International Journal of Mathematics And its Applications

Invariant Submanifold of $(4 k, 2 k)$ Structure Manifold

Research Article

Lakhan Singh ${ }^{1}$ and Shailendra Kumar Gautam ${ }^{2 *}$
1 Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.), India.
2 Department of Mathematics, Eshan College of Engineering, Mathura (UP), India.

[^0]Keywords: Invariant submanifold, Nijenhuis tensor, projection operators and complementary distributions.
(c) JS Publication.

1. Introduction

Let V^{m} be a C^{∞} m-dimensional Riemannian manifold imbedded in a C^{∞} n-dimensional Riemannian manifold M^{n}, where $m<n$. The imbedding being denoted by

$$
f: V^{m} \longrightarrow M^{n}
$$

Let B be the mapping induced by f i.e. $B=d f$

$$
d f: T(V) \longrightarrow T(M)
$$

Let $T(V, M)$ be the set of all vectors tangent to the submanifold $f(V)$. It is well known that

$$
B: T(V) \longrightarrow T(V, M)
$$

Is an isomorphism. The set of all vectors normal to $f(V)$ forms a vector bundle over $f(V)$, which we shall denote by $N(V, M)$. We call $N(V, M)$ the normal bundle of V^{m}. The vector bundle induced by from $N(V, M)$ is denoted by $N(V)$. We denote by $C: N(V) \longrightarrow N(V, M)$ the natural isomorphism and by $\eta_{s}^{r}(V)$ the space of all C^{∞} tensor fields of type (r, s) associated with $N(V)$. Thus $\zeta_{0}^{0}(V)=\eta_{0}^{0}(V)$ is the space of all C^{∞} functions defined on V^{m} while an element of $\eta_{0}^{1}(V)$ is a C^{∞} vector field normal to V^{m} and an element of $\zeta_{0}^{1}(V)$ is a C^{∞} vector field tangential to V^{m}.

Let \bar{X} and \bar{Y} be vector fields defined along $f(V)$ and \tilde{X}, \tilde{Y} be the local extensions of \bar{X} and \bar{Y} respectively. Then $[\tilde{X}, \tilde{Y}]$ is a vector field tangential to M^{n} and its restriction $[\tilde{X}, \tilde{Y}] / f(V)$ to $f(V)$ is determined independently of the choice of these local extension \tilde{X} and \tilde{Y}. Thus $[\bar{X}, \bar{Y}]$ is defined as

[^1]\[

$$
\begin{equation*}
[\bar{X}, \bar{Y}]=[\tilde{X}, \tilde{Y}] / f(V) \tag{1}
\end{equation*}
$$

\]

Since B is an isomorphism

$$
\begin{equation*}
[B X, B Y]=B[X, Y] \text { for all } X, Y \in \zeta_{0}^{1}(V) \tag{2}
\end{equation*}
$$

Let \bar{G} be the Riemannain metric tensor of M^{n}, we define g and $g *$ on V^{m} and $N(V)$ respectively as

$$
\begin{align*}
g\left(X_{1}, X_{2}\right) & =\tilde{G}\left(B X_{1}, B X_{2}\right) f, \text { and } \tag{3}\\
g^{*}\left(N_{1}, N_{2}\right) & =\tilde{G}\left(C N_{1}, C N_{2}\right) \tag{4}
\end{align*}
$$

For all $X_{1}, X_{2} \in \zeta_{0}^{1}(V)$ and $N_{1}, N_{2} \in \eta_{0}^{1}(V)$. It can be verified that g and g^{*} are the induced metrics on V^{m} and $N(V)$ respectively. Let $\tilde{\nabla}$ be the Riemannian connection determined by \tilde{G} in M^{n}, then $\tilde{\nabla}$ induces a connection ∇ in $f(V)$ defined by

$$
\begin{equation*}
\nabla_{\bar{X}} \bar{Y}=\tilde{\nabla}_{\tilde{X}} \tilde{Y} / f(V) \tag{5}
\end{equation*}
$$

where \bar{X} and \bar{Y} are arbitrary C^{∞} vector fields defined along $f(V)$ and tangential to $f(V)$. Let us suppose that M^{n} is a $(4 k, 2 k)$ structure manifold with structure tensor $\tilde{\psi}$ of type $(1,1)$ satisfying

$$
\begin{equation*}
\tilde{\psi}^{4 k}+\tilde{\psi}^{2 k}=0 \tag{6}
\end{equation*}
$$

Let \tilde{L} and \tilde{M} be the complementary distributions corresponding to the projection operators

$$
\begin{equation*}
\tilde{l}=-\tilde{\psi}^{2 k}, \quad \tilde{m}=I+\tilde{\psi}^{2 k} \tag{7}
\end{equation*}
$$

where I denotes the identity operator. From and, we have
(a) $\tilde{l}+\tilde{m}=I$;
(b) $\tilde{l}^{2}=\tilde{l}$;
(c) $\tilde{m}^{2}=\tilde{m}$;
(d) $\tilde{l} \tilde{m}=\tilde{m} \tilde{l}=0$

Let D_{l} and D_{m} be the subspaces inherited by complementary projection operators 1 and m respectively. We define

$$
\begin{aligned}
D_{l} & =\left\{X \in T_{p}(V): l X=X, m X=0\right\} \\
D_{m} & =\left\{X \in T_{p}(V): m X=X, l X=0\right\}
\end{aligned}
$$

Thus $T_{p}(V)=D_{l}+D_{m}$. Also Ker $l=\{X: l X=0\}=D_{m} ; \operatorname{Ker} m=\{X: m X=0\}=D_{l}$ at each point p of $f(V)$.

2. Invariant Submanifold of $(4 k, 2 k)$ Structure Manifold

We call V^{m} to be invariant submanifold of M^{n} if the tangent space $T^{p}(f(V))$ of $f(V)$ is invariant by the linear mapping $\tilde{\psi}$ at each point p of $f(V)$. Thus

$$
\begin{equation*}
\tilde{\psi} B X=B \psi X \tag{9}
\end{equation*}
$$

for all $X \in \zeta_{0}^{1}(V)$ and ψ being a $(1,1)$ tensor field in V^{m}.

Theorem 2.1. Let \tilde{N} and N be the Nijenhuis tensors determined by $\tilde{\psi}$ and ψ in M^{n} and V^{m} respectively, then

$$
\begin{equation*}
\tilde{N}(B X, B Y)=B N(X, Y), \text { for all } X, Y \in \zeta_{0}^{1}(V) \tag{10}
\end{equation*}
$$

Proof. We have, by using (2) and (10)

$$
\begin{align*}
\tilde{N}(B X, B Y) & =[\tilde{\psi} B X, \tilde{\psi} B Y]+\tilde{\psi}^{2}[B X, B Y]-\tilde{\psi}[\tilde{\psi} B X, B Y]-\tilde{\psi}[B X, \tilde{\psi} B Y] \\
& =[B \psi X, B \psi Y]+\tilde{\psi}^{2} B[X, Y]-\tilde{\psi}[B \psi X, B Y]-\tilde{\psi}[B X, B \psi Y] \\
& =B[\psi X, \psi Y]+B \psi^{2}[X, Y]-\tilde{\psi} B[\psi X, Y]-\tilde{\psi} B[X, \psi Y] \\
& =B\left\{[\psi X, \psi Y]+\psi^{2}[X, Y]-\psi[\psi X, Y]-\psi[X, \psi Y]\right\} \\
& =B X+B \psi^{3} X \tag{11}
\end{align*}
$$

3. Distribution \tilde{M} Never Being Tangential to $f(V)$

Theorem 3.1. If the distribution \tilde{M} is never tangential to $f(V)$, then

$$
\begin{equation*}
\tilde{m}(B X)=0 \text { for all } X \in \zeta_{0}^{1}(V) \tag{12}
\end{equation*}
$$

and the induced structure ψ on V^{m} satisfies

$$
\begin{equation*}
\psi^{2 k}=-I \tag{13}
\end{equation*}
$$

Proof. If possible $\tilde{m}(B X) \neq 0$. From (10) we get

$$
\begin{equation*}
\tilde{\psi}^{2 k} B X=B \psi^{2 k} X \tag{14}
\end{equation*}
$$

from (1) and (14)

$$
\begin{align*}
\tilde{m}(B X) & =\left(I+\tilde{\psi}^{2 k}\right) B X \\
& =B X+B \psi^{2 k} X \\
\tilde{m}(B X) & =B\left[X+\psi^{2 k} X\right] \tag{15}
\end{align*}
$$

This relation shows that $\tilde{m}(B X)$ is tangential to $f(V)$ which contradicts the hypothesis. Thus $\tilde{m}(B X)=0$. Using this result in (15) and remembering that B is an isomorphism, we get $\psi^{2 k}=-I$.

Theorem 3.2. Let \tilde{M} be never tangential to $f(V)$, then

$$
\begin{equation*}
\tilde{\tilde{m}} \underset{\tilde{N}}{ }(B X, B Y)=0 \tag{16}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\underset{\tilde{m}}{\tilde{N}}(B X, B Y)=[\tilde{m} B X, \tilde{m} B Y]+\tilde{m}^{2}[B X, B Y]-\tilde{m}[\tilde{m} B X, B Y]-\tilde{m}[B X, \tilde{m} B Y] \tag{17}
\end{equation*}
$$

Using (2), (8) (c) and (12), we get (16).

Theorem 3.3. Let \tilde{M} be never tangential to $f(V)$, then

$$
\begin{equation*}
\tilde{N}_{\tilde{l}}^{\tilde{N}}(B X, B Y)=0 . \tag{18}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\underset{\tilde{l}}{\tilde{\sim}}(B X, B Y)=[\tilde{l} B X, \tilde{l} B Y]+\tilde{l}^{2}[B X, B Y]-\tilde{l}[\tilde{l} B X, B Y]-\tilde{l}[B X, \tilde{l} B Y] \tag{19}
\end{equation*}
$$

Using (2), (8) (a), (b) and (12) in (19); we get (18)
Theorem 3.4. Let \tilde{M} be never tangential to $f(V)$. Define

$$
\begin{equation*}
\tilde{H}(\tilde{X}, \tilde{Y})=\tilde{N}(\tilde{X}, \tilde{Y})-\tilde{N}(\tilde{m} \tilde{X}, \tilde{Y})-\tilde{N}(\tilde{X}, \tilde{m} \tilde{Y})+\tilde{N}(\tilde{m} \tilde{X}, \tilde{m} \tilde{Y}) \tag{20}
\end{equation*}
$$

For all $\tilde{X}, \tilde{Y} \in \zeta_{0}^{1}(M)$, then

$$
\begin{equation*}
\tilde{H}(B X, B Y)=B N(X, Y) \tag{21}
\end{equation*}
$$

Proof. Using $\tilde{X}=B X, \tilde{Y}=B Y$ and (11), (12) in (20), we get (21).

4. Distribution \tilde{M} Always Being Tangential to $f(V)$

Theorem 4.1. Let \tilde{M} be always tangential to $f(V)$, then

$$
\begin{equation*}
\text { (a) } \tilde{m}(B X)=B m X ;(b) \tilde{l}(B X)=B l X \tag{22}
\end{equation*}
$$

Proof. From (15), We get (22) (a). Also

$$
\begin{align*}
l & =-\psi^{2 k} \tag{23}\\
l X & =-\psi^{2 k} X \\
B l X & =-B \psi^{2 k} X \tag{24}
\end{align*}
$$

Using (10) in (24)

$$
\begin{equation*}
B l X=-\tilde{\psi}^{2 k} B X=\tilde{l}(B X), \tag{25}
\end{equation*}
$$

which is (22) (b).
Theorem 4.2. Let \tilde{M} be always tangential to $f(V)$, then l and m satisfy
(a) $l+m=I$;
(b) $l m=m l=0$;
(c) $l^{2}=l$;
(d) $m^{2}=m$.

Proof. Using (8) and (22) We get the results.
Theorem 4.3. If \tilde{M} is always tangential to $f(V)$, then

$$
\begin{equation*}
\psi^{4 k}+\psi^{2 k}=0 \tag{27}
\end{equation*}
$$

Proof. From (10)

$$
\begin{equation*}
\tilde{\psi}^{4 k} B X=B \psi^{4 k} X \tag{28}
\end{equation*}
$$

Using (1) in (28)

$$
\begin{aligned}
-\tilde{\psi}^{2 k} B X & =B \psi^{4 k} X \\
-B \psi^{2 k} X & =B \psi^{4 k} X \text { or } \\
\psi^{4 k}+\psi^{2 k} & =0
\end{aligned}
$$

which is (27).
Theorem 4.4. If \tilde{M} Is always tangential to $f(V)$ then as in (20)

$$
\begin{equation*}
\tilde{H}(B X, B Y)=B H(X, Y) \tag{29}
\end{equation*}
$$

Proof. From (20) we get

$$
\begin{equation*}
\tilde{H}(B X, B Y)=\tilde{N}(B X, B Y)-\tilde{N}(\tilde{m} B X, B Y)-\tilde{N}(B X, \tilde{m} B Y)+\tilde{N}(\tilde{m} B X, \tilde{m} B Y) \tag{30}
\end{equation*}
$$

Using (22) (a) and (11) in (30) we get (29).

References

[^2]
[^0]: Abstract: In this paper, we have studied various properties of a ($4 k, 2 k$) structure manifold and its invariant submanifold, where k is positive integer. Under two different assumptions, the nature of induced structure ψ, has also been discussed.

[^1]: * E-mail: skgautamrbs@yahoo.com

[^2]: [1] A.Bejancu, On semi-invariant submanifolds of an almost contact metric manifold, An Stiint Univ., A.I.I. Cuza Lasi Sec. Ia Mat., (1981), 17-21.
 [2] B.Prasad, Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc.(Second Series), 21(1988), 21-26.
 [3] F.Careres, Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc., 91(1982), 99-106.
 [4] Endo Hiroshi, On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math., 22(6)(1991), 449-453.
 [5] H.B.Pandey and A.Kumar, Anti-invariant submanifold of almost para contact manifold, Prog. of Maths, 21(1)(1987).
 [6] K.Yano, On a structure defined by a tensor field f of the type $(1,1)$ satisfying $f^{3}+f=0$, Tensor N.S., 14 (1963), 99-109.
 [7] R.Nivas and S.Yadav, On CR-structures and $F_{\lambda}(2 \nu+3,2)$-HSU-structure satisfying $F^{2 \nu+3}+\lambda^{r} F^{2}=0$, Acta Ciencia Indica, XXXVII M(4)(2012).

