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1. Introduction

The concept of generalized closed sets and semi-open sets were introduced and studied by Norman Levine [7] respectively.

Arya and Nour [4] defined generalized semi-closed sets for obtaining some characterizations of s-normal spaces. Bhattacharya

and Lahiri [5] introduced and investigated semi-generalized closed sets. The concept of generalized semi-pre closed sets was

introduced by Dontchev [6]. Palaniappan and Rao [14] introduced rg-closed sets. Pauline Mary Helen, Ponnuthai and

Veronica [15] introduced and studied g∗∗-closed sets. Anitha [3] introduced g∗s-closed sets. gα−closed sets and αg-closed

sets were introduced by Maki et. al. [10] and some of their properties were investigated. In this paper we introduce a new

class of called g∗s∗-closed sets and study the relationship of g∗s∗-closed sets with the above mentioned sets. We also obtain

basic properties of g∗s∗-closed sets and introduced g∗s∗-continuous maps and g∗s∗-irresolute maps.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed

unless otherwise mentioned. For a subset of a space (X, τ), cl(A), int(A) and scl(A) denote the closure of A, the interior

of A and semi− closure of A respectively. The class of all subsets of a space (X, τ) is denoted by C(X, τ).

Definition 2.1. A subset A of a topological space (X, τ) is called

(i). a semi− openset [8] if A ⊆ cl(int(A)) and semi-closed set if int(cl(A)) ⊆ A.

(ii). a semi − preopenset [2] (=β − open [1]) if A ⊆ cl(int(cl(A))) and a semi − preclosed [2] set (=β − closed [1]) if

int(cl(int(A))) ⊆ A.
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g*s* - Closed Sets in Topological Spaces

Definition 2.2. A subset A of a topological space (X, τ) is called

(i). g-closed set [7] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

(ii). gs-closed set [4] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

(iii). w-closed set [18] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ).

(iv). g∗-closed set [19] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ).

(v). g∗∗-closed set [15] if cl(A) ⊆ U whenever A ⊆ U and U is g∗-open in (X, τ).

(vi). gsp-closed set [6] if spcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

(vii). g∗s-closed set [3] if scl(A) ⊆ U whenever A ⊆ U and U is gs-open in (X, τ).

(viii). rg-closed set [14] if cl(A) ⊆ U whenever A ⊆ U and U is regular-open in (X, τ).

Definition 2.3. A function f : (X, τ)→ (Y, σ) is called

(i). g∗-continuous [19] if the inverse image f−1(V ) of every closed set in (Y, σ) is g∗-closed in (X, τ).

(ii). gs-continuous [4] if the inverse image f−1(V ) of every closed set in (Y, σ) is gs-closed in (X, τ).

(iii). gsp-continuous [6] if the inverse image f−1(V ) of every closed set in (Y, σ) is gsp-closed in (X, τ).

(iv). g∗s-continuous [3] if the inverse image f−1(V ) of every closed set in (Y, σ) is g∗s-closed in (X, τ).

(v). g∗∗-continuous [19] if the inverse image f−1(V ) of every closed set in (Y, σ) is g∗∗-closed in (X, τ).

Definition 2.4. A topological space (X, τ) is said to be

(i). a T ∗1
2

-space [19] if every g∗-closed set in (X, τ) is closed in (X, τ).

(ii). a T ∗∗1
2

-space [15] if every g∗∗-closed set in (X, τ) is closed in (X, τ).

3. Properties of g∗s∗-closed sets

We now introduce the following definition.

Definition 3.1. A subset I of (X, τ) is said to be a g∗s∗-closed set if scl(A) ⊆ U whenever A ⊆ U and U is g∗-open in

(X, τ). The class of all g∗s∗-closed subset of (X, τ) is denoted by G∗S∗ − C(X, τ).

Proposition 3.2. Every closed set is g∗s∗-closed.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.3. Let X = {a, b, c} and τ = {φ,X, {a}}. Let A = {a, b}, then A is g∗s∗−closed but not closed. So, the class

of g∗s∗−closed sets is properly contained in the class of closed sets.

Proposition 3.4. Every g∗−closed set is g∗s∗−closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.5. Let X = {a, b, c} and τ = {φ,X, {b}}. Let A = {b, c}, then A is g∗s∗−closed but not g∗−closed.
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Proposition 3.6. Every g∗∗−closed set is g∗s∗−closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.7. Let X= {a, b, c} and τ = {φ,X, {a} , {b} , {a, b}}. Let A = {b}, then A is g∗s∗−closed but not g∗∗−closed.

Proposition 3.8. Every g∗s−closed set is g∗s∗−closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.9. Let X = {a, b, c} and τ = {φ,X, {b} , {b, c}}. Let A = {a, b}, then A is g∗s∗−closed but not g∗s−closed set.

Proposition 3.10. Every g∗s∗-closed set is gs-closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.11. Let X = {a, b, c} and τ = {φ,X, {a} , {b, c}}. Let A = {b, c},then A is gs-closed but not g∗s∗-closed.

Proposition 3.12. Every g∗s∗-closed set is gsp-closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.13. In Example 3.11, A = {c}. Then A is gsp-closed but not g∗s∗-closed.

Remark 3.14. g∗s∗-closedness is independent of g-closedness.

Example 3.15. Let X = {a, b, c} and τ = {φ,X, {a} , {a, c}}. Let A = {c}, then A is g∗s∗-closed but not g-closed set.In

example [3.11],A = {b}. Then A is g-closed but not g∗s∗-closed.

Remark 3.16. g∗s∗-closedness is independent of w-closedness (or) s*g-closedness.

Example 3.17. Let X = {a, b, c} and τ = {φ,X, {c}}. Let A = {b, c}. In Example 3.11, A is g∗s∗-closed but not w-closed

set (or) s*g-closed.

Remark 3.18. g∗s∗-closedness is independent of rg-closedness.

In Example 3.7, A = {a, b}. Then A is rg-closed but not g∗s∗-closed. In Example 3.7, A = {b}. Then A is g∗s∗-closed but

not rg-closed. Thus we have the following diagram.

where A→ B implies B and A 6→ B represents A does not imply B (resp. A and B are independent).
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4. g∗s∗-Continuous Maps and g∗s∗-Irresolute Maps.

Definition 4.1. A map f : (X, τ) → (Y, σ) from a topological space (X, τ) to a topological space (Y, σ) is called g∗s∗-

continuous if the inverse image of every closed set in (Y, σ) is g∗s∗-closed in (X, τ).

Theorem 4.2. Every continuous map is g∗s∗-continuous.

Proof. Let f: (X, τ)→ (Y, σ) be continuous. Let F be a closed set in (Y, σ) then f−1 (F ) is closed in (X, τ). Since every

closed set is g∗s∗-closed, f−1 (F ) is g∗s∗-closed in (X, τ). f is g∗s∗-continuous in (X, τ).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.3. Let X = Y = {a, b, c} and τ = {φ,X, {a}}, σ = {φ, Y, {b} , {c} , {a, c} , {b, c} , {a, b}}. Let f: (X, τ)→ (Y, σ)

be the identity map. The inverse image of every closed set in (Y, σ) is g∗s∗-closed, but, f−1({c}) = {c} is not closed set in

(X, τ).

Theorem 4.4. Every g∗s-continuous map is g∗s∗-continuous.

Proof. Let f: (X, τ)→ (Y, σ) be g∗s-continuous. Let F be a closed set in (Y, σ) then is f−1 (F ) g∗s-closed in (X, τ). Since

every g∗s-closed set is g∗s∗-closed, f−1 (F ) is g∗s∗-closed in (X, τ). f is g∗s∗-continuous in (X, τ).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.5. Let X = Y = {a, b, c} and τ = {φ,X, {b} , {b, c}}, σ = {φ,X, {c} , {a, b} , {b, c}}. Let f : (X, τ) → (Y, σ) be

the identity map. The inverse image of every closed set in (Y, σ) is g∗s∗-closed, but f−1 ({b, c}) = {b, c} is not g∗s-closed in

(X, τ).

Theorem 4.6. Every g*-continuous map is g∗s∗-continuous.

Proof. Let f: (X, τ)→ (Y, σ) be g*-continuous. Let F be a closed set in (Y, σ) then f−1 (F ) is g*-closed in (X, τ). Since

every g*-closed set is g∗s∗-closed, f−1 (F ) is g∗s∗-closed in (X, τ). f is g∗s∗-continuous in (X, τ).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.7. Let X = Y = {a, b, c} and τ = {φ,X, {b}}, σ = {φ,X, {a} , {c} , {a, b} , {a, c}}. Let f: (X, τ)→ (Y, σ) be the

identity map. The inverse image of every closed set in (Y, σ) is g∗s∗-closed, but f−1 ({b, c}) = {b, c} which is not g*-closed

in (X, τ).

Theorem 4.8. Every g**-continuous map is g∗s∗-continuous.

Proof. Let f: (X, τ)→ (Y, σ) be g**-continuous. Let F be a closed set in (Y, σ) then f−1 (F ) is g**-closed in (X, τ). Since

every g**-closed set is g∗s∗-closed, f−1 (F ) is g∗s∗-closed in (X, τ). f is g∗s∗-continuous in (X, τ).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.9. Let X = Y = {a, b, c} and τ = {φ,X, {a} , {b} , {a, b}} , σ = {φ,X, {a} , {c} , {a, c}}. Let f : (X, τ)→ (Y, σ)

be a mapping defined by f (a) = a, f (b) = c, f (c) = b. The inverse image of every closed set in (Y, σ) is g∗s∗-closed, but

f−1 ({a, b}) = {a, c} which is not g**-closed in (X, τ).

Theorem 4.10. Every g∗s∗-continuous map is gs-continuous.
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Proof. Let f: (X, τ) → (Y, σ) be g∗s∗ -continuous. Let F be a closed set in (Y, σ) then f−1 (F ) is g∗s∗ -closed in (X, τ).

Since every g∗s∗-closed set is gs-closed, f−1 (F ) is gs-closed in (X, τ). f is gs-continuous in (X, τ).

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.11. Let X = Y = {a, b, c} and τ = {φ,X, {a} , {b, c}} , σ = {φ,X, {c} , {a, c}}. Let f : (X, τ) → (Y, σ) be

a mapping defined by f (a) = a, f (b) = c, f (c) = b. The inverse image of every closed set in (Y, σ) is gs-closed, but

f−1 ({b}) = {c} which is not g∗s∗-closed in (X, τ).

Theorem 4.12. Every g∗s∗-continuous map is gsp-continuous.

Proof. Let f: (X, τ) → (Y, σ) be g∗s∗ -continuous. Let F be a closed set in (Y, σ) then f−1 (F ) is g∗s∗-closed in (X, τ).

Since every g∗s∗-closed set is gsp-closed, f−1 (F ) is gsp-closed in (X, τ). f is gsp-continuous in (X, τ).

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 4.13. Let X = Y = {a, b, c} and τ = {φ,X, {a} , {b, c}} , σ = {φ,X, {c} , {a, c}}. Let f : (X, τ) → (Y, σ) be

a mapping defined by f (a) = a, f (b) = c, f (c) = b. The inverse image of every closed set in (Y, σ) is gsp-closed, but

f−1 ({b}) = {c} which is not g∗s∗-closed in (X, τ). Thus, we have the following diagram.

Definition 4.14. A map f : (X, τ) → (Y, σ) from a topological space (X, τ) to a topological space (Y, σ) is called g∗s∗-

irresolute if the inverse image of every g∗s∗-closed set in (Y, σ) is g∗s∗-closed in (X, τ).

Theorem 4.15. Every g∗s∗-irresolute map is g∗s∗-continuous.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 4.16. Let X = Y = {a, b, c} and τ = {φ,X, {a}} , σ = {φ,X, {b}}. Let f : (X, τ)→ (Y, σ) be a mapping defined

by f (a) = b, f (b) = c, f (c) = a. Let {a, c} be a closed set in (Y, σ). But f−1 ({a, c}) = {a, b} which is not g∗s∗-closed set in

(X, τ). f is g∗s∗-continuous. {c} is a g∗s∗-closed set in (Y, σ). But f−1 ({c}) = {a} which is not g∗s∗-closed in (X, τ). f is

not g∗s∗-irresolute.

Theorem 4.17. Let f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, η), then

(i). g ◦ f : (X, τ)→ (Z, η) is g∗s∗-continuous if f is g∗s∗-irresolute and g is g∗s∗-continuous.

(ii). g ◦ f : (X, τ)→ (Z, η) is g∗s∗-irresolute if f and g are g∗s∗-irresolute.

(iii). g ◦ f : (X, τ)→ (Z, η) is g∗s∗-continuous if f is g∗s∗-continuous and g is g∗s∗-irresolute.
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5. Applications Of g∗s∗-Closed Set.

As application of g∗s∗-closed sets, new spaces namely, Tb*-space, gTb*-space and * gTb*-space are introduced. We introduce

the following definitions.

Definition 5.1. A space (X, τ) is said to be a Tb*-space if every g∗s∗-closed set in (X, τ) is closed in (X, τ).

Theorem 5.2. Every Tb*-space is T1/2∗-space.

Proof. Let (X, τ) be a Tb*-space. Let A be a g*-closed set in (X, τ). But by preposition (3.4), every g*-closed set is

g∗s∗-closed. Since (X, τ) is a Tb*-space, A is closed in (X, τ). (X, τ) is a T1/2∗-space.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 5.3. In example [3.5], Let X = {a, b, c} and τ = {φ,X, {a}}. Here, (X, τ) is a T1/2∗-space and the set {b, c} is

g∗s∗-closed but not closed. (X, τ) is not a Tb*-space.

Theorem 5.4. Let f : (X, τ)→ (Y, σ) be a g∗s∗-continuous mapping. If (X, τ) is Tb*-space, then f is continuous.

Proof. Let f:(X, τ) → (Y, σ) be g∗s∗-continuous. Let F be a closed set in (Y, σ). Then f−1 (F ) is g∗s∗-closed in (X, τ).

Since (X, τ) is Tb*-space, f−1 (F ) is closed in (X, τ). f is continuous.

Theorem 5.5. Every Tb*-space is T1/2 ∗ ∗-space.

Proof. Let (X, τ) be a Tb*-space. Let A be g**-closed set in (X, τ). But by preposition (3.6), every g**-closed set is

g∗s∗-closed. Since (X, τ) is Tb*-space, A is closed in (X, τ), which implies, g∗s∗-closed set is closed. (X, τ) is a T1/2 ∗ ∗-

space.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 5.6. In example [3.7], Let X = {a, b, c} and τ = {φ,X, {a} , {b} , {a, b}}. Here, (X, τ) is a T1/2 ∗ ∗-space and the

sets {a} , {b} are g∗s∗-closed but not closed. (X, τ) is not Tb*-space.

Definition 5.7. A space (X, τ) is said to be gTb*-space if every g∗s∗-closed set in (X, τ) is g*-closed in (X, τ).

Theorem 5.8. Every Tb*-space is gTb*-space.

Proof. Let (X, τ) be a Tb*-space. Let A be g∗s∗-closed set in (X, τ). Since (X, τ) is a Tb*-space, A is closed in (X, τ).

But we know that, every closed set is g*-closed. Hence, A is g*-closed set in (X, τ). (X, τ) is a gTb*-space.

Theorem 5.9. Let f : (X, τ)→ (Y, σ) be g∗s∗-continuous mapping. If (X, τ) is gTb*-space, then f is g*-continuous.

Proof. Let f: (X, τ) → (Y, σ) be g∗s∗-continuous. Let F be a closed set in (Y, σ). Then f−1 (F ) is g∗s∗-closed in (X, τ).

Since (X, τ) is a gTb*-space, f−1 (F ) is g*-closed in (X, τ). f is g*-continuous.

Definition 5.10. A space (X, τ) is said to be *gTb*-space if every g∗s∗-closed set in (X, τ) is g*s-closed in (X, τ).

Theorem 5.11. Every Tb*-space is *gTb*-space.

Proof. Let (X, τ) be a Tb*-space. Let A be g∗s∗-closed set in (X, τ). Since (X, τ) is Tb*-space, A is closed in (X, τ).

But we know that, every closed set is g*s-closed. Hence, A is g*s-closed set in (X, τ). (X, τ) is a *gTb*-space.

Theorem 5.12. Let f : (X, τ)→ (Y, σ) be g∗s∗-continuous mapping. If (X, τ) is *gTb*-space, then f is g*s-continuous.

Proof. Let f: (X, τ) → (Y, σ) be g∗s∗-continuous. Let F be a closed set in (Y, σ). Then f−1 (F ) is g∗s∗-closed in (X, τ).

Since (X, τ) is a *gTb*-space, f−1 (F ) is g*s-closed in (X, τ). f is g*s-continuous.
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6. G*S*-Compactness

Definition 6.1. A collection {Ai/i ∈ A} of g∗s∗-open sets in a topological space X is called a g∗s∗-open cover of a subset

B of X if B ⊂ ∪i∈AAi.

Definition 6.2. A topological space X is G∗S∗-compact if every g∗s∗-open cover of X has a finite sub cover.

Definition 6.3. A subset B of a topological space X is said to be G∗S∗-compact relative to X if for every collection of

g∗s∗-open subsets of X such that B ⊂ ∪i∈AAi, there exists a finite subset A0 of A such that, B ⊂ ∪i∈A0Ai.

Definition 6.4. A subset B of X is G∗S∗-compact if B is G∗S∗-compact as a subspace of X.

Proposition 6.5. A g∗s∗-closed subset of G∗S∗-compact space is G∗S∗-compact relative to X.

Proof. Let A be a g∗s∗-closed subset of G∗S∗-compact space X. Then Ac is g∗s∗-open in X. Let M be a cover of A by

g∗s∗-open sets in X. Then M, Ac is a g∗s∗-open cover of X. Since X is G∗S∗-compact,it has a finite sub-cover, namely

G1, G2, . . . , Gn. Therefore, we have obtained a finite g∗s∗-open sub-cover of A.Thus, A is G∗S∗-compact relative to X.

Proposition 6.6.

(i). A g∗s∗-continuous image of a G∗S∗-compact space is compact.

(ii). If a map f : X → Y is g∗s∗-irresolute and a subset B of X is G∗S∗-compact relative to X, then the image f(B) is

G∗S∗-compact relative to X.

Proof.

(i). Let f : X → Y be a g∗s∗-continuous map from a G∗S∗-compact space onto a topological space Y. Let Ai : i ∈ A be an

open cover of Y. Then
{
f−1(Ai) : i ∈ A

}
is a g∗s∗-open cover of X. Since X is G∗S∗-compact, it has a finite subcover,

namely
{
f−1(A1), f−1(A2), .....f−1(An)

}
. Since f is onto, A1, A2, ........An is an open cover of Y and so Y is compact.

(ii). Let Ai : i ∈ A be any collection of g∗s∗-open subsets of Y such that f(B) ⊂ ∪Ai : i ∈ A. Then B ⊂ ∪f−1(Ai) : i ∈ A

holds. By using assumption, there exists a finite subset A0 of A such that B ⊂ ∪f−1(Ai) : i ∈ A0. Therefore, we have

f(B) ⊂ ∪Ai : i ∈ A0, which shows that f(B) is G*S*-compact relative to Y.

Theorem 6.7. If the product space of two non-empty spaces is G∗S∗-compact, then each of he factor space is G∗S∗-compact.

Proof. Let X × Y be the product space of non-empty spaces X and Y. Obviously, the projection p: X × Y → Y from

X × Y onto X is g∗s∗−irresolute map. In fact, let F be any g∗s∗−closed set of X. Then it follows that, F × Y (= p−1(F )) is

g∗s∗−closed in X × Y and hence p is g∗s∗−irresolute Now, suppose that X × Y is G∗S∗-compact. By using Preposition ,

we obtain that the g∗s∗−irresolute image p(X×Y )(= X) is G∗S∗-compact. For Y, the proof is similar to the case of X.

7. G∗S∗-Connectedness

Definition 7.1. A topological space X is G∗S∗−connected if X cannot be written as a disjoint union of two non-empty

g∗s∗−open sets. A subset V of X is G∗S∗−connected if V is G∗S∗−connected as a subspace.

Proposition 7.2. For a topological space X, the following conditions are equivalent.
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(i). X is G∗S∗−connected.

(ii). The only subsets of X which are both g∗s∗−open and g∗s∗−closed are empty set and X.

(iii). Each g∗s∗−continuous map of X into a discrete space Y with at least two points is a constant map.

Proof.

(i) ⇒ (ii): Let U be a g∗s∗-open and g∗s∗-closed subset of X. Then X-U is both g∗s∗-closed and g∗s∗-open. Since X is the

disjoint union of the g∗s∗-open sets U and X-U, one of these must be empty, that is U = φ o U =X.

(ii) ⇒ (i): Suppose X = A ∪ B where A and B are disjoint non-empty g ∗ s∗-open subsets of X. Since A is a g ∗ s∗-open

subset of X, by condition (ii), it may be g ∗ s∗-closed and A = φ or A = X. If A = φ, X=B. If A=X, B=φ. Thus, X is

g∗s∗-connected.

(ii) ⇒ (iii): Let f:X → Y be a g∗s∗-continuous map. Then X is covered by g∗s∗-open and g∗s∗-closed covering{
f−1 (y) /y ∈ Y

}
. By assumption, f−1 (y) = φ or X for each x ∈ X. If f−1 (y) = φ for all y ∈ Y then f fails to be a

map. Then, there exists only one point y ∈ Y such that f−1 (y) 6= φ and hence f−1 (y) = X which shows that f is a constant

map.

(iii)⇒ (ii): Let U be both g∗s∗-open and g∗s∗-closed in X. Suppose U 6= φ. Let f: X→ Y be a g∗s∗-continuous map defined

by f (U) = {y} and f (X − U) = {w} for some distinct points y and w in Y. By assumption, f is a constant. Therefore, U

=X.

It is obvious that every G∗S∗−connected space is connected . The following example shows that the converse is not true.

Example 7.3. Let X = {a, b, c} and τ = {φ,X, {a}}. Then the topological space is (X, τ) is connected. However, since {b}

is both g∗s∗-closed and g∗s∗-open in X. By Preposition 7.2, X is not G∗S∗−connected.

Proposition 7.4. If X is T ∗b − space and connected, then X is g∗s∗-connected.

Proof. Let X be T ∗b -space and connected. Assume that X can be written in the form X = A ∪ B where A and B are

nonempty disjoint and g∗s∗-open sets in X. Since X is T ∗b -space, every g∗s∗-open set is open and so X= A∪B where A and B

are disjoint nonempty and open sets in X. This contradicts the fact that X is connected. Therefore X is g∗s∗-connected.

Proposition 7.5. If f:X→Y is g∗s∗-continuous surjection and X is g∗s∗-connected then Y is connected.

Proof. Suppose that Y is not connected. Let Y= A ∪ B where A and B are disjoint nonempty open sets in Y. Since f is

g∗s∗-continuous and onto, X= f−1 (A) ∪ f−1 (B) where f−1 (A) and f−1 (B) are disjoint nonempty g∗s∗-open in X. This

contradicts the fact that X is g∗s∗-connected. Hence Y is connected.

Proposition 7.6. If f:X→Y is g∗s∗-continuous map from a connected space X into a topological space Y, then Y is g∗s∗-

connected.

Proof. Let Y be not g∗s∗-connected. Then Y can be written as Y= A ∪ B where A and B are disjoint nonempty g∗s∗-

open sets in Y. Since f is g∗s∗-continuous, f−1 (A) and f−1 (B) are open sets in X. Also X=f−1 (A) = f−1 (A ∪B) =

f−1 (A) ∪ f−1 (B). This contradicts the fact that X is connected. Therefore Y is g∗s∗-connected.
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