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1. Introduction

Fixed point theory is one of the well-known traditional theories in mathematics that has a broad set of applications. In

1922, Polish mathematician Stephan Banach published his famous contraction principle. Since then, this principle has been

extended and generalized in several ways either by using the contractive condition or by imposing some additional conditions

on an ambient space. From inspiration of this work, several mathematicians heavily studied this field. For example, the

work of Kannan [23], Chatterjea [7], Berinde [5], Ciric [8], Geraghty [17], Meir and Keeler [29], Suzuki [39] and so forth.

There were some generalizations of a metric such as a 2-metric, a D-metric, a G-metric, a cone metric, and a complex-valued

metric. The notion of a 2-metric has been introduced by Gähler in [14]. Note that a 2-metric is not a continuous function of

its variables, whereas an ordinary metric is. This led Dhage to introduce the notion of a D-metric in [10]. But in [31] Mustafa

and Sims showed that most of topological properties of D-metric were not correct. In [30] Mustafa and Sims introduced the

notion of a G-metric to overcome flaws of a D-metric. After that, many fixed point theorems on G-metric spaces have been

stated. However, it was shown in [21] and [37] that in several situations fixed point results in G-metric spaces can be in fact

deduced from fixed point theorems in metric or quasi-metric spaces.

In [18] Huang and Zhang defined the notion of a cone metric. After that, many authors extended some fixed point theorems

on metric spaces to cone metric spaces. However, it was shown later by various authors that in several cases the fixed

point results in cone metric spaces can be obtained by reducing them to their standard metric counterparts; for example,

see [11, 12, 22, 26]. In [3] Azam, Fisher and Khan have introduced the notion of a complex-valued metric and some fixed

point theorems have been stated. But in [38] Sastry, Naidu and Bekeshie showed that some fixed point theorems recently

generalized to complex-valued metric spaces are consequences of their counterparts in the setting of metric spaces and hence

are redundant.
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Note that in the above generalizations, only a 2-metric space has not been known to be topologically equivalent to an

ordinary metric. Then there was no easy relationship between results obtained in 2-metric spaces and metric spaces. In

particular, the fixed point theorems on 2-metric spaces and metric spaces may be unrelated easily. For the fixed point

theorems on 2-metric spaces, the readers may refer to [2, 9, 13–15, 19, 20, 27, 28, 41].

The aim of this paper is to establish some fixed point theorems for mappings involving rational expression in the framework

of 2-metric spaces endowed with a partial order using a class of pairs of functions satisfying certain assumptions.

2. Mathematical Preliminaries

First we recall some notions and lemmas which will be useful in what follows. The notion of a 2-metric space was studied

by Gähler in [14].

Definition 2.1 ([14]). Let X be a nonempty set. A real valued function d on X3 is said to a 2-metric if, for all x, y, z, a ∈

X, the following conditions hold:

(d1) To each pair of distinct points x, y in X, there exists a point z ∈ X such that d (x, y, z) 6= 0;

(d2) d (x, y, z) = 0 if at least two of x, y, z are equal;

(d3) d (x, y, z) = d (x, z, y) = d (y, x, z) = d (y, z, x) = d (z, x, y) = d (z, y, x) ;

(d4) d (x, y, z) ≤ d (x, y, a) + d (x, a, z) + d (a, y, z) .

Then (X, d) is called a 2-metric space, which will be sometimes denoted by X if there is no confusion. Every member x ∈ X

is called a point in X. Geometrically a 2-metric d(x, y, z) represents the area of a triangle with vertices x, y and z.

Definition 2.2 ([14]). Let (X, d) be a 2-metric space and a, b ∈ X, r = 0. The set B(a, b, r) = {x ∈ X : d(a, b, x) < r}

is called a 2-ball centered at a and b with radius r. The topology generated by the collection of all 2-balls as a sub-basis is

called a 2-metric topology on X.

Definition 2.3 ([19]). A sequence {xn} in a 2-metric space (X, d) is said to be convergent to a point x ∈ X, if

lim
n→∞

d (xn, x, u) = 0 for all u ∈ X.

Definition 2.4 ([19]). A sequence {xn} in a 2-metric space (X, d) is said to be Cauchy sequence if for all z ∈ X,

lim
n→∞

d (xn, xm, z) = 0 .

Definition 2.5 ([19]). A sequence {xn} in a 2-metric space (X, d) is said to be complete if every Cauchy sequence in X is

convergent.

Definition 2.6 ([27]). A 2-metric space (X, d) is said to be compact if every sequence in X has a convergent subsequence.

Lemma 2.7 ([27]). Every 2-metric space is a T1-space.

Lemma 2.8 ([27]). lim
n→∞

xn = x in a 2-metric space (X, d) if and only if lim
n→∞

xn = x in the 2-metric topological space

X.

Lemma 2.9 ([27]). If f : X → Y is a continuous map from a 2-metric space X to a 2-metric space Y , then lim
n→∞

xn = x

in X implies lim
n→∞

Txn = Tx in Y .

Remark 2.10.
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(1). It is straightforward from Definition 2.1 that every 2-metric is non-negative and every 2-metric space contains at least

three distinct points.

(2). A 2-metric d(x, y, z) is sequentially continuous in one argument. Moreover, if a 2-metric d(x, y, z) is sequentially

continuous in two arguments, then it is sequentially continuous in all three arguments [32].

(3). A convergent sequence in a 2-metric space need not be a Cauchy sequence [32].

(4). In a 2-metric space (X, d), every convergent sequence is a Cauchy sequence if d is continuous [32].

(5). There exists a 2-metric space (X, d) such that every convergent sequence is a Cauchy sequence but d is not continuous

[32].

Khan et al. [25] initiated the use of control function that alter distance between two points in a metric space, which they

called an altering distance function

Definition 2.11 ([25]). A function ϕ : [0, ∞)→ [0, ∞) is called altering distance function if the following conditions are

satisfied:

(a1). ϕ is monotone increasing and continuous,

(a2). ϕ(t) = 0 if and only if t = 0.

In [4], Bergiz et al. introduced the notion of pair of generalized altering distance functions as follows.

Definition 2.12 ([4]). The pair (ϕ, φ), where ϕ, φ : [0,∞) → [0,∞) is called a pair of generalized altering distance

functions if the following conditions are satisfied:

(b1). ϕ is continuous;

(b2). ϕ is non-decreasing;

(b3). lim
n→∞

φ(tn) = 0⇒ lim
n→∞

tn = 0.

The condition (b3) was introduced by Moradi and Farajzadeh in [32]. Notice that the above conditions do not determine the

values of ϕ(0) and φ(0).

In the recent work, Agarwal et al. [1] introduced the following family of function.

Definition 2.13 ([1]). We will denote by F the family of all pairs (ϕ, φ), where ϕ, φ : [0, ∞) → [0, ∞) are functions

satisfying the following three conditions.

(F1). ϕ is non-decreasing;

(F2). if there exists t0 ∈ [0, ∞) such that φ (t0) = 0, then t0 = 0 and ϕ−1 (0) = {0}.

(F3). if {ak} , {bk} ⊂ [0,∞) are sequences such that {ak} → L, {bk} → L and verifying L < {bk} and ϕ (bk) ≤ (ϕ− φ) (ak)

for all k, then L = 0.

In this paper, we consider the following class of pairs of functions ??.

Definition 2.14 ([34]). A pair of functions (ϕ, φ) is said to belong to the class F, if they satisfy the following conditions:

(c1). ϕ, φ : [0, ∞)→ [0, ∞);
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(c2). for t, s ∈ [0, ∞), ϕ(t) = φ(s) then t = s;

(c3). for {tn} and {sn} sequence in [0, ∞) such that lim
n→∞

tn = lim
n→∞

sn = a, if ϕ(tn) = φ(sn) for any n ∈ N, then a = 0.

Notice that, if a pair (ϕ, φ) verifies (F1) and (F2), then the pair (ϕ, φ = ϕ − φ) satisfies (c1) and (c2). Furthermore, if

(ϕ, φ = ϕ− φ) satisfies (c3), then (ϕ, φ) satisfies (F3).

Remark 2.15 ([34]). Note that, if (ϕ, φ) ∈ F and ϕ(t) = φ(t), then t = 0, since we can take tn = sn = t for any n ∈ N

and by (c3) we deduce t = 0.

Example 2.16.

(a). The conditions (c1)-(c3) of the above definition are fulfilled for the functions ϕ, φ : [0, ∞) → [0, ∞) defined by

ϕ (t) = ln
(
5t+1
12

)
and φ (t) = ln

(
3t+1
12

)
for all t ∈ [0, ∞).

(b). The conditions (c1)-(c3) of the above definition are fulfilled for the functions ϕ, φ : [0, ∞) → [0, ∞) defined by

ϕ (t) = ln
(
t+ 1

2

)
and φ (t) = ln

(
t
2

+ 1
2

)
for all t ∈ [0, ∞).

In the sequel, we present some interesting examples of pairs of functions belonging to the class F which will be very important

in our study.

Example 2.17 ([34]). Let ϕ : [0,∞) → [0,∞) be a continuous and increasing function such that ϕ(t) = 0 if and only if

t = 0 (these functions are known in the literature as altering distance functions).

Let φ : [0,∞)→ [0,∞) be a non-decreasing function such that φ(t) = 0 if and only if t = 0 and suppose that φ = ϕ. Then

the pair (ϕ,ϕ− φ) ∈ F. In fact, it is clear that (ϕ,ϕ− φ) satisfy (c1). To prove (c2), suppose that t, s ∈ [0,∞) and

ϕ(t) = (ϕ− φ)(s). Then, from

ϕ(t) = ϕ(s)− φ(s) = ϕ(s) (1)

and taking into account the increasing character of ϕ, we can deduce that t = s. In order to prove (c3), we suppose that

ϕ(tn) = ϕ(sn)− φ(sn) = ϕ(sn) (2)

for any n ∈ N, where tn, sn ∈ [0,∞) and lim
n→∞

tn = lim
n→∞

sn = a. Taking n → ∞ in (2), we infer that lim
n→∞

φ(sn) = 0. Let

us suppose that a > 0. Since lim
n→∞

sn = a > 0, we can find ε > 0 and a subsequence {snk} of {sn} such that snk > ε for any

k ∈ N. As φ is non-decreasing, we have φ(snk ) > φ(ε) for any k ∈ N and, consequently, lim
n→∞

φ(snk ) = φ(ε). This contradicts

the fact that lim
n→∞

φ(snk ) = 0. Therefore, a = 0. This proves that (ϕ,ϕ− φ) ∈ F. An interesting particular case is when ϕ

is the identity mapping, ϕ = 1[0,∞) and φ : [0,∞) → [0,∞) is a non-decreasing function such that φ(t) = 0 if and only if

t = 0 and φ(t) = t for any t ∈ [0,∞).

Example 2.18 ([3]). Let S be the class of functions defined by

S = {α : [0,∞)→ [0, 1) : {α(tn)→ 1⇒ tn → 0}}.

Let us consider the pairs of functions (1[0,∞), α1[0,∞)), where α ∈ S and α1[0,∞) is defined by
(
α1[0,∞)

)
(t) = α (t) t, for

t ∈ [0,∞). Then (1[0,∞), α1[0,∞)) ∈ F.
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It is clear that the pairs (1[0,∞), α1[0,∞)), with α ∈ S satisfy (c1). To prove (c2), from 1[0,∞)(t) ≤ α1[0,∞)(s) for t, s ∈ [0,∞),

we infer, since α : [0,∞)→ [0, 1), that t ≤ α(s)s < s and, consequently, (1[0,∞), α1[0,∞)) satisfies (c2).

In order to prove (c3), we suppose that 1[0,∞)(tn) = tn ≤ 1[0,∞)(sn) = α(sn)sn for any n ∈ N, where tn, sn ∈ [0,∞) and

lim
n→∞

tn = lim
n→∞

sn = a. Let us suppose that a > 0. Since lim
n→∞

sn = a > 0, we can find a subsequence {snk} such that

snk > 0 for any k ∈ N. Now as

tn ≤ α (sn) sn ≤ sn for any n ∈ N, (3)

In particular, we have

tnk ≤ α (snk ) snk ≤ snk for any k ∈ N, (4)

and since snk > 0 for any k ∈ N,
tnk

snk

≤ α (snk ) ≤ 1 (5)

Taking k →∞ in the last inequality, we obtain

lim
k→∞

α (snk ) = 1 (6)

Finally, since α ∈ S, we infer that lim
k→∞

snk = 0 and this contradicts the fact that lim
n→∞

sn = a > 0. Therefore, a = 0. This

proves that (1[0,∞), α1[0,∞)) ∈ F for α ∈ S.

Remark 2.19 ([34]). Suppose that g : [0,∞)→ [0,∞) is an increasing function and (ϕ, φ) ∈ F. Then it is easily seen that

the pair (g ◦ ϕ, g ◦ φ) ∈ F.

Definition 2.20 ([6]). Let (X, ≤) is a partially ordered set and f : X → X is said to be monotone non-decreasing if for

all x, y ∈ X,

x ≤ y ⇒ fx ≤ fy. (7)

3. Main Results

Now, we give our main results.

Theorem 3.1. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists a pair of functions (ϕ, φ) ∈ F satisfying

ϕ (d (fx, fy, a)) ≤ max

{
φ (d (x, y, a)) , φ

(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)}
, (8)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.

Proof. If x0 = fx0, then the proof is finished. Suppose now that that x0 ≺ fx0. Since f is non-decreasing function, we

have

x0 ≺ fx0 � f2x0 � f3x0 � · · · � fn−1x0 � fnx0 � . . . (9)

Put

xn+1 = fxn, ∀ n ≥ 0. (10)

For simplicity, we set dn (a) = d (xn, xn+1, a) for all a ∈ X.
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Step I: We will show that lim
n→∞

dn (a) = 0. If there exists n ≥ 1 such that xn = xn+1, then from (9), fxn = xn+1 = xn,

that is xn is a fixed point of f and the proof is finished. Now suppose that xn 6= xn+1, that is d (xn, xn+1, a) 6= 0, for all

n ≥ 1. Since xn−1 ≺ xn for all n ≥ 1, applying the contractive condition (8) and using (10), we have

ϕ (dn (a)) = ϕ (d (fxn−1, fxn, a))

≤ max

{
φ (d (xn−1, xn, a)) , φ

(
d (xn, fxn, a) [1 + d (xn−1, fxn−1, a)]

1 + d (fxn−1, fxn, a)

)}
= max

{
φ (dn−1 (a)) , φ

(
dn (a) [1 + dn−1 (a)]

1 + dn (a)

)}
(11)

Now, we can distinguish two cases.

Case I. Consider

max

{
φ (dn−1 (a)) , φ

(
dn (a) [1 + dn−1 (a)]

1 + dn (a)

)}
= φ (dn−1 (a)) (12)

In this case from (11), we have

ϕ (dn (a)) ≤ φ (dn−1 (a)) (13)

Since (ϕ, φ) ∈ F, we deduce that dn (a) ≤ dn−1 (a).

Case II. If

max

{
φ (dn−1 (a)) , φ

(
dn (a) [1 + dn−1 (a)]

1 + dn (a)

)}
= φ

(
dn (a) [1 + dn−1 (a)]

1 + dn (a)

)
(14)

In this case from (11), we have

ϕ (dn (a)) ≤ φ
(
dn (a) [1 + dn−1 (a)]

1 + dn (a)

)
(15)

Since (ϕ, φ) ∈ F we get

dn (a) ≤ dn (a) [1 + dn−1 (a)]

1 + dn (a)

Since dn (a) 6= 0, from the last inequality it follows that

dn (a) ≤ dn−1 (a)

In both cases, we conclude that the sequence {dn (a)} is a decreasing sequence of non-negative real numbers and is bounded

below, there exists r ≥ 0 such that

lim
n→∞

dn (a) = r. (16)

Now, we shall show that r = 0. Denote

A = {n ∈ N : n satisfies (12)} , and B = {n ∈ N : n satisfies (14)} . (17)

We note that the following.

1. If Card A = ∞, then from (11), we can find infinitely natural numbers n satisfying inequality (13) and since

lim
n→∞

dn (a) = lim
n→∞

dn−1 (a) = r and (ϕ, φ) ∈ F we have r = 0.

2. If Card B = ∞, then from (11), we can find infinitely many n ∈ N satisfying inequality (15). Since (ϕ, φ) ∈ F and

using the similar argument to the one used in Case II, we obtain

dn (a) ≤ dn (a) [1 + dn−1 (a)]

1 + dn (a)

for infinitely many n ∈ N. Letting the limit as n→∞ and taking into account that lim
n→∞

dn (a) = lim
n→∞

dn−1 (a) = r,

we deduce that r ≤ r(1 + r)/(1 + r) and consequently, we obtain r = 0.
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Therefore, in both cases we have

lim
n→∞

dn (a) = r = 0. (18)

Step II: We will show that dn (xm) = 0, ∀ n,m ∈ N. As {dn (a)} is decreasing, if dn−1 (a) = 0, then dn (a) = 0. Since from

condition (d1) of Definition 2.1, d0 (x0) = 0, we have dn (x0) = 0 for all n ∈ N. Since dm−1 (xm) = 0, we have

dn (xm) = 0 (19)

for all n ≥ m− 1. For 0 ≤ n < m− 1, we have m− 1 ≥ n+ 1 and from (18), we have

dm−1 (xn+1) = dm−1 (xn) = 0 (20)

It implies that

dn (xm) = d (xn, xn+1, xm)

≤ d (xn, xn+1, xm−1) + d (xn, xm−1, xm) + d (xm−1, xn+1, xm)

= dn (xm−1) + dm−1 (xn) + dm−1 (xn+1)

= dn (xm−1)

Since dn (xn+1) = 0, from the above inequality, we have

dn (xm) ≤ dn (xm−1) ≤ dn (xm−2) ≤ · · · ≤ dn (xn+1) = 0 (21)

for all 0 ≤ n < m− 1. From (19) and (21), we have

dn (xm) = 0 (22)

for all n,m ∈ N.

Step III: Next we shall prove that d (xi, xj , xk) = 0 for all i, j, k ∈ N. Without loss of generality, we may assume that i = j,

it follows that

d (xi, xj , xk) = d (xi, xj , xi+1) + d (xi, xi+1, xk) + d (xi+1, xj , xk)

= di (xj) + di (xk) + d (xi+1, xj , xk)

= d (xi+1, xj , xk)

Similarly,

d (xi+1, xj , xk) = d (xi+2, xj , xk)

Inductively, we have

d (xi, xj , xk) = d (xj−1, xj , xk) = dj (xk) = 0

This proves that for all i, j, k ∈ N,

d (xi, xj , xk) = 0. (23)
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Step IV: Now, we will show that {xn} is a Cauchy sequence. Suppose the contrary. Then there exist a ∈ X and ε > 0 for

which we can find two subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni > mi > i and d (xmi , xni , a) ≥ ε (24)

This means that

d (xmi , xni−1, a) < ε (25)

Using (??), (25) and the rectangle inequality (that holds for a 2-metric space), we have

ε ≤ d (xmi , xni , a)

≤ d (xmi , xni , xni−1) + d (xmi , xni−1, a) + d (xni−1, xni , a)

≤ ε+ dni−1 (a) + dni−1 (xmi) (26)

On letting i→∞ in (26) and using (18), (22) we get

lim
i→∞

d (xmi , xni , a) = ε (27)

It follows from (27) that

0 < d (xmi , xni , a)− d (xmi , xni−1, a)

≤ d (xmi , xni , xni−1) + d (xmi , xni−1, a) + d (xni−1, xni , a)− d (xmi , xni−1, a)

= d (xmi , xni , xni−1) + d (xni−1, xni , a) (28)

On making i→∞, we immediately obtain that:

lim
i→∞

d (xmi , xni−1, a) = ε (29)

Note that

|d (xmi−1, xni−1, a)− d (xmi , xni , a)| ≤ dxmi−1 ( xni−1) + dxmi−1 (a) + dni−1 (xmi) + dni−1 (a)

On letting i→∞, in these inequalities and by using inequalities (??), (??), (??), and (??), we obtain;

lim
i→∞

d (xmi−1, xni−1, a) = ε (30)

Now using contractive condition (8), we get

ϕ (d (xmi , xni , a)) = ϕ (d (fxmi−1, fxni−1, a))

≤ max

{
φ (d (xmi−1, xni−1, a)) , φ

(
d (xni−1, fxni−1, a) [1 + d (xmi−1, fxmi−1, a)]

1 + d (fxmi−1, fxni−1, a)

)}
≤ max

{
φ (d (xmi−1, xni−1, a)) , φ

(
d (xni−1, xni , a) [1 + d (xmi−1, xmi , a)]

1 + d (xmi , xni , a)

)}
(31)
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Let us put

C = {i ∈ N :ϕ (d (xmi , xni , a)) ≤ φ (d (xmi−1, xni−1, a))} , (32)

D =

{
i ∈ N :ϕ (d (xmi , xni , a)) ≤ φ

(
d (xni−1, xni , a) [1 + d (xmi−1, xmi , a)]

1 + d (xmi , xni , a)

)}
(33)

By (31), we have Card C =∞ or Card D =∞. Let us suppose that Card C =∞. Then there exists infinitely many i ∈ N

satisfying

ϕ (d (xmi , xni , a)) ≤ φ (d (xmi−1, xni−1, a))

and since (ϕ, φ) ∈ F, by letting the limit as i→∞, we have

lim
i→∞

d (xmi , xni , a) ≤ lim
i→∞

d (xmi−1, xni−1, a)

We infer from (27) and (30) that ε = 0. This is a contradiction. On the other hand, if Card D = ∞, then we can find

infinitely many i ∈ N satisfying

ϕ (d (xmi , xni , a)) ≤ φ
(
d (xni−1, xni , a) [1 + d (xmi−1, xmi , a)]

1 + d (xmi , xni , a)

)

and since (ϕ, φ) ∈ F we obtain

d (xmi , xni , a) ≤ d (xni−1, xni , a) [1 + d (xmi−1, xmi , a)]

1 + d (xmi , xni , a)

Taking i → ∞ and using (18) and (27) we obtain ε ≤ 0, which is a contradiction. Therefore, in both the cases, we obtain

a contradiction. This shows that {xn} is a Cauchy sequence in X. Since X is complete, there exists u ∈ X such that

lim
n→∞

xn = u.

Step V: Next, we will show that u is a fixed point of f . Since {xn} is non-decreasing sequence in X such that xn → u,

then xn ≤ u. By the contractive condition (8), we obtain for any n ∈ N,

ϕ (d (fu, fxn, a)) ≤ max
{
φ (d (u, xn, a)) , φ

(
d (xn, fxn, a) [1 + d (u, fu, a)]

1 + d (fu, fxn, a)

)}
(34)

Put

E = {n ∈ N :ϕ (d (fu, fxn, a)) ≤ φ (d (u, xn, a))} (35)

F =

{
n ∈ N :ϕ (d (fu, fxn, a)) ≤ φ

(
d (xn, fxn, a) [1 + d (u, fu, a)]

1 + d (fu, fxn, a)

)}
(36)

Now we can distinguish two cases again.

1. If Card E = ∞, then from (34), we can find infinitely natural numbers n satisfying inequality ϕ (d (fu, fxn, a)) ≤

φ (d (u, xn, a)) and since lim
n→∞

xn = u and (ϕ, φ) ∈ F we obtain lim
n→∞

d (fu, fxn, a) = 0. Thus lim
n→∞

fxn = fu,

where, to simplify our assumptions, we will denote the subsequence by the same symbol fxn. By (10), we have

lim
n→∞

xn+1 = lim
n→∞

fxn = fu. The uniqueness of the limit, we have fu = u.
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2. If Card F =∞, then from (34), we can find infinitely many n ∈ N satisfying inequality

ϕ (d (fu, fxn, a)) ≤ φ
(
d (xn, fxn, a) [1 + d (u, fu, a)]

1 + d (fu, fxn, a)

)
.

Again to simplify our considerations, we will denote the subsequence by the same symbol fxn. Since (ϕ, φ) ∈ F we

deduce that

d (fu, xn+1, a) ≤ d (xn, xn+1, a) [1 + d (u, fu, a)]

1 + d (fu, xn+1, a)

for infinitely many n ∈ N. Letting n → ∞ and taking into account that lim
n→∞

d (xn, xn+1, a) = 0, we deduce that

lim
n→∞

d (fu, xn+1, a) = 0 and consequently, we obtain lim
n→∞

xn+1 = fu. The uniqueness of the limit, fu = u.

From the above both case, we deduce that u is a fixed point of f . This completes the proof of the theorem.

In what follows, we prove a sufficient condition for the uniqueness of the fixed point in Theorem 3.1.

Theorem 3.2. Suppose that:

(1). Hypothesis of Theorem 3.1 hold.

(2). For each x, y ∈ X, there exists z ∈ X that is comparable to x and y.

Then f has a unique fixed point.

Proof. As in the proof of Theorem 3.1, we see that f has a fixed point. Now we prove that the uniqueness of the fixe

point of f . Let u and v be two fixed points of f . We consider the following two cases:

Case.1 u is comparable to v. Then fnu is comparable to fnv for all n ∈ N. For all a ∈ X, applying (8), we have

ϕ (d (fnu, fnv, a)) ≤ max

{
φ
(
d
(
fn−1u, fn−1v, a

))
, φ

(
d
(
fn−1v, fnv, a

) [
1 + d

(
fn−1u, fnu, a

)]
1 + d (fnu, fnv, a)

)}
(37)

Put

G =
{
n ∈ N :ϕ (d (fnu, fnv, a)) ≤ φ

(
d
(
fn−1u, fn−1v, a

))}
(38)

H =

{
n ∈ N :ϕ (d (fnu, fnv, a)) ≤ φ

(
d
(
fn−1v, fnv, a

) [
1 + d

(
fn−1u, fnu, a

)]
1 + d (fnu, fnv, a)

)}
(39)

Now we remark the following:

1. If Card G =∞, then from (37), we can find infinitely natural numbers n satisfying inequality ϕ (d (fnu, fnv, a)) ≤

φ
(
d
(
fn−1u, fn−1v, a

))
. Since (ϕ, φ) ∈ F, it follows that d (u, v, a) ≤ d (u, v, a) and so u = v.

2. If Card H =∞, then from (37), we can find infinitely natural numbers n satisfying inequality

ϕ (d (fnu, fnv, a)) ≤ φ

(
d
(
fn−1v, fnv, a

) [
1 + d

(
fn−1u, fnu, a

)]
1 + d (fnu, fnv, a)

)
.

Then since (ϕ, φ) ∈ F, we have d (u, v, a) ≤ 0 and so u = v.
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Therefore, in both cases we proved that u = v.

Case.2 u is not comparable to v. Then there exists z ∈ X that is comparable to u and v. Now, we can define the sequence

{zn} in X as follows: z0 = z, fzn = zn+1, ∀ n ∈ N. Since f is non-decreasing we have,

z0 ≤ zn ≤ zn+1 and lim
n→∞

d (zn, zn+1, a) = 0. (40)

As u ≤ zn, putting x = u and y = zn in the contractive condition (8), we get

ϕ (d (u, zn+1, a)) = ϕ (d (fu, fzn, a))

≤ max

{
φ (d (u, zn, a)) , φ

(
d (zn, fzn, a) [1 + d (u, fu, a)]

1 + d (fu, fzn, a)

)}
= max

{
φ (d (u, zn, a)) , φ

(
d (zn, zn+1, a)

1 + d (u, zn+1, a)

)}
(41)

Let us denote

I = {n ∈ N :ϕ (d (u, zn+1, a)) ≤ φ (d (u, zn, a))} (42)

J =

{
n ∈ N :ϕ (d (u, zn+1, a)) ≤ φ

(
d (zn, zn+1, a)

1 + d (u, zn+1, a)

)}
(43)

Now we remark following again.

1. If Card I = ∞, then from (41), we can find infinitely natural numbers n satisfying inequality ϕ (d (u, zn+1, a)) ≤

φ (d (u, zn, a)). Since (ϕ, φ) ∈ F, it follows that the sequence {d (u, zn+1, a)} is non-increasing and it has a limit l ≥ 0.

Since lim
n→∞

d (u, zn+1, a) = lim
n→∞

d (u, zn, a) = l and (ϕ, φ) ∈ F, we obtain l = 0. Hence lim
n→∞

d (u, zn+1, a) = 0.

2. If Card J =∞, then from (41), we can find infinitely natural numbers n satisfying inequality

ϕ (d (u, zn+1, a)) ≤ φ
(

d (zn, zn+1, a)

1 + d (u, zn+1, a)

)
.

Then since (φ, ϕ) ∈ F, we have

d (u, zn+1, a) ≤ d (zn, zn+1, a)

1 + d (u, zn+1, a)

Taking n→∞ and using (40), we have lim
n→∞

d (u, zn+1, a) = 0.

Therefore, in both cases we proved that lim
n→∞

d (u, zn+1, a) = 0, that is, lim
n→∞

zn+1 = u. In the same way it can be deduced

that lim
n→∞

zn+1 = v. By Lemma 2.7, we get u = v. That is, the fixed point is unique.

By Theorem 3.1, we obtain the following corollaries.

Corollary 3.3. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping satisfying

d (fx, fy, a) ≤ αd (x, y, a) + β
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)
, (44)

for all a ∈ X and for all comparable elements x, y ∈ X, where α, β > 0 and α + β < 1. Assume that if {xn} is non-

decreasing sequence in X such that xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f

has a fixed point.
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Proof. Since

d (fx, fy, a) ≤ αd (x, y, a) + β
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

≤ (α+ β) max

{
d (x, y, a) ,

d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

}
= max

{
γd (x, y, a) , γ

d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

}

for all a ∈ X and for all comparable elements x, y ∈ X, where γ = α + β < 1. This condition is a particular case of

the contractive condition appearing in Theorem 3.1 with the pair of functions (ϕ, φ) = (1[0, ∞) , γ1[0, ∞)) ∈ F, given by

ϕ = 1[0, ∞) and φ = γ1[0, ∞), where γ ∈ S = {γ : [0, ∞) → [0, 1) : {γ(tn) → 1 ⇒ tn → 0}} (see Example 2.18).

Furthermore, we relaxed the requirement of the continuity of mapping to prove the results.

Corollary 3.4. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists a pair of functions (ϕ, φ) ∈ F, satisfying

ϕ (d (fx, fy, a)) ≤ φ (d (x, y, a)) , (45)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.

Corollary 3.5. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists a pair of functions (ϕ, φ) ∈ F, satisfying

ϕ (d (fx, fy, a)) ≤ φ
(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)
, (46)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.

Taking into account Example 2.17, we have the following corollary.

Corollary 3.6. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists a pair of functions (ϕ, φ) ∈ F satisfying

ϕ (d (fx, fy, a)) ≤ max
{
ϕ (d (x, y, a))− φ (d (x, y, a)) ,

ϕ

(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)
− φ

(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)}
, (47)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.

Corollary 3.6 has the following consequences.

Corollary 3.7. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists a pair of functions (ϕ, φ) ∈ F satisfying

ϕ (d (fx, fy, a)) ≤ ϕ (d (x, y, a))− φ (d (x, y, a)) (48)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.
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Corollary 3.8. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists a pair of functions (ϕ, φ) ∈ F satisfying

ϕ (d (fx, fy, a)) ≤ ϕ
(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)
− φ

(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)
(49)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.

Taking into account Example 2.18, we have the following corollary.

Corollary 3.9. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists α ∈ S (see Example 2.18) satisfying

d (fx, fy, a) ≤ max

{
α (d (x, y, a)) d (x, y, a) , α

(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)}
(50)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.

A consequence of Corollary 3.9 is the following corollary.

Corollary 3.10. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists α ∈ S (see Example 2.18) satisfying

d (fx, fy, a) ≤ α (d (x, y, a)) d (x, y, a) (51)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.

Corollary 3.11. Let (X, �) is a partially ordered set. Suppose that there exist a 2-metric d on X such that be a complete

2-metric space. Let f : X → X be a non-decreasing mapping such that there exists α ∈ S (see Example 2.18) satisfying

d (fx, fy, a) ≤ α
(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)(
d (y, fy, a) [1 + d (x, fx, a)]

1 + d (fx, fy, a)

)
(52)

for all a ∈ X and for all comparable elements x, y ∈ X. Assume that if {xn} is non-decreasing sequence in X such that

xn → u, then xn � u, for all n ∈ N. If there exist x0 ∈ X such that x0 � fx0, then f has a fixed point.
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