

International Journal of Mathematics And its Applications

g^*s^* - Closed Sets in Topological Spaces

Research Article

N.Gayathri^{1*}

1 Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore, Tamilnadu, India.

- **Abstract:** In this paper, a new class of sets, namely g^*s^* -closed sets was introduced and some of their properties were studied. Further the notion of g^*s^* -continuous maps, g^*s^* -irresolute maps, Tb^* -spaces, gTb^* -spaces, $*gTb^*$ -spaces, g^*s^* -compactness, g^*s^* -connectedness were introduced and its properties are investigated.

© JS Publication.

1. Introduction

The concept of generalized closed sets and semi-open sets were introduced and studied by Norman Levine [7] respectively. Arya and Nour [4] defined generalized semi-closed sets for obtaining some characterizations of s-normal spaces. Bhattacharya and Lahiri [5] introduced and investigated semi-generalized closed sets. The concept of generalized semi-pre closed sets was introduced by Dontchev [6]. Palaniappan and Rao [14] introduced rg-closed sets. Pauline Mary Helen, Ponnuthai and Veronica [15] introduced and studied g^{**} -closed sets. Anitha [3] introduced g^*s -closed sets. $g\alpha$ -closed sets and αg -closed sets were introduced by Maki et. al. [10] and some of their properties were investigated. In this paper we introduce a new class of called g^*s^* -closed sets and study the relationship of g^*s^* -closed sets with the above mentioned sets. We also obtain basic properties of g^*s^* -closed sets and introduced g^*s^* -continuous maps and g^*s^* -irresolute maps.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset of a space (X, τ) , cl(A), int(A) and scl(A) denote the *closure* of A, the *interior* of A and *semi - closure* of A respectively. The class of all subsets of a space (X, τ) is denoted by $C(X, \tau)$.

Definition 2.1. A subset A of a topological space (X, τ) is called

- (i). a semi-openset [8] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.
- (ii). a semi preopenset [2] (= β open [1]) if $A \subseteq cl(int(cl(A)))$ and a semi preclosed [2] set (= β closed [1]) if $int(cl(int(A))) \subseteq A$.

[`] E-mail: gayupadmagayu@gmail.com

Definition 2.2. A subset A of a topological space (X, τ) is called

- (i). g-closed set [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii). gs-closed set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (iii). w-closed set [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (iv). g^* -closed set [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- (v). g^{**} -closed set [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{*} -open in (X, τ) .
- (vi). gsp-closed set [6] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (vii). g^*s -closed set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X, τ) .
- (viii). rg-closed set [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in (X, τ) .

Definition 2.3. A function $f: (X, \tau) \to (Y, \sigma)$ is called

- (i). g^* -continuous [19] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is g^* -closed in (X, τ) .
- (ii). gs-continuous [4] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is gs-closed in (X, τ) .
- (iii). gsp-continuous [6] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is gsp-closed in (X, τ) .
- (iv). g^*s -continuous [3] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is g^*s -closed in (X, τ) .
- (v). g^{**} -continuous [19] if the inverse image $f^{-1}(V)$ of every closed set in (Y, σ) is g^{**} -closed in (X, τ) .

Definition 2.4. A topological space (X, τ) is said to be

- (i). a $T_{\frac{1}{2}}^*$ -space [19] if every g^* -closed set in (X, τ) is closed in (X, τ) .
- (ii). a $T_{\frac{1}{2}}^{**}$ -space [15] if every g^{**} -closed set in (X, τ) is closed in (X, τ) .

3. Properties of g^*s^* -closed sets

We now introduce the following definition.

Definition 3.1. A subset I of (X, τ) is said to be a g^*s^* -closed set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* -open in (X, τ) . The class of all g^*s^* -closed subset of (X, τ) is denoted by $G^*S^* - C(X, \tau)$.

Proposition 3.2. Every closed set is g^*s^* -closed.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$. Let $A = \{a, b\}$, then A is g^*s^* -closed but not closed. So, the class of g^*s^* -closed sets is properly contained in the class of closed sets.

Proposition 3.4. Every g^* -closed set is g^*s^* -closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}\}$. Let $A = \{b, c\}$, then A is g^*s^* -closed but not g^* -closed.

Proposition 3.6. Every g^{**} -closed set is g^*s^* -closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.7. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{b\}$, then A is g^*s^* -closed but not g^{**} -closed.

Proposition 3.8. Every g^*s -closed set is g^*s^* -closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.9. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{b, c\}\}$. Let $A = \{a, b\}$, then A is g^*s^* -closed but not g^*s -closed set.

Proposition 3.10. Every g^*s^* -closed set is gs-closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.11. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Let $A = \{b, c\}$, then A is gs-closed but not g^*s^* -closed.

Proposition 3.12. Every g^*s^* -closed set is gsp-closed set.

The converse of the above preposition need not be true and in general it can be seen from the following example.

Example 3.13. In Example 3.11, $A = \{c\}$. Then A is gsp-closed but not g^*s^* -closed.

Remark 3.14. g^*s^* -closedness is independent of g-closedness.

Example 3.15. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, c\}\}$. Let $A = \{c\}$, then A is g^*s^* -closed but not g-closed set. In example [3.11], $A = \{b\}$. Then A is g-closed but not g^*s^* -closed.

Remark 3.16. g^*s^* -closedness is independent of w-closedness (or) s^*g -closedness.

Example 3.17. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}\}$. Let $A = \{b, c\}$. In Example 3.11, A is g^*s^* -closed but not w-closed set (or) s^*g -closed.

Remark 3.18. g^*s^* -closedness is independent of rg-closedness.

In Example 3.7, $A = \{a, b\}$. Then A is rg-closed but not g^*s^* -closed. In Example 3.7, $A = \{b\}$. Then A is g^*s^* -closed but not rg-closed. Thus we have the following diagram.

where $A \to B$ implies B and $A \not\to B$ represents A does not imply B (resp. A and B are independent).

4. g^*s^* -Continuous Maps and g^*s^* -Irresolute Maps.

Definition 4.1. A map $f: (X,\tau) \to (Y,\sigma)$ from a topological space (X,τ) to a topological space (Y,σ) is called g^*s^* continuous if the inverse image of every closed set in (Y,σ) is g^*s^* -closed in (X,τ) .

Theorem 4.2. Every continuous map is g^*s^* -continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be continuous. Let F be a closed set in (Y, σ) then $f^{-1}(F)$ is closed in (X, τ) . Since every closed set is g^*s^* -closed, $f^{-1}(F)$ is g^*s^* -closed in (X, τ) .

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.3. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{b\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. The inverse image of every closed set in (Y, σ) is g^*s^* -closed, but, $f^{-1}(\{c\}) = \{c\}$ is not closed set in (X, τ) .

Theorem 4.4. Every g^*s -continuous map is g^*s^* -continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be g^*s -continuous. Let F be a closed set in (Y, σ) then is $f^{-1}(F) g^*s$ -closed in (X, τ) . Since every g^*s -closed set is g^*s^* -closed, $f^{-1}(F)$ is g^*s^* -closed in (X, τ) . f is g^*s^* -continuous in (X, τ) .

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.5. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{b, c\}\}, \sigma = \{\phi, X, \{c\}, \{a, b\}, \{b, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. The inverse image of every closed set in (Y, σ) is g^*s^* -closed, but $f^{-1}(\{b, c\}) = \{b, c\}$ is not g^*s -closed in (X, τ) .

Theorem 4.6. Every g^* -continuous map is g^*s^* -continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be g*-continuous. Let F be a closed set in (Y, σ) then $f^{-1}(F)$ is g*-closed in (X, τ) . Since every g*-closed set is g^*s^* -closed, $f^{-1}(F)$ is g^*s^* -closed in (X, τ) . f is g^*s^* -continuous in (X, τ) .

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.7. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}\}, \sigma = \{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. The inverse image of every closed set in (Y, σ) is g^*s^* -closed, but $f^{-1}(\{b, c\}) = \{b, c\}$ which is not g^* -closed in (X, τ) .

Theorem 4.8. Every g^{**} -continuous map is g^*s^* -continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be g**-continuous. Let F be a closed set in (Y, σ) then $f^{-1}(F)$ is g**-closed in (X, τ) . Since every g**-closed set is g^*s^* -closed, $f^{-1}(F)$ is g^*s^* -closed in (X, τ) . f is g^*s^* -continuous in (X, τ) .

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.9. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping defined by f(a) = a, f(b) = c, f(c) = b. The inverse image of every closed set in (Y, σ) is g^*s^* -closed, but $f^{-1}(\{a, b\}) = \{a, c\}$ which is not g^{**} -closed in (X, τ) .

Theorem 4.10. Every g^*s^* -continuous map is gs-continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be g^*s^* -continuous. Let F be a closed set in (Y, σ) then $f^{-1}(F)$ is g^*s^* -closed in (X, τ) . Since every g^*s^* -closed set is gs-closed, $f^{-1}(F)$ is gs-closed in (X, τ) .

The converse of the above theorem need not be true in general and it can be seen from the following example.

Example 4.11. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}, \sigma = \{\phi, X, \{c\}, \{a, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping defined by f(a) = a, f(b) = c, f(c) = b. The inverse image of every closed set in (Y, σ) is gs-closed, but $f^{-1}(\{b\}) = \{c\}$ which is not g^*s^* -closed in (X, τ) .

Theorem 4.12. Every g^*s^* -continuous map is gsp-continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be g^*s^* -continuous. Let F be a closed set in (Y, σ) then $f^{-1}(F)$ is g^*s^* -closed in (X, τ) . Since every g^*s^* -closed set is gsp-closed, $f^{-1}(F)$ is gsp-closed in (X, τ) . f is gsp-continuous in (X, τ) .

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 4.13. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}, \sigma = \{\phi, X, \{c\}, \{a, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping defined by f(a) = a, f(b) = c, f(c) = b. The inverse image of every closed set in (Y, σ) is gsp-closed, but $f^{-1}(\{b\}) = \{c\}$ which is not g^*s^* -closed in (X, τ) . Thus, we have the following diagram.

Definition 4.14. A map $f: (X, \tau) \to (Y, \sigma)$ from a topological space (X, τ) to a topological space (Y, σ) is called g^*s^* -irresolute if the inverse image of every g^*s^* -closed set in (Y, σ) is g^*s^* -closed in (X, τ) .

Theorem 4.15. Every g^*s^* -irresolute map is g^*s^* -continuous.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 4.16. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, X, \{b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping defined by f(a) = b, f(b) = c, f(c) = a. Let $\{a, c\}$ be a closed set in (Y, σ) . But $f^{-1}(\{a, c\}) = \{a, b\}$ which is not g^*s^* -closed set in (X, τ) . f is g^*s^* -continuous. $\{c\}$ is a g^*s^* -closed set in (Y, σ) . But $f^{-1}(\{c\}) = \{a\}$ which is not g^*s^* -closed in (X, τ) . f is not g^*s^* -closed in (X, τ) . f is not g^*s^* -closed in (X, τ) . f is not g^*s^* -closed in (X, τ) . f is not g^*s^* -closed in (X, τ) .

Theorem 4.17. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$, then

(i). $g \circ f : (X, \tau) \to (Z, \eta)$ is g^*s^* -continuous if f is g^*s^* -irresolute and g is g^*s^* -continuous.

- (ii). $g \circ f : (X, \tau) \to (Z, \eta)$ is g^*s^* -irresolute if f and g are g^*s^* -irresolute.
- (iii). $g \circ f: (X, \tau) \to (Z, \eta)$ is g^*s^* -continuous if f is g^*s^* -continuous and g is g^*s^* -irresolute.

5. Applications Of g^*s^* -Closed Set.

As application of g^*s^* -closed sets, new spaces namely, Tb*-space, gTb*-space and * gTb*-space are introduced. We introduce the following definitions.

Definition 5.1. A space (X, τ) is said to be a Tb*-space if every g^*s^* -closed set in (X, τ) is closed in (X, τ) .

Theorem 5.2. Every Tb^* -space is $T_{1/2}$ *-space.

Proof. Let (X, τ) be a Tb*-space. Let A be a g*-closed set in (X, τ) . But by preposition (3.4), every g*-closed set is g^*s^* -closed. Since (X, τ) is a Tb*-space, A is closed in (X, τ) . (X, τ) is a $T_{1/2}$ *-space.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 5.3. In example [3.5], Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$. Here, (X, τ) is a $T_{1/2}$ *-space and the set $\{b, c\}$ is g^*s^* -closed but not closed. (X, τ) is not a Tb^* -space.

Theorem 5.4. Let $f: (X, \tau) \to (Y, \sigma)$ be a g^*s^* -continuous mapping. If (X, τ) is Tb*-space, then f is continuous.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be g^*s^* -continuous. Let F be a closed set in (Y,σ) . Then $f^{-1}(F)$ is g^*s^* -closed in (X,τ) . Since (X,τ) is Tb*-space, $f^{-1}(F)$ is closed in (X,τ) . f is continuous.

Theorem 5.5. Every Tb^* -space is $T_{1/2} * *$ -space.

Proof. Let (X, τ) be a Tb*-space. Let A be g**-closed set in (X, τ) . But by preposition (3.6), every g**-closed set is g^*s^* -closed. Since (X, τ) is Tb*-space, A is closed in (X, τ) , which implies, g^*s^* -closed set is closed. (X, τ) is a $T_{1/2} * *$ -space.

The converse of the above theorem need not be true and in general it can be seen from the following example.

Example 5.6. In example [3.7], Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Here, (X, τ) is a $T_{1/2}$ *-space and the sets $\{a\}, \{b\}$ are g^*s^* -closed but not closed. (X, τ) is not Tb^* -space.

Definition 5.7. A space (X, τ) is said to be gTb^* -space if every g^*s^* -closed set in (X, τ) is g^* -closed in (X, τ) .

Theorem 5.8. Every Tb*-space is gTb*-space.

Proof. Let (X, τ) be a Tb*-space. Let A be g^*s^* -closed set in (X, τ) . Since (X, τ) is a Tb*-space, A is closed in (X, τ) . But we know that, every closed set is g^* -closed. Hence, A is g^* -closed set in (X, τ) . (X, τ) is a gTb*-space.

Theorem 5.9. Let $f: (X, \tau) \to (Y, \sigma)$ be g^*s^* -continuous mapping. If (X, τ) is gTb^* -space, then f is g^* -continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be g^*s^* -continuous. Let F be a closed set in (Y, σ) . Then $f^{-1}(F)$ is g^*s^* -closed in (X, τ) . Since (X, τ) is a gTb*-space, $f^{-1}(F)$ is g*-closed in (X, τ) . f is g*-continuous.

Definition 5.10. A space (X, τ) is said to be *gTb*-space if every g^*s^* -closed set in (X, τ) is g^*s -closed in (X, τ) .

Theorem 5.11. Every Tb*-space is *gTb*-space.

Proof. Let (X, τ) be a Tb*-space. Let A be g^*s^* -closed set in (X, τ) . Since (X, τ) is Tb*-space, A is closed in (X, τ) . But we know that, every closed set is g^*s -closed. Hence, A is g^*s -closed set in (X, τ) . (X, τ) is a *gTb*-space.

Theorem 5.12. Let $f: (X, \tau) \to (Y, \sigma)$ be g^*s^* -continuous mapping. If (X, τ) is $*gTb^*$ -space, then f is g^*s -continuous.

Proof. Let f: $(X, \tau) \to (Y, \sigma)$ be g^*s^* -continuous. Let F be a closed set in (Y, σ) . Then $f^{-1}(F)$ is g^*s^* -closed in (X, τ) . Since (X, τ) is a *gTb*-space, $f^{-1}(F)$ is g*s-closed in (X, τ) . f is g*s-continuous.

6. G*S*-Compactness

Definition 6.1. A collection $\{A_i/i \in A\}$ of g^*s^* -open sets in a topological space X is called a g^*s^* -open cover of a subset B of X if $B \subset \bigcup_{i \in A} A_i$.

Definition 6.2. A topological space X is G^*S^* -compact if every g^*s^* -open cover of X has a finite sub cover.

Definition 6.3. A subset B of a topological space X is said to be G^*S^* -compact relative to X if for every collection of g^*s^* -open subsets of X such that $B \subset \bigcup_{i \in A} A_i$, there exists a finite subset A_0 of A such that, $B \subset \bigcup_{i \in A_0} A_i$.

Definition 6.4. A subset B of X is G^*S^* -compact if B is G^*S^* -compact as a subspace of X.

Proposition 6.5. A g^*s^* -closed subset of G^*S^* -compact space is G^*S^* -compact relative to X.

Proof. Let A be a g^*s^* -closed subset of G^*S^* -compact space X. Then A^c is g^*s^* -open in X. Let M be a cover of A by g^*s^* -open sets in X. Then M, A^c is a g^*s^* -open cover of X. Since X is G^*S^* -compact, it has a finite sub-cover, namely $G1, G2, \ldots, G_n$. Therefore, we have obtained a finite g^*s^* -open sub-cover of A. Thus, A is G^*S^* -compact relative to X.

Proposition 6.6.

- (i). A g^*s^* -continuous image of a G^*S^* -compact space is compact.
- (ii). If a map $f : X \to Y$ is g^*s^* -irresolute and a subset B of X is G^*S^* -compact relative to X, then the image f(B) is G^*S^* -compact relative to X.

Proof.

- (i). Let $f: X \to Y$ be a g^*s^* -continuous map from a G^*S^* -compact space onto a topological space Y. Let $A_i: i \in A$ be an open cover of Y. Then $\{f^{-1}(A_i): i \in A\}$ is a g^*s^* -open cover of X. Since X is G^*S^* -compact, it has a finite subcover, namely $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$. Since f is onto, A_1, A_2, \dots, A_n is an open cover of Y and so Y is compact.
- (ii). Let $A_i : i \in A$ be any collection of g^*s^* -open subsets of Y such that $f(B) \subset \cup A_i : i \in A$. Then $B \subset \cup f^{-1}(A_i) : i \in A$ holds. By using assumption, there exists a finite subset A_0 of A such that $B \subset \cup f^{-1}(A_i) : i \in A_0$. Therefore, we have $f(B) \subset \cup A_i : i \in A_0$, which shows that f(B) is G*S*-compact relative to Y.

Theorem 6.7. If the product space of two non-empty spaces is G^*S^* -compact, then each of he factor space is G^*S^* -compact.

Proof. Let $X \times Y$ be the product space of non-empty spaces X and Y. Obviously, the projection p: $X \times Y \to Y$ from $X \times Y$ onto X is g^*s^* -irresolute map. In fact, let F be any g^*s^* -closed set of X. Then it follows that, $F \times Y (= p^{-1}(F))$ is g^*s^* -closed in $X \times Y$ and hence p is g^*s^* -irresolute Now, suppose that $X \times Y$ is G^*S^* -compact. By using Preposition , we obtain that the g^*s^* -irresolute image $p(X \times Y)(=X)$ is G^*S^* -compact. For Y, the proof is similar to the case of X. \Box

7. G^*S^* -Connectedness

Definition 7.1. A topological space X is G^*S^* -connected if X cannot be written as a disjoint union of two non-empty g^*s^* -open sets. A subset V of X is G^*S^* -connected if V is G^*S^* -connected as a subspace.

Proposition 7.2. For a topological space X, the following conditions are equivalent.

- (i). X is G^*S^* -connected.
- (ii). The only subsets of X which are both g^*s^* -open and g^*s^* -closed are empty set and X.
- (iii). Each g^*s^* -continuous map of X into a discrete space Y with at least two points is a constant map.

Proof.

(i) \Rightarrow (ii): Let U be a g^*s^* -open and g^*s^* -closed subset of X. Then X-U is both g^*s^* -closed and g^*s^* -open. Since X is the disjoint union of the g^*s^* -open sets U and X-U, one of these must be empty, that is $U = \phi$ o U =X.

(ii) \Rightarrow (i): Suppose X = A \cup B where A and B are disjoint non-empty g * s*-open subsets of X. Since A is a g * s*-open subset of X, by condition (ii), it may be g * s*-closed and $A = \phi$ or A = X. If A = ϕ , X=B. If A=X, B= ϕ . Thus, X is g^*s^* -connected.

(ii) \Rightarrow (iii): Let f:X \rightarrow Y be a g^*s^* -continuous map. Then X is covered by g^*s^* -open and g^*s^* -closed covering $\{f^{-1}(y) | y \in Y\}$. By assumption, $f^{-1}(y) = \phi$ or X for each $x \in X$. If $f^{-1}(y) = \phi$ for all $y \in Y$ then f fails to be a map. Then, there exists only one point $y \in Y$ such that $f^{-1}(y) \neq \phi$ and hence $f^{-1}(y) = X$ which shows that f is a constant map.

(iii) \Rightarrow (ii): Let U be both g^*s^* -open and g^*s^* -closed in X. Suppose $U \neq \phi$. Let f: X \rightarrow Y be a g^*s^* -continuous map defined by $f(U) = \{y\}$ and $f(X - U) = \{w\}$ for some distinct points y and w in Y. By assumption, f is a constant. Therefore, U =X.

It is obvious that every G^*S^* -connected space is connected. The following example shows that the converse is not true.

Example 7.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$. Then the topological space is (X, τ) is connected. However, since $\{b\}$ is both g^*s^* -closed and g^*s^* -open in X. By Preposition 7.2, X is not G^*S^* -connected.

Proposition 7.4. If X is T_b^* – space and connected, then X is g^*s^* -connected.

Proof. Let X be T_b^* -space and connected. Assume that X can be written in the form $X = A \cup B$ where A and B are nonempty disjoint and g^*s^* -open sets in X. Since X is T_b^* -space, every g^*s^* -open set is open and so $X = A \cup B$ where A and B are disjoint nonempty and open sets in X. This contradicts the fact that X is connected. Therefore X is g^*s^* -connected. \Box

Proposition 7.5. If $f: X \to Y$ is g^*s^* -continuous surjection and X is g^*s^* -connected then Y is connected.

Proof. Suppose that Y is not connected. Let $Y = A \cup B$ where A and B are disjoint nonempty open sets in Y. Since f is g^*s^* -continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty g^*s^* -open in X. This contradicts the fact that X is g^*s^* -connected. Hence Y is connected.

Proposition 7.6. If $f:X \to Y$ is g^*s^* -continuous map from a connected space X into a topological space Y, then Y is g^*s^* -connected.

Proof. Let Y be not g^*s^* -connected. Then Y can be written as $Y = A \cup B$ where A and B are disjoint nonempty g^*s^* open sets in Y. Since f is g^*s^* -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are open sets in X. Also $X = f^{-1}(A) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. This contradicts the fact that X is connected. Therefore Y is g^*s^* -connected.

References

M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.

- [2] D.Andrijevic, Semi pre-open sets, Vesnik, 38(1)(1986), 24-32.
- [3] K.Anitha, On g*s-closed sets in Topological spaces, Int. J. Contemp. Math., 6(19)(2011), 917-929.
- [4] S.P.Arya and T.Nour, generalized semi-closed set, Indian J.pure Appl, Math., 21(1990), 717-719.
- [5] P.Bhattacharya and B.K.Lahiri, semi-generalized closed sets in topology, Indian J. Math., 21(8)(1990), 375-382.
- [6] J.Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 16(1995), 35-48.
- [7] N.Levine, Generalized closed sets in Topological spaces, Amer. Math. Monthly, 67(1960).
- [8] N.Levine, Semi-open and semi-continuity in topological spaces, 70(1963), 36-41.
- [9] H.Maki, R.Devi and K.Balachandran, Generalized -closed sets in Topology, Bull. Fakuoka Univ. Ed. Part III, 42(1993).
- [10] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A.Math., 15(1994), 89-96.
- [11] H.Maki, R.Devi and K.Balachandran, Semi-generalized homeomorphisms and generalized semi- homeomorphisms in topological spaces, Indian J. pure. Appl. Math., 26(3)(1995), 271-284.
- [12] S.R.Malghan, Generalized closed maps, J. Karnatak Univ. Sci., 27(1982), 82-88.
- [13] G.B. Navalagi, Definition Bank in General topology.
- [14] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2)(1993), 211-219.
- [15] M.Pauline Mary Helen, Ponnuthai Selvarani and S.veronica Vijayan, g**-closed sets in Topological Spaces, IJMA, 3(5)(2012), 1-15.
- [16] A.Pushpalatha, Studies on Generalizations of Mappings in Topological Spaces, Ph.D, Thesis, Bharathiar University, Coimbatore.
- [17] P.Sundaram, H.Maki and K.Balachandran, Semi-generalized closed continuous Maps, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 33-40.
- [18] P.Sundaram and M.Shiek John, On w-closed sets in Topology, Acta Ciencia Indica, 4(2000), 389-392.
- [19] M.K.R.S. Veera Kumar, g#s-closed sets in topological spaces, (1991).