
International Journal of Mathematics And its Applications

Volume 4, Issue 2–C (2016), 149–169.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal of Mathematics And its Applications

Leibniz Type AQ-Functional Equation in

Non-Archimedian Fuzzy Normed Spaces

Research Article

M.Arunkumar1∗, John.M.Rassias2 and G.Ganapathy3

1 Department of Mathematics, Government Arts College, Tiruvannamalai, TamilNadu, India.

2 Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, Greece.

3 Department of Mathematics, R.M.D. Engineering College, Kavaraipettai, Tamil Nadu, India.

Abstract: In this paper, we establish the generalized Ulam - Hyers stability of a Leibniz type Additive-Quadratic functional equation
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1. Introduction

In mathematics, a functional equation is any equation that specifies a function in implicit form. Often, the equation relates

the value of a function (or functions) at some point with its values at other points. For instance, properties of functions

can be determined by considering the types of functional equations they satisfy. But the theory of functional equations is

relatively young. The beginning of a theory of functional equations is connected with the work of an excellent specialist in

this field, Hungarian mathematician J. Aczel. The stability problem for functional equations first was planed in 1940 by

Ulam [46]:

When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the

equation?.

If the problem accepts a solution, we say that the equation is stable. This phenomenon is called Ulam −Hyers stability

and has been extensively investigated for different functional equations. Let (G, .) be a groupoid and let (Y, .) be a groupoid

with the metric ρ. The following definition of stability of the equation of additive homomorphism from G to Y

f(x+ y) = f(x) + f(y) (1)

is formulated.
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Definition 1.1. Equation (1) stable in the Hyers-Ulam sence if for every ε > 0 there exists δ > 0 such that for every

function f : G→ Y fulfilling

ρ (f(x+ y), f(x) + f(y)) ≤ δ, x, y ∈ G

there exists a solution g of (1) satisfying

ρ (f(x), g(x)) ≤ ε, x ∈ G.

The study of stability problems for functional equations concerning the stability of group homomorphisms and affirmatively

answered for Banach spaces by Hyers [19]. It was further generalized and excellent results obtained by number of authors

[2, 18, 37, 38, 40]. Its solutions via various forms of functional equations like additive, quadratic, cubic, quartic, mixed type

functional equations which involves only these types of functional equations were discussed. We refer the interested readers

for more information on such problems to the monographs [1, 4, 6–14, 20–22, 36, 48]. The generalized Ulam-Hyers stability

of various types of functions equations (via.) fuzzy normed space, Non-Archimedean space were discussed in [15–17, 25–

28, 43, 44, 47]. Recently, Matina J. Rassias et. al., [35] introduced the Leibniz type additive-quadratic functional equation

of the form

f(x− t) + f(y − t) + f(z − t) = 3f
(x+ y + z

3
− t
)

+ f

(
2x− y − z

3

)
+ f

(
−x+ 2y − z

3

)
+ f

(
−x− y + 2z

3

)
(2)

and obtained its general solution and generalized Ulam - Hyers stability of Leibniz AQ - mixed type functional equation

in quasi-beta normed space using direct and fixed point methods. The solution of the Leibniz type additive and quadratic

functional equation (2) is given in the following lemmas.

Lemma 1.2 ([35]). If an odd function f : X → Y satisfies the functional equation (2) then f is additive.

Lemma 1.3 ([35]). If an even function f : X → Y satisfies the functional equation (2) then f is quadratic.

In this paper, the authors investigate the Generalized Ulam-Hyers stability of a Leibniz type additive and quadratic functional

equation (2) in of non-Archimedean fuzzy normed spaces using direct and fixed point methods.

2. Preliminaries

It is to be noted that, Mirmostafaee and Moslehian [25] initiate a notion of a non-Archimedean fuzzy norm and studied

the stability of the Cauchy equation in the context of non-Archimedean fuzzy spaces. They presented an interdisciplinary

relation between the theory of fuzzy spaces, the theory of non- Archimedean spaces, and the theory of functional equations.

During the last three decades, theory of non-Archimedean spaces has prolonged the interest of physicists for their research,

in particular, in problems coming from quantum physics, p−adic strings, and superstrings. One may note that |n| ≤ 1 in

each valuation field, every triangle is isosceles and there may be no unit vector in a non-Archimedean normed space (cf

[23]). These facts show that the non-Archimedean framework is of special interest. Fuzzy set theory is a powerful hand

set for modeling uncertainty and vagueness in various problems arising in the field of science and engineering. It has also

very useful applications in various fields, such that population dynamics, chaos control, computer programming, nonlinear

dynamical systems, nonlinear operators, statistical convergence, etc. [28, 42, 45]. The fuzzy topology proves to be a very

valuable tool to deal with such situations where the use of classical theories breaks down. The most fascinating application

of fuzzy topology in quantum particle physics arises in string and E-infinity theory of EI Naschie [30]- [34]. The definition

of non-Archimedean fuzzy normed spaces was given in [27].
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Definition 2.1. Let K be a field. A non-Archimedean absolute value on K is a function | · | : K → R, such that for any

a, b ∈ K, we have

(NA1) |a| ≥ 0 and equality holds if and only if a = 0;

(NA2) |ab| = |a| |b|;

(NA3) |a+ b| ≤ max{|a|, |b|} .

The condition (NA3) is called the strong triangle inequality. Clearly, |1| = | − 1| = |1| and n ≤ 1 for all n ≥ N. We always

assume in addition that | · | is non trivial, i.e., that

(NA4) there is an a0 ∈ K, such that |a0| 6= 0, 1.

The most important examples of non-Archimedean spaces are p−adic numbers.

Example 2.2. Let p be a prime number. For any nonzero rational number x, there exists a unique integer nx, such that

x = a
b
pnx, where a and b are integers not divisible by p. Then |x|p = p−nx defines a non-Archimedean norm on Q. The

completion of Q with respect to the metric d(x, y) = |x − y|p is denoted by Qp which is called the p−adic number field. In

fact, Qp is the set of all formal series x =
∞∑

k≥nx

akp
k, where |ak| ≤ p − 1 are integers. The addition and multiplication

between any two elements of Qp are defined naturally. The norm

∣∣∣∣∣ ∞∑k≥nx

akp
k

∣∣∣∣∣
p

= p−nx is a non-Archimedean norm on Qp

and it makes Qp a locally compact field (see [41]). Note that if p > 2 then |2n|p = 1 for each integer n but |2|2 < 1.

Now we give the definition of a non-Archimedean fuzzy normed space.

Definition 2.3. Let X be a linear space over a non-Archimedean field K. A function N : X × R → [0, 1] is said to be a

non-Archimedean fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(NAF1) N(x, c) = 0 for all c ≤ 0;

(NAF2) x = 0 if and only if N(x, c) = 1 for all c > 0;

(NAF3) N(cx, t) = N
(
x, t
|c|

)
if c 6= 0;

(NAF4) N(x+ y,max{s, t}) ≥ min{N(x, s), N(y, t)};

(NAF5) lim
t→∞

N(x, t) = 1.

A non-Archimedean fuzzy norm is a pair (X,N) where X be a linear space and N is non-Archimedean fuzzy norm on

X. If (NAF4) holds then

(NAF6) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)}.

Recall that a classical vector space over the complex or real field satisfying (NAF1) − (NAF5) is called a fuzzy normed

space in the literature. We repeatedly use the fact N(−x, t) = N(x, t), x ∈ X, t > 0, which is deduced from (NAF3). It is

easy to see that (NAF4) is equivalent to the following condition:

(NAF7) N(x+ y, t) ≥ min{N(x, t), N(y, t)}.
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Example 2.4. Let (X, || · ||) be a non-Archimedean normed space. Then

N (x, t) =


t

t+ ‖x‖ , t > 0, x ∈ X,

0, t ≤ 0, x ∈ X

Then (X,N) is a non-Archimedean fuzzy normed space.

Example 2.5. Let (X, || · ||) be a non-Archimedean normed space. Then

N (x, t) =


0, t ≤ ||x||,

1, t > ||x||.

Then (X,N) is a non-Archimedean fuzzy normed space.

Definition 2.6. Let (X,N) be a non-Archimedean fuzzy normed space. Let {xn} be a sequence in X. Then {xn} is said

to be convergent if there exists x ∈ X such that lim
n→∞

N(xn − x, t) = 1 for all t > 0. In that case, x is called the limit of the

sequence xn and we denote it by N − lim
n→∞

xn = x.

Definition 2.7. A sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists n0 such that for all

n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε. Due to this fact that

N(xn − xm, t) ≥ min{N(xj+1 − xj , t)/m ≤ j ≤ n− 1, n > m},

a sequence {xn} is Cauchy if and only if lim
n→∞

N(xn+1 − xn, t) = 1 for all t > 0.

Definition 2.8. Every convergent sequence in a non-Archimedean fuzzy normed space is a Cauchy sequence. If every Cauchy

sequence is convergent, then the non-Archimedean fuzzy normed space is called a non-Archimedean fuzzy Banach space.

Here after, throughout this paper, assume that K non-Archimedean field, X be vector space over K, (Y,N ′) be a non-

Archimedean fuzzy Banach space over K and (Z,N ′) be an (Archimedean or non-Archimedean) fuzzy normed space. Also

we use the following notation for a given mapping f : X → Y such that

Df(x, y, z, t) = f(x− t)+f(y− t)+f(z− t)−3f
(x+ y + z

3
− t
)
−f

(
2x− y − z

3

)
−f

(
−x+ 2y − z

3

)
−f

(
−x− y + 2z

3

)

for all x, y, z, t ∈ X.

3. Stability of the Functional Equation (2) Using Direct Method

In this section, the non-Archimedean fuzzy stability of a Leibniz type AQ -functional equation (2) is provided using direct

method. The following theorem provide the stability result of (2) for f is odd function.

Theorem 3.1. Let κ = ±1 be fixed and let ϑ : X4 → Z be a mapping such that for some d with 0 <

(
d

2

)κ
< 1

N ′ (ϑ (2κnx, 2κnx, 2κnx, 2κnx) , r) ≥ N ′ (dκnϑ (x, x, x, x) , r) (3)

for all x ∈ X, all r > 0, and

lim
n→∞

N ′ (ϑ (2κnx, 2κny, 2κnz, 2κnt) , 2κnr) = 1 (4)
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for all x, y, z, t ∈ X and all r > 0. Suppose that an odd function fa : X → Y satisfies the inequality

N (D fa(x, y, z, t), r) ≥ N ′ (ϑ(x, y, z, t), r) (5)

for all x, y, z, t ∈ X and all r > 0. Then the limit

A(x) = N − lim
n→∞

fa(2κnx)

2κn
(6)

exists for all x ∈ X and the mapping A : X → Y is a unique additive mapping satisfying (2) and

N (fa(x)−A(x), r) ≥ N ′ (ϑ(2x, x, 0, 0), r|2− d|) (7)

for all x ∈ X and all r > 0.

Proof. First assume κ = 1. Replacing (x, y, z, t) by (2x, x, 0, 0) in (5) and using oddness of fa, we get

N (fa(2x)− 2fa(x), r) ≥ N ′ (ϑ(2x, x, 0, 0), r) , ∀ x ∈ X, r > 0. (8)

Using (NAF3) in (8), we arrive,

N

(
fa(2x)

2
− fa(x),

r

2

)
≥ N ′ (ϑ(2x, x, 0, 0), r) , ∀ x ∈ X, r > 0. (9)

Replacing x by 2nx in (9), we obtain

N

(
fa(2n+1x)

2
− fa(2nx),

r

2

)
≥ N ′

(
ϑ(2(n+1)x, 2nx, 0, 0), r

)
, ∀ x ∈ X, r > 0. (10)

Using (3) and (NAF3) in (10), we have

N

(
fa(2n+1x)

2
− fa(2nx),

r

2

)
≥ N ′

(
ϑ(2x, x, 0, 0),

r

dn

)
, ∀ x ∈ X, r > 0. (11)

One can easy to verify from (11), that

N

(
fa(2n+1x)

2n+1
− fa(2nx)

2n
,

r

2 · 2n

)
≥ N ′

(
ϑ(2x, x, 0, 0),

r

dn

)
, ∀ x ∈ X, r > 0. (12)

Replacing r by dnr in (12), we obtain

N

(
fa(2n+1x)

2n+1
− fa(2nx)

2n
,
dn r

2 · 2n

)
≥ N ′ (ϑ(2x, x, 0, 0), r) , ∀ x ∈ X, r > 0. (13)

It is easy to see that

fa(2nx)

2n
− fa(x) =

n−1∑
i=0

[
fa(2i+1x)

2i+1
− fa(2ix)

2i

]
, ∀ x ∈ X. (14)

It follows from (13) and (14), we have

N

(
fa(2nx)

2n
− fa(x),

n−1∑
i=0

di r

2 · 2i

)
≥ min

n−1⋃
i=0

{
N

(
fa(2i+1x)

2i+1
− fa(2ix)

2i
,
di r

2 · 2i

)}

≥ min
n−1⋃
i=0

{
N ′ (ϑ(2x, x, 0, 0), r)

}
≥ N ′ (ϑ(2x, x, 0, 0), r) , ∀ x ∈ X, r > 0. (15)
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Replacing x by 2mx in (15) and using (3), (NAF3), we get

N

(
fa(2n+mx)

2n+m
− fa(2mx)

2m
,

n−1∑
i=0

di r

2 · 2i+m

)
≥ N ′

(
ϑ(2x, x, 0, 0),

r

dm

)
(16)

. for all x ∈ X and all r > 0 and all m,n ≥ 0. Replacing r by dmr in (16), we get

N

(
fa(2n+mx)

2n+m
− fa(2mx)

2m
,

n−1∑
i=0

di r

2 · 2i+m

)
≥ N ′ (ϑ(2x, x, 0, 0), r) (17)

for all x ∈ X and all r > 0 and all m,n ≥ 0. It follows from (17) that

N

(
fa(2n+mx)

2n+m
− fa(2mx)

2m
, r

)
≥ N ′

(
ϑ(2x, x, 0, 0),

r∑m+n−1
i=m

di

2·2i

)
(18)

for all x ∈ X and all r > 0 and all m,n ≥ 0. Since 0 < d < 2 and
n∑
i=0

(
d
2

)i
<∞, using (NAF5) implies that

{fa(2nx)

2n

}
is a

Cauchy sequence in (Y,N). Since (Y,N) is a non-Archimedean fuzzy Banach space, this sequence converges to some point

A(x) ∈ Y . So, we can define a mapping A : X → Y by

A(x) = N − lim
n→∞

fa(2nx)

2n
, ∀ x ∈ X.

Putting m = 0 in (18), we get

N

(
fa(2nx)

2n
− fa(x), r

)
≥ N ′

(
ϑ(2x, x, 0, 0),

r∑n−1
i=0

di

2·2i

)
, ∀ x ∈ X, r > 0. (19)

Letting n→∞ in (19) and using (NAF5), we arrive

N (fa(x)−A(x), r) ≥ N ′ (ϑ(2x, x, 0, 0), r(2− d)) ∀ x ∈ X, r > 0.

To prove A satisfies (2), replacing (x, y, z, t) by (2nx, 2ny, 2nz, 2nt) in (5), respectively , we obtain

N

(
1

2n
(Dfa(2nx, 2ny, 2nz, 2nt)), r

)
≥ N ′ (ϑ(2nx, 2ny, 2nz, 2nt), 2nr) (20)

for all x, y, z, t ∈ X and all r > 0. Now,

N

(
A(x− t) +A(y − t) +A(z − t)− 3A

(x+ y + z

3
− t
)
−A

(
2x− y − z

3

)
−A

(
−x+ 2y − z

3

)
−A

(
−x− y + 2z

3

)
, r

)

≥ min
{
N

(
A(x− t)− 1

2n
fa(2n(x− t)), r

8

)
,

N

(
A(y − t)− 1

2n
fa(2n(y − t)), r

8

)
, N

(
A(z − t)− 1

2n
fa(2n(z − t)), r

8

)
N

(
−3A

(x+ y + z

3
− t
)

+
3

2n
fa

(
2n(x+ y + z)

3
− 2nt

)
,
r

8

)
,

N

(
−A

(
2x− y − z

3

)
+

1

2n
fa

(
2n(2x− y − z)

3

)
,
r

8

)
,

N

(
−A

(
−x+ 2y − z

3

)
+

1

2n
fa

(
2n(−x+ 2y − z)

3

)
,
r

8

)
,

N

(
−A

(
−x− y + 2z

3

)
+

1

2n
fa

(
2n(−x− y + 2z)

3

)
,
r

8

)
,

N

(
1

2n
fa(2n(x− t)) +

1

2n
fa(2n(y − t)) +

1

2n
fa(2n(z − t))− 3

2n
fa

(
2n(x+ y + z)

3
− 2nt

)
− 1

2n
fa

(
2n(2x− y − z)

3

)
− 1

2n
fa

(
2n(−x+ 2y − z)

3

)
− 1

2n
fa

(
2n(−x− y + 2z)

3

)
,
r

8

)}
(21)
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for all x, y, z, t ∈ X and all r > 0. Using (20) and (NAF5) in (21), we arrive

N
(
A(x− t) +A(y − t) +A(z − t)− 3A

(x+ y + z

3
− t
)

−A
(

2x− y − z
3

)
−A

(
−x+ 2y − z

3

)
−A

(
−x− y + 2z

3

)
, r

)
≥ min

{
1, 1, 1, 1, 1, 1, 1, N ′ (ϑ(2nx, 2ny, 2nz, 2nt), 2nr)

}
≥ N ′ (ϑ(2nx, 2ny, 2nz, 2nt), 2nr) (22)

for all x, y, z, t ∈ X and all r > 0. Letting n→∞ in (22) and using (4), we see that

N
(
A(x− t) +A(y − t) +A(z − t)− 3A

(x+ y + z

3
− t
)
−A

(
2x− y − z

3

)
−A

(
−x+ 2y − z

3

)
−A

(
−x− y + 2z

3

)
, r

)
= 1

for all x, y, z, t ∈ X and all r > 0. Using (NAF2) in the above inequality, we get

A(x− t) +A(y − t) +A(z − t)− 3A
(x+ y + z

3
− t
)

= A

(
2x− y − z

3

)
+A

(
−x+ 2y − z

3

)
+A

(
−x− y + 2z

3

)

for all x, y, z, t ∈ X. Hence A satisfies the functional equation (2). In order to prove A(x) is unique, let A′(x) be another

additive function satisfying (2) and (6). Hence,

N(A(x)−A′(x), r) ≥ min
{
N

(
A(2nx)− fa(2nx)

2n
,

2nr

2

)
, N

(
fa((2nx)

2n
−A′(2nx),

2nr

2

)}
≥ N ′

(
ϑ(2n+1x, 2nx, 0, 0),

r 2n(2− d)

2

)
≥ N ′

(
ϑ(2x, x, 0, 0),

r 2n(2− d)

2dn

)
, ∀ x ∈ X, r > 0.

Since lim
n→∞

r 2n(2− d)

2dn
=∞, we obtain

lim
n→∞

N ′
(
ϑ(2x, x, 0, 0),

r 2n(2− d)

2dn

)
= 1.

Thus

N(A(x)−A′(x), r) = 1, ∀ x ∈ X, r > 0,

Hence A(x) = A′(x). Therefore A(x) is unique. For κ = −1, we can prove the result by a similar method. This completes

the proof of the theorem.

From Theorem 3.1, we obtain the following corollary concerning the stability for the functional equation (2).

Corollary 3.2. Suppose that a odd function fa : X → Y satisfies the inequality

N (D fa(x, y, z, t), r) ≥


N ′ (ε, r) ,

N ′ (ε (||x||s + ||y||s + ||z||s + ||t||s) , r) ,

N ′
(
ε
{
||x||s ||y||s ||z||s ||t||s +

(
||x||4s + ||y||4s + ||z||4s + ||t||4s

)}
, r
)
,

(23)
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for all r > 0 and all x, y, z, t ∈ X, where ε, s are constants with ε > 0. Then there exists a unique additive mapping

A : X → Y such that

N (fa(x)−A(x), r) ≥


N ′ (ε, r) ,

N ′ ((1 + 2s)ε||x||s, r|2− 2s|) , s < 1 or s > 1;

N ′
(
(1 + 2s)ε||x||4s, r|2− 24s|

)
, s < 1

4
or s > 1

4
;

(24)

for all x ∈ X and all r > 0.

Proof. Setting

ϑ(x, y, z, t) =


ε,

ε (||x||s + ||y||s + ||z||s + ||t||s) ,

ε
{
||x||s ||y||s ||z||s ||t||s +

(
||x||4s + ||y||4s + ||z||4s + ||t||4s

)}
,

then the corollary is followed from Theorem 3.1. If we define

d =


1,

2s,

24s.

Example 3.3. Let X be a normed space and N and N ′ be non-archimedian fuzzy norms on X and R defined by

N (x, r) =


r

r + ‖x‖ r > 0, x ∈ X,

0, r ≤ 0, x ∈ X.
(25)

N ′ (x, r) =


r

r + ‖x‖ r > 0, x ∈ R,

0, r ≤ 0, x ∈ R.
(26)

Let ϑ : (0,∞)→ (0,∞) be a function such that ϑ (2l) < d ϑ (l) for all l > 0 and 0 < d < 2. Define

β (x, y, z, t) = ϑ (‖x− t‖) + ϑ (‖y − t‖) + ϑ (‖z − t‖)− 3ϑ
(∥∥∥x+ y + z

3
− t
∥∥∥)

− ϑ
(∥∥∥∥2x− y − z

3

∥∥∥∥)− ϑ(∥∥∥∥−x+ 2y − z
3

∥∥∥∥)+ ϑ

(∥∥∥∥−x− y + 2z

3

∥∥∥∥)
for all x, y, z, t ∈ X . Let x0 ∈ X be a unit vector and define fa : X → X by fa (x) = x + ϑ (‖x‖)x0. Now for any

x, y, z, t ∈ X and r > 0, we have

N (Dfa(x, y, z, t), r) =
r

r + ‖β (x, y, z, t)‖ · ‖x0‖

≥ r

r + ‖β (x, y, z, t)‖

= N ′ (β (x, y, z, t) , r) .

For any x, y, z, t ∈ X and r > 0, we have

N ′ (β (2x, 2y, 2z, 2t) , r) =
r

r + β (2x, 2y, 2z, 2t)

≥ r

r + d β (x, y, z, t)

= N ′ (d β (x, y, z, t) , r) .
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Hence the inequalities (3) and (5) are satisfied. Using Theorem 3.1, there exists a unique additive mapping A : X → Y such

that

N (A (x)− fa (x) , r) ≥ N ′
(
β (2x, x, 0, 0)

|2− d| , r

)
x ∈ X and r > 0.

The following theorem and corollary provide the stability result of (2) for f is even function. The proof is similar tracing to

that of Theorem 3.1 and Corollary 3.2. Hence the details of the proof is omitted.

Theorem 3.4. Let κ = ±1 be fixed and let ϑ : X4 → Z be a mapping such that for some d with 0 <

(
d

4

)κ
< 1

N ′ (ϑ (2κx, 2κx, 2κx, 2κx) , r) ≥ N ′ (dκϑ (x, x, x, x) , r) (27)

for all x ∈ X and all d > 0, and

lim
n→∞

N ′ (ϑ (2κnx, 2κny, 2κnz, 2κnt) , 4κnr) = 1 (28)

for all x, y, z, t ∈ X and all r > 0. Suppose that a even function fq : X → Y satisfies the inequality

N (D fq(x, y, z, t), r) ≥ N ′ (ϑ(x, y, z, t), r) (29)

for all x, y, z, t ∈ X and all r > 0 . Then the limit

Q(x) = N − lim
n→∞

fq(2
βnx)

4βn
(30)

exists for all x ∈ X and the mapping Q : X → Y is a unique quadratic mapping satisfying (2) and

N (fq(x)−Q(x), r) ≥ N ′ (ϑ(2x, x, 0, 0), r|4− d|) (31)

for all x ∈ X and all r > 0.

Corollary 3.5. Suppose that a even function fq : X → Y satisfies the inequality

N (D fq(x, y, z, t), r) ≥


N ′ (ε, r) ,

N ′ (ε (||x||s + ||y||s + ||z||s + ||t||s) , r) ,

N ′
(
ε
{
||x||s ||y||s ||z||s ||t||s +

(
||x||4s + ||y||4s + ||z||4s + ||t||4s

)}
, r
)
,

(32)

for all x, y, z, t ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic mapping

Q : X → Y such that

N (fq(x)−Q(x), r) ≥


N ′ (ε, r) ,

N ′ (ε(2s + 1)||x||s, r|4− 2s|) , s < 2 or s > 2;

N ′
(
ε(24s + 1)||x||4s, r|4− 24s|

)
, s < 1

2
or s > 1

2
;

(33)

for all x ∈ X and all r > 0.
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Example 3.6. Let X be a normed space and N and N ′ be non-archimedian fuzzy norms on X and R defined by (25),(26).

Let ϑ : (0,∞)→ (0,∞) be a function such that ϑ (2l) < d ϑ (l) for all l > 0 and 0 < d < 4. Define

β (x, y, z, t) = ϑ (‖x− t‖) + ϑ (‖y − t‖) + ϑ (‖z − t‖)− 3ϑ
(∥∥∥x+ y + z

3
− t
∥∥∥)

− ϑ
(∥∥∥∥2x− y − z

3

∥∥∥∥)− ϑ(∥∥∥∥−x+ 2y − z
3

∥∥∥∥)+ ϑ

(∥∥∥∥−x− y + 2z

3

∥∥∥∥)

for all x, y, z, t ∈ X . Let x0 ∈ X be a unit vector and define fq : X → X by fq (x) = x + ϑ (‖x‖)x0. Now for any

x, y, z, t ∈ X and r > 0, we have

N (Dfq(x, y, z, t), r) =
r

r + ‖β (x, y, z, t)‖ · ‖x0‖

≥ r

r + ‖β (x, y, z, t)‖

= N ′ (β (x, y, z, t) , r) .

For any x, y, z, t ∈ X and r > 0, we have

N ′ (β (2x, 2y, 2z, 2t) , r) =
r

r + β (2x, 2y, 2z, 2t)

≥ r

r + d β (x, y, z, t)

= N ′ (d β (x, y, z, t) , r) .

Hence the inequalities (27) and (29) are satisfied. Using Theorem 3.4, there exists a unique additive mapping A : X → Y

such that

N (A (x)− fq (x) , r) ≥ N ′
(
β (2x, x, 0, 0)

|4− d| , r

)
x ∈ X and r > 0.

Theorem 3.7. Let κ = ±1 be fixed and let ϑ : X4 → Z be a mapping such that for some d with 0 <

(
d

2

)κ
< 1 and

satisfying (3),(4),(27) and (28). Suppose that a function f : X → Y satisfies the inequality

N (D f(x, y, z, t), r) ≥ N ′ (ϑ(x, y, z, t), r) , ∀ x, y, z, t ∈ X, r > 0. (34)

Then there exists a unique additive mapping A : X → Y and unique quadratic mapping Q : X → Y satisfying (2) and

N (f(x)−A(x)−Q(x), r) ≥ N3 (ϑ(2x, x, 0, 0), r) (35)

where

N3 (ϑ(2x, x, 0, 0), r) = min {N1 (ϑ(2x, x, 0, 0), 2r|2− d|) , N2 (ϑ(2x, x, 0, 0), 2r|4− d|)} (36)

for all x ∈ X and all r > 0.

Proof. Clearly |4| ≤ |2| ≤ d. Let fo(x) =
fa(x)− fa(−x)

2
for all x ∈ X. Then fo(0) = 0 and fo(−x) = −fo(x) for all

x ∈ X. Hence

N (D fo(x, y, z, t), r) ≥ min
{
N ′ (D fa(x, y, z, t), r) , N ′ (D fa(−x,−y,−z,−t), r)

}
≥ min

{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(37)
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for all x, y, z, t ∈ X and all r > 0. Let

N1(ϑ(x, y, z, t), r) = min
{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(38)

for all x, y, z, t ∈ X and all r > 0. By Theorems 3.1, there exists a unique additive mapping A : X → Y such that

N (fo(x)−A(x), r) ≥ N1 (ϑ(2x, x, 0, 0), r|2− d|) (39)

for all x ∈ X and all r > 0. Also, let fe(x) =
fq(x) + fq(−x)

2
for all x ∈ X. Then fe(0) = 0 and fe(−x) = fe(x) for all

x ∈ X. Hence

N (D fe(x, y, z, t), r) = N (D fq(x, y, z, t)−D fq(−x,−y,−z,−t), 2r)

≥ min
{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(40)

for all x, y, z, t ∈ X and all r > 0. Let

N2(ϑ(x, y, z, t), r) = min
{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(41)

for all x, y, z, t ∈ X and all r > 0. By Theorem 3.4, there exists a unique quadratic mapping Q : X → Y such that

N (fe(x)−Q(x), r) ≥ N2 (ϑ(2x, x, 0, 0), r|4− d|) (42)

for all x ∈ X and all r > 0. Define

f(x) = fe(x) + fo(x) (43)

for all x ∈ x. From (35),(38) and (39), we arrive

N (f(x)−A(x)−Q(x), r) = N (fe(x) + fo(x)−A(x)−Q(x), r)

≥ min
{
N
(
fo(x)−A(x),

r

2

)
, N
(
fe(x)−Q(x),

r

2

)}
≥ min {N1 (ϑ(2x, x, 0, 0), 2r|2− d|) , N2 (ϑ(2x, x, 0, 0), 2r|4− d|)}

= N3 (ϑ(2x, x, 0, 0), r)

where

N3 (ϑ(2x, x, 0, 0), r) = min {N1 (ϑ(2x, x, 0, 0), 2r|2− d|) , N2 (ϑ(2x, x, 0, 0), 2r|4− d|)} (44)

for all x ∈ X and all r > 0. Hence the theorem is proved.

The following corollary is the immediate consequence of Corollaries 3.2, 3.4 and Theorem 3.5 concerning the stability for

the functional equation (2).

Corollary 3.8. Suppose that a function f : X → Y satisfies the inequality

N (D f(x, y, z, t), r)

≥


N ′ (ε, r) ,

N ′ (ε (||x||s + ||y||s + ||z||s + ||t||s) , r) ,

N ′
(
ε
{
||x||s ||y||s ||z||s ||t||s +

(
||x||4s + ||y||4s + ||z||4s + ||t||4s

)}
, r
)
,

(45)
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for all x, y, z, t ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique additive mapping

A : X → Y and a unique quadratic mapping Q : X → Y such that

N (f(x)−A(x)−Q(x), r) ≥


N3 (ε, r) ,

N3 (ε(2s + 1)||x||s, r) , s 6= 1, 2;

N3

(
ε(24s + 1)||x||4s, r

)
, s 6= 1

4
, 1
2

;

(46)

for all x ∈ X and all r > 0.

Example 3.9. Let X be a normed space and N and N ′ be non-archimedian fuzzy norms on X and R defined by (25),(26).

Let ϑ : (0,∞)→ (0,∞) be a function such that ϑ (2l) < d ϑ (l) for all l > 0 and 0 < d < 2. Define

β (x, y, z, t) = ϑ (‖x− t‖) + ϑ (‖y − t‖) + ϑ (‖z − t‖)− 3ϑ
(∥∥∥x+ y + z

3
− t
∥∥∥)

− ϑ
(∥∥∥∥2x− y − z

3

∥∥∥∥)− ϑ(∥∥∥∥−x+ 2y − z
3

∥∥∥∥)+ ϑ

(∥∥∥∥−x− y + 2z

3

∥∥∥∥)

for all x, y, z, t ∈ X . Let x0 ∈ X be a unit vector and define f : X → X by f (x) = x + ϑ (‖x‖)x0. Now for any

x, y, z, t ∈ X and r > 0, we have

N (Df(x, y, z, t), r) =
r

r + ‖β (x, y, z, t)‖ · ‖x0‖

≥ r

r + ‖β (x, y, z, t)‖

= N ′ (β (x, y, z, t) , r) .

For any x, y, z, t ∈ X and r > 0, we have

N ′ (β (2x, 2y, 2z, 2t) , r) =
r

r + β (2x, 2y, 2z, 2t)

≥ r

r + d β (x, y, z, t)

= N ′ (d β (x, y, z, t) , r) .

Hence the inequalities (3), (27) and (34) are satisfied. Using Theorem 3.7, there exists a unique additive mapping A : X → Y

and quadratic mapping Q : X → Y such that

N (A (x)−Q(x)− f (x) , r) ≥ N3 (β (2x, x, 0, 0) , r)

x ∈ X and r > 0.

4. Stability of the Functional Equation (2) Using Fixed Point Method

In this section, the authors presented generalized Ulam - Hyers stability of the functional equation (2) in non-Archimedian

Fuzzy normed space using fixed point method. Now we will recall the fundamental results in fixed point theory.

Theorem 4.1 (Banach’s contraction principle). Let (X, d) be a complete metric space and consider a mapping T : X → X

which is strictly contractive mapping, that is
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(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,

(i) The mapping T has one and only fixed point x∗ = T (x∗);

(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) lim
n→∞

Tnx = x∗, for any starting point x ∈ X;

(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x), ∀ n ≥ 0,∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗),∀ x ∈ X.

Theorem 4.2 (The alternative of fixed point [24]). Suppose that for a complete generalized metric space (X, d) and a strictly

contractive mapping T : X → X with Lipschitz constant L. Then, for each given element x ∈ X, either

(B1) d(Tnx, Tn+1x) =∞ ∀ n ≥ 0, or

(B2) there exists a natural number n0 such that:

(i) d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;

(ii)The sequence (Tnx) is convergent to a fixed point y∗ of T

(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(Tn0x, y) <∞};

(iv) d(y∗, y) ≤ 1
1−L d(y, Ty) for all y ∈ Y.

For to prove the stability result, we define the following:

µi is a constant such that

µi =

 2 if i = 0

1
2
if i = 1

,

and Ω is the set such that

Ω = {g|g : X → Y, g(0) = 0} .

The following theorem provide the stability result of (2) for f is odd function in fixed point method.

Theorem 4.3. Let fa : X → Y be a mapping for which there exist a function ϑ : X4 → Z with the condition

lim
n→∞

N ′ (ϑ (µni x, µ
n
i y, µ

n
i z, µ

n
i t) , µ

n
i r) = 1, ∀ x, y, z, t ∈ X, r > 0 (47)

and satisfying the functional inequality

N (D fa(x, y, z, t), r) ≥ N ′ (ϑ(x, y, z, t), r) , ∀ x, y, z, t ∈ X, r > 0. (48)

If there exists L = L(i) such that the function

x→ β(x) = ϑ
(
x,
x

2
, 0, 0

)
,

has the property

N ′
(
L
β(µix)

µi
, r

)
= N ′ (β(x), r) , ∀ x ∈ X, r > 0. (49)

Then there exists a unique additive function A : X → Y satisfying the functional equation (2) and

N (fa(x)−A(x), r) ≥ N ′
(
β(x),

L1−i

1− Lr
)
, ∀ x ∈ X, r > 0. (50)
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Proof. Let d be a general metric on Ω, such that

d(g, h) = inf
{
K ∈ (0,∞)|N (g(x)− h(x), r) ≥ N ′ (β(x),Kr) , x ∈ X

}
.

It is easy to see that (Ω, d) is complete. Define T : Ω→ Ω by Tg(x) =
1

µi
g(µix), for all x ∈ X. For g, h ∈ Ω, we have

d(g, h) = K ⇒ N (g(x)− h(x), r) ≥ N ′ (β(x),Kr)

⇒ N

(
g(µix)

µi
− h(µix)

µi
, r

)
≥ N ′ (β(µix),Kµir)

⇒ N (Tg(x)− Th(x), r) ≥ N ′ (β(x),KLr)

⇒ d (Tg(x), Th(x)) ≤ KL

⇒ d (Tg, Th) ≤ Ld(g, h) ∀g, h ∈ Ω.

Therefore T is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x, y, z, t) by (2x, x, 0, 0) in (48) and

using oddness of fa, we get

N (fa(2x)− 2fa(x), r) ≥ N ′ (ϑ(2x, x, 0, 0), r) , ∀ x ∈ X, r > 0. (51)

Using (NAF2) in (51), we arrive

N

(
fa(2x)

2
− fa(x), r

)
≥ N ′ (ϑ(2x, x, 0, 0), 2r) , ∀ x ∈ X, r > 0. (52)

With the help of (49), when i = 0, it follows from (52), that

N

(
fa(2x)

2
− fa(x), r

)
≥ N ′ (β(x), Lr)⇒ d(Tfa, fa) ≤ L = L1 = L1−i. (53)

Replacing x by
x

2
in (51), we obtain

N
(
fa(x)− 2fa

(x
2

)
, r
)
≥ N ′

(
ϑ
(
x,
x

2
, 0, 0

)
, r
)
, ∀ x ∈ X, r > 0. (54)

When i = 1, it follows from (54), that

N
(
fa(x)− 2fa(

x

2
), r
)
≥ N ′ (β(x), r)⇒ d(fa, Tfa) ≤ 1 = L1−i. (55)

Then from (53) and (55), we can conclude,

d(fa, Tfa) ≤ L1−i <∞.

Now from the fixed point alternative in both cases, it follows that there exists a fixed point A of T in Ω such that

A(x) = N − lim
n→∞

fa (µni x)

µni
, ∀x ∈ X. (56)

Replacing (x, y, z, t) by (µni x, µ
n
i y, µ

n
i z, µ

n
i t) in (48), we arrive

N

(
1

µni
D fa(µni x, µ

n
i y, µ

n
i z, µ

n
i t), r

)
≥ N ′ (ϑ(µni x, µ

n
i y, µ

n
i z, µ

n
i t), µ

n
i r) , ∀ x ∈ X, r > 0.
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By proceeding the same procedure in the Theorem 3.1 we can prove the function, A : X → Y is additive and it satisfies the

functional equation (2). Since A is unique fixed point of T in the set

∆ = {fa ∈ Ω|d(fa, A) <∞} ,

therefore A is a uniqe function such that

N (fa(x)−A(x), r) ≥ N ′ (β(x),Kr) , ∀ x ∈ X, r > 0. (57)

Again using the fixed point alternative, we obtain

d(fa, A) ≤ 1

1− Ld(fa, T fa)

⇒ d(fa, A) ≤ L1−i

1− L

⇒ N (fa(x)−A(x), r) ≥N ′
(
β(x),

L1−i

1− Lr
)
. (58)

This completes the proof of the theorem.

From Theorem 4.3, we obtain the following corollary concerning the stability for the functional equation (2).

Corollary 4.4. Suppose that a odd function fa : X → Y satisfies the inequality

N (D fa(x, y, z, t), r) ≥


N ′ (ε, r) ,

N ′ (ε (||x||s + ||y||s + ||z||s + ||t||s) , r) ,

N ′
(
ε
{
||x||s ||y||s ||z||s ||t||s +

(
||x||4s + ||y||4s + ||z||4s + ||t||4s

)}
, r
)
,

(59)

for all x, y, z, t ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique aditive mapping A : X → Y

such that

N (fa(x)−A(x), r) ≥


N ′ (ε, 2r)

N ′
(
ε||x||s (2s + 1)

2s
,

2

|2− 2s|r
)
, s < 1 or s > 1;

N ′
(
ε||x||4s (24s + 1)

24s
,

2

|2− 24s|r
)
, s < 1

4
or 1

4
;

(60)

for all x ∈ X and all r > 0.

Proof. Setting

ϑ(x, y, z, t) =


ε

ε {||x||s + ||y||s + ||z||s + ||t||s},

ε
{
||x||s||y||s||z||s||t||s +

[
||x||4s + ||y||4s + ||z||4s + ||t||4s

]}
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for all x, y, z, t ∈ X. Then,

N ′ (ϑ(µni x, µ
n
i y, µ

n
i z, µ

n
i t), µ

n
i r)

=


N ′ (ε, µni r)

N ′ (ε {||µni x||s + ||µni y||s + ||µni z||s + ||µni t||s} , µni r)

N ′
(
ε
{
||µni x||s ||µni y||s ||µni z||s ||µni t||s +

[
||µni x||4s + ||µni y||4s + ||µni z||4s + ||µni t||4s

] }
, µni r

)

=


N ′ (ε, µni r)

N ′
(
ε {||x||s + ||y||s + ||z||s + ||t||s} , (µ1−s

i )nr
)

N ′
(
ε
{
||x||4s + ||y||4s + ||z||4s + ||t||4s

}
+ ||x||s ||y||s ||z||s ||t||s, (µ1−4s

i )nr
)

=


→ 1 as n→∞

→ 1 as n→∞ for s < 1 if i = 0 and s > 1 if i = 1,

→ 1 as n→∞ for s < 1
4

if i = 0 and s > 1
4

if i = 1,

Thus, (47) is holds.

But we have β(x) = ϑ
(
x, x

2
, 0, 0

)
has the property

N ′
(
L

1

µi
β(µix), r

)
= N ′ (β(x), r) ∀ x ∈ X, r > 0.

Hence

N ′ (β(x), r) = N ′
(
ϑ
(
x,
x

2
, 0, 0

)
, r
)

=


N ′ (ε, r),

N ′
(
ε||x||s

(
2s + 1

2s

)
, r

)
,

N ′
(
ε||x||4s

(
24s + 1

24s

)
, r

)
.

Now,

N ′
(

1

µi
β(µix), r

)
=


N ′ (ε, µir),

N ′
(
ε||x||s

(
2s + 1

2s

)
, µ1−s
i r

)
,

N ′
(
ε||x||4s

(
24s + 1

24s

)
, µ1−4s
i r

) =


N ′ (β(x), µir),

N ′
(
β(x), µ1−s

i r
)
,

N ′
(
β(x), µ1−4s

i r
)
.

Hence the inequality (49) holds for the following cases.

Case:1 L = 21 for s = 0 if i = 0

N (fa(x)−A(x), r) ≥N ′
(
β(x),

L1−0

1− Lr
)

= N ′ (ε,−2r)

Case:2 L =

(
1

2

)1

for s = 0 if i = 1

N (fa(x)−A(x), r) ≥N ′
(
β(x),

L1−1

1− Lr
)

= N ′ (ε, 2r)

Case:3 L = 21−s for s < 1 if i = 0

N (fa(x)−A(x), r) ≥N ′
(
β(x),

L1−0

1− Lr
)

= N ′
(
ε||x||s (2s + 1)

2s
,

2

2s − 2
r

)
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Case:4 L = 2s−1 for s > 1 if i = 1

N (fa(x)−A(x), r) ≥N ′
(
β(x),

L1−1

1− Lr
)

= N ′
(
ε||x||s (2s + 1)

2s
,

2

2− 2s
r

)

Case:5 L = 21−4s for s < 1
4

if i = 0

N (fa(x)−A(x), r) ≥N ′
(
β(x),

L1−0

1− Lr
)

= N ′
(
ε||x||4s (24s + 1)

24s
,

2

24s − 2
r

)

Case:6 L = 24s−1 for s > 1
4

if i = 1

N (fa(x)−A(x), r) ≥N ′
(
β(x),

L1−1

1− Lr
)

= N ′
(
ε||x||4s (24s + 1)

24s
,

2

2− 24s
r

)

Hence the proof is complete.

The following theorem provide the stability result of (2) for f is even function using fixed point method. The proof of the

Theorem 4.5 and Corollary 4.6 is similar to that of Theorem 4.3. Hence the details of the proof is omitted.

Theorem 4.5. Let fq : X → Y be a even mapping for which there exist a function ϑ : X4 → Z with the condition

lim
n→∞

N ′
(
ϑ (µni x, µ

n
i y, µ

n
i z, µ

n
i t) , µ

2n
i r
)

= 1 ∀ x, y, z, t ∈ X, r > 0 (61)

and satisfying the functional inequality

N (D fq(x, y, z, t), r) ≥ N ′ (ϑ(x, y, z, t), r) ∀ x, y, z, t ∈ X, r > 0. (62)

If there exists L = L(i) such that the function

x→ β(x) = ϑ
(
x,
x

2
, 0, 0

)
,

has the property

N ′
(
L

1

µ2
i

β(µix), r

)
= N ′ (β(x), r) ∀ x ∈ X, r > 0. (63)

Then there exists a unique quadratic function Q : X → Y satisfying the functional equation (2) and

N (fq(x)−Q(x), r) ≥ N ′
(
β(x),

L1−i

1− Lr
)
∀ x ∈ X, r > 0. (64)

Corollary 4.6. Suppose that a even function fq : X → Y satisfies the inequality

N (D fq(x, y, z, t), r) ≥


N ′ (ε, r) ,

N ′ (ε (||x||s + ||y||s + ||z||s + ||t||s) , r) ,

N ′
(
ε
{
||x||s ||y||s ||z||s ||t||s +

(
||x||4s + ||y||4s + ||z||4s + ||t||4s

)}
, r
)
,

(65)

for all r > 0 and all x, y, z, t ∈ X, where ε, s are constants with ε > 0. Then there exists a unique quadratic mapping

Q : X → Y such that

N (fq(x)−A(x), r) ≥


N ′
(
ε, 4

3
r
)
,

N ′
(
ε||x||s (22s + 1)

22s
,

2

|22s − 2|r
)
, s < 2 or s > 2;

N ′
(
ε||x||4s (24s + 1)

24s
,

4

|24s − 4|r
)
, s < 1

2
or 1

2
;

(66)

for all x ∈ X and all r > 0.
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The following theorem provide the stability result of (2) for mixed case in fixed point method.

Theorem 4.7. Let f : X → Y be a mapping for which there exist a function ϑ : X4 → Z with the condition (47) and (61)

satisfying the functional inequality

N (D f(x, y, z, t), r) ≥ N ′ (ϑ(x, y, z, t), r) , ∀ x, y, z, t ∈ X, r > 0. (67)

If there exists L = L(i) such that the function

x→ β(x) = ϑ
(
x,
x

2
, 0, 0

)
,

has the properties (49) and (63) for all x ∈ X. Then there exists a unique additive function A : X → Y and a unique

quadratic function Q : X → Y satisfying the functional equation (2) and

N (f(x)−A(x)−Q(x), r) ≥ N3 (β(x), r) , ∀ x ∈ X, r > 0. (68)

Proof. Let fo(x) =
fa(x)− fa(−x)

2
for all x ∈ X. Then fo(0) = 0 and fo(−x) = −fo(x) for all x ∈ X. Hence

N (D fo(x, y, z, t), r) = N (D fa(x, y, z, t)−D fa(−x,−y,−z,−t), 2r)

≥ min
{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(69)

for all x, y, z, t ∈ X and all r > 0. Let

N1(ϑ(x, y, z, t), r) = min
{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(70)

for all x, y, z, t ∈ X and all r > 0. By Theorems 4.3 there exists a unique additive mapping A : X → Y such that

N (fo(x)−A(x), r) ≥ N1

(
β(x),

L1−i

1− Lr
)

(71)

for all x ∈ X and all r > 0.

Also, let fe(x) =
fq(x) + fq(−x)

2
for all x ∈ X. Then fe(0) = 0 and fe(−x) = fe(x) for all x ∈ X. Hence

N (D fe(x, y, z, t), r) = N (D fq(x, y, z, t)−D fq(−x,−y,−z,−t), 2r)

≥ min
{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(72)

for all x, y, z, t ∈ X and all r > 0. Let

N2(ϑ(x, y, z, t), r) = min
{
N ′ (ϑ(x, y, z, t), r) , N ′ (ϑ(−x,−y,−z,−t), r)

}
(73)

for all x, y, z, t ∈ X and all r > 0. By Theorem 4.5, there exists unique quadratic mapping Q : X → Y such that

N (fe(x)−Q(x), r) ≥ N2

(
β(x),

L1−i

1− Lr
)

(74)

for all x ∈ X and all r > 0. Define

f(x) = fe(x) + fo(x) (75)
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for all x ∈ x. From (68),(70) and (71), we arrive

N (f(x)−A(x)−Q(x), r) = N (fe(x) + fo(x)−A(x)−Q(x), r)

≥ min
{
N
(
fo(x)−A(x),

r

2

)
, N
(
fe(x)−Q(x),

r

2

)}
≥ min

{
N1

(
β(x),

L1−i

1− Lr
)
, N2

(
β(x),

L1−i

1− Lr
)}

= N3 (β(x), r)

where

N3 (β(x), r) = min

{
N1

(
β(x),

L1−i

1− Lr
)
, N2

(
β(x),

L1−i

1− Lr
)}

(76)

for all x ∈ X and all r > 0. Hence the theorem is proved.

The following corollary is the immediate consequence of Corollaries 4.4, 4.6 and Theorem 4.7 concerning the stability for

the functional equation (2) in fixed point method.

Corollary 4.8. Suppose that a function f : X → Y satisfies the inequality

N (D f(x, y, z, t), r) ≥


N ′ (ε, r) ,

N ′ (ε (||x||s + ||y||s + ||z||s + ||t||s) , r) ,

N ′
(
ε
{
||x||s ||y||s ||z||s ||t||s +

(
||x||4s + ||y||4s + ||z||4s + ||t||4s

)}
, r
)
,

(77)

for all r > 0 and all x, y, z, t ∈ X, where ε, s are constants with ε > 0. Then there exists a unique additive mapping

A : X → Y and a unique quadratic mapping Q : X → Y such that

N (f(x)−A(x)−Q(x), r) ≥


N3 (ε, r) ,

N3

(
ε||x||s (22s + 1)

22s
, r

)
, s 6= 1, 2;

N3

(
ε||x||4s (24s + 1)

24s
, r

)
, s 6= 1

4
, 1
2

;

(78)

for all x ∈ X and all r > 0.
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