}\right|=c, c>0,0<i \leq p-1$. Then the π permutation Graph G_{π} is given by $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $a_{i} a_{j} \in E_{\pi}$, if $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$.
Example 2.7. Let $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2\end{array}\right)$, Then $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $\quad V_{\pi}=\{1,2,3,4,5\} \quad$ and $\quad E_{\pi}=$ $\{(1,3),(1,5),(2,3),(2,4),(2,5),(4,5)\}$.

Figure 1. Permutation graph of G_{π}

3. Total Domination of a Permutation

Definition 3.1. A graph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right), D \subseteq V_{\pi}$ is a total dominating set of G_{π} if every vertex in V_{π} is dominated by some vertex in D. Thus, A dominating set D is a total dominating set such that the subgraph $<D>$,induced by D has no isolated vertices.

Note 3.2. This parameter is defined only for graphs without isolated vertices.
Definition 3.3. The smallest number of a vertices in any total dominating set of G_{π} is called the total domination number and is denoted by $\gamma_{t}\left(G_{\pi}\right)$ or γ_{t}.

Note 3.4. Since any total dominating set is a dominating set, $\gamma \leq \gamma_{t}$.
Definition 3.5. The element a_{i} is said to dominate a_{j} if their lines cross each other in π. The set of collection of elements of π whose lines cross all the lines of the elements $a_{1}, a_{2}, \ldots, a_{n}$ in π is said to be a dominating set of $\pi . V_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is always a dominating set.

Definition 3.6. According to this domination, we have the figure 1 is. Total dominating number of G_{π} is 2, since $\{1,5\}$ is a minimum total dominating set.

4. Total Global Domination of a Permutation

Definition 4.1. A dominating set D of G_{π} is a global dominating set of a graph G_{π} if D is also a dominating set of the complement of G_{π}. The global domination number $\gamma_{g}\left(G_{\pi}\right)$ is the minimum cordinality of a global dominating set.

Definition 4.2. The dominating number of a permutation π is the minimum cardinality of a set in $M D S(\pi)$ and is denoted by $\gamma(\pi)$. The global dominating number of a permutation π is the minimum cardinality of a set in $M D S(\pi)$ and is denoted $b y \gamma_{g}(\pi)$.

Theorem 4.3. The global domination number of a permutation π is $\gamma_{g}(\pi)=\gamma_{g}\left(G_{\pi}\right)$, the minimum cardinality of the minimal (global) dominating sets $(M G D S)$ of $G_{\pi}[3]$.

Definition 4.4. A total dominating set D of G_{π} is a total global dominating set if D is also a total dominating set of \bar{G}_{π}. The total global domination number $\gamma_{t g}\left(G_{\pi}\right)$ of G_{π} is the minimum cordinality of a total global dominating set.

Note 4.5. A $\gamma_{g^{-}}$is a minimum global dominating set and $\gamma_{t^{-}}$is a minimum total dominating set. Also similarly $\gamma_{t g}$ is a minimum total global dominating set.

Theorem 4.6. A dominating set D of G_{π} is a global dominating set iff for each $a_{j} \in V_{\pi}-D$, there exists a $a_{i} \in D$ such that a_{i} is not adjacent to a_{j}. Let $\bar{\gamma}(\pi)=\gamma\left(\bar{G}_{\pi}\right)$ and $\bar{\gamma}_{g}(\pi)=\gamma_{g}\left(\bar{G}_{\pi}\right)$. Then the permutation graph $\gamma_{g}(\pi)=\bar{\gamma}_{g}(\pi)$ [3].

Theorem 4.7. A total dominating set D of G_{π} is a total global dominating set if and only if for each vertex $a_{i} \in V_{\pi}$ there exists a vertex $a_{j} \in D$ such that a_{i} is not adjacent to a_{j}.

Theorem 4.8. Let G_{π} be a graph such that neither G_{π} nor \bar{G}_{π} have an isolated vertex. Then
(1). $\gamma_{t g}\left(G_{\pi}\right)=\gamma_{t g}\left(\bar{G}_{\pi}\right)$;
(2). $\gamma_{t} \leq \gamma_{t g}\left(G_{\pi}\right)$;
(3). $\gamma_{g} \leq \gamma_{t g}\left(G_{\pi}\right)$;
(4). $\frac{\gamma_{t}\left(G_{\pi}\right)+\gamma_{t}\left(\bar{G}_{\pi}\right)}{2} \leq \gamma_{t g}\left(G_{\pi}\right) \leq \gamma_{t}\left(G_{\pi}\right)+\gamma_{t}\left(\bar{G}_{\pi}\right)$.

Example 4.9. let $G_{\pi}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 1 & 8 & 3 & 6 & 4\end{array}\right)$, Here $D=\{4,5\}$ is minimal total global dominating set. $\gamma_{t g}(\pi)=$ $\gamma_{t g}\left(G_{\pi}\right)=2$.

Figure 2. Total Global domination in permutation graph G_{π} and \bar{G}_{π}

5. Some Theorems of Total Global Domination

Theorem 5.1.

(1). For a graph G_{π} with p vertices, $\gamma_{t g}\left(G_{\pi}\right)=p$ iff $G_{\pi}=K_{p}$ or \bar{K}_{p}.
(2). $\gamma_{t g}\left(K_{m, n}\right)=2$ for all $m, n \geq 1$.
(3). $\gamma_{t g}\left(C_{4}\right)=2, \gamma_{t g}\left(C_{5}\right)=3$ and $\gamma_{t g}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ for all $m, n \geq 6$.
(4). $\gamma_{t g}\left(P_{n}\right)=2$ for $n=2,3$ and $\gamma_{t g}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ for $n \geq 6$.

Proof. we prove only (1) and (2)-(4) are obvious. Clearly, $\gamma_{t g}\left(K_{p}\right)=\gamma_{t g}\left(\bar{K}_{p}\right)=p$. Suppose $\gamma_{t g}\left(G_{\pi}\right)=p$ and $G_{\pi} \neq K_{p}$ or \bar{K}_{p} Then G_{π} has at least one edge $u v$ and a vertex w not adjacent to, say v. Then $V_{\pi}-\{v\}$ is a total global domination set and $\gamma_{t g}\left(G_{\pi}\right)=p-1$. For some graphs including trees, $\gamma_{t g}$ is almost equal to γ.

Theorem 5.2. Let D be a minimum dominating set of G_{π}. If there exists a vertex v in $V-D$ adjacent to only vertices in D, then $\gamma_{t g} \leq \gamma+1$.

Proof. This follows since $D \cup\{v\}$ is a total global dominating set.

Corollary 5.3. Let $G_{\pi}=\left(V_{1} \cup V_{2}, E_{\pi}\right)$ be a bipartite graph without isolates, where $\left|V_{1}\right|=m,\left|V_{2}\right|=n$ and $m \leq n$. Then $\gamma_{t g} \leq m+1$.

Proof. This follows from $\gamma_{t g} \leq \gamma+1$ since $m \leq n$.

Corollary 5.4. For any graph with a pendant vertex, $\gamma_{t g} \leq \gamma+1$ holds. In particular, $\gamma_{t g} \leq \gamma+1$ holds for a tree.

Corollary 5.5. If $V-D$ is independent, then $\gamma_{t g} \leq \gamma+1$ holds. Let α_{0} and β_{0} respectively denote the covering and independence number of a graph.

Theorem 5.6. For a (p, q) graph G_{π} without isolates $\frac{2 q-p(p-3)}{2} \leq \gamma_{t g} \leq p-\beta_{0}+1$.

Proof. Let D be a minimum total global dominating set. Then every vertex in $V_{\pi}-D$ is not adjacent to atleast one vertex in D. This implies $q \leq p C_{2}-\left(p-\gamma_{t g}\right)$ and the lower bound follows. To establish the upper bound, let B be an independent set with β_{0} vertices. Since G_{π} has no isolates. $V-B$ is a dominating set of G_{π}. Clearly, for any $V \in B,(V-B) \cup\{V\}$ is a total global dominating set of G_{π}, and the upper bound follows. Since $\alpha_{0}+\beta_{0}=p$ for eny graph of order p without isolates.

Corollary 5.7. $\gamma_{t g} \leq \alpha_{0}+1$. The independent domination number $i(G)$ of G_{π} is the minimum cardinality of a dominating set which is also independent. It is well-known that $\gamma \leq i \leq \beta_{0}$.

Corollary 5.8. For any graph G_{π} of order p without isolates.
(1). $\gamma+\gamma_{t g} \leq p+1$,
(2). $i+\gamma_{t g} \leq p+1$.

Theorem 5.9. For any graph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$, $\gamma_{t g} \leq \max \left\{\chi\left(G_{\pi}\right) \cdot \chi\left(\bar{G}_{\pi}\right)\right\}$, where $\chi\left(G_{\pi}\right)$ is the chromatic number of G_{π}.
Proof. we know this Theorem proved [3]. So Corollary use for total global domination.

Corollary 5.10. For any graph G_{π} of order $p, \gamma_{t g} \leq \max \{\Delta+1, \bar{\Delta}+1\}=\max \{p-\bar{\delta}, p-\delta\}$ and If G_{π} is neither complete nor an odd cycle $\gamma_{t g} \leq \max \{\Delta, \bar{\Delta}\}=\max \{p-1-\bar{\delta}, p-1-\delta\}$, since $\gamma \leq \gamma_{t g}$ and $\bar{\gamma} \leq \gamma_{t g}$

Corollary 5.11. Let $t=\gamma$ or $\bar{\gamma}$. For any graph $G_{\pi}, t \leq \max \{\Delta+1, \bar{\Delta}+1\}$ if g_{π} is neither complete nor an odd cycle $t \leq \max \{\Delta, \bar{\Delta}\}$. Let k and \bar{k} respectively denote the connectivity of G_{π} and \bar{G}_{π}. it is well know that $k \leq \delta$.

Corollary 5.12. For any graph G_{π} of order $p, \gamma_{t g} \leq \max \{p-k-1, p-\bar{k}-1\}$. For $v \in V_{\pi}$, let $N(v)=\left\{u \in V_{\pi}: u v \in E_{\pi}\right\}$ and $N[v]=(v) \cup\{v\}$. A set $D \subset V_{\pi}$ is full if $N(v) \cap V_{\pi}-D \neq \emptyset$ for all $v \in D$. Also D is tg-full if $N(v) \cap V_{\pi}-D \neq \emptyset$ both in G_{π} and \bar{G}_{π}. The full numberf $=f\left(G_{\pi}\right)$ of G_{π} is the maximum cardinality of a full set of G_{π} and the tg-full number $f_{t g}=f_{t g}\left(G_{\pi}\right)$ of G_{π} is the maximum cardinality of a tg-full set of G_{π}. Clearly $f_{t g}\left(G_{\pi}\right)=f_{t g}\left(\bar{G}_{\pi}\right)$.

Proposition 5.13. If G_{π} is of order $\gamma+f=p$.
Theorem 5.14. If G_{π} is of order $\gamma_{t g}+f_{t g}=p$.
Proof. Let D be a minimum global dominating set and $v \in V_{\pi}-D$. Then $N(v) \cap D \neq \emptyset$ both in G_{π} and \bar{G}_{π}. Hence $V_{\pi}-D$ is g - full and $p-\gamma_{t g}=\left|V_{\pi}-D\right| \leq f_{t g}$. On the otherhand. Suppose $D V_{\pi}$ is g-full with $|D|=f_{t g}$. Then, for all $v \in D$, $N(v) \cap V_{\pi}-D \neq \emptyset$ both in G_{π} and \bar{G}_{π}. This implies that $V_{\pi}-D$ is a global dominating set. Hence $\gamma_{t g} \leq\left|V_{\pi}-D\right|=p-f_{t g}$.

6. Total Global Domination Number

A partition $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of V is a domination (total global domination) partition of G_{π} if each V_{i} is a dominating set(total global dominating set). The domination number $d=d\left(G_{\pi}\right)$ (total global domination number $\left.d=d\left(G_{\pi}\right)\right)$ of G_{π} is the maximum order of a domination (total global domination) partition of G_{π}. Clearly, for any graph $G_{\pi}, d_{t g}\left(G_{\pi}\right)=d_{t g}\left(\bar{G}_{\pi}\right)$

Proposition 6.1.

(1). $d_{t g}\left(K_{n}\right)=d_{t g}\left(\bar{K}_{n}\right)=1$.
(2). For any $n \geq 1, d_{t g}\left(C_{3 n}\right)=3$, and $d_{t g}\left(C_{3 n+1}\right)=d_{t g}\left(C_{3 n+2}\right)=2$.
(3). For any $2 \leq m \leq n, d_{t g}\left(K_{m, n}\right)=n$. when $\bar{d}=d\left(\bar{G}_{\pi}\right)$ and $\bar{d}_{t g}=d_{t g}\left(\bar{G}_{\pi}\right)$.

Proposition 6.2. If G_{π} is of order p, then $\gamma+d \leq p+1$ and $\gamma_{t g}+d_{t g} \leq p+1$ if and only if $G_{\pi}=K_{p}$ or \bar{K}_{p}.

References

[1] M.Murugan, Topics in Graph Theory and Algorithms, Muthali Publishing House, Chennai, India, (2003).
[2] J.Chithra, S.P.Subbiah and V.Swaminathan, Domination in Permutation Graphs, International Journal of Computing Algorithm, 03(2014), 549-553.
[3] S.Vijayakumar and C.V.R.Harinarayanan, Global Domination in Permutation, International Journal of Mathematics Trends and Technology, 37(1)(2016), 6-15.
[4] V.R.Kulli and B.Janakiram, The Total Global Domination Number of a Graph, Indian Journal of Pure appl. Math., 27(6)(1996), 537-542.
[5] E.Sampathkumar, The Global Domination Number of a Graph, Journal of math. Phy. Science, 23(5)(1989).

[^0]: * E-mail: mathematicianvijayakumar@gmail.com

