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Abstract: The Zagreb indices have been introduced more than forty four years ago by Gutman and Trinajestic as the sum
of the squares of the degrees of the vertices, and the sum of the products of the degrees of pairs of adjacent ver-

tices, respectively, [7]. In this paper, we introduce the first and second equitable and non-equitable Zagreb in-

dices as Me
1 (G) =

∑
u∈V (G)

[
dege(u)

]2
, Me

2 (G) =
∑

uv∈E(G) dege(u)dege(v), Mne
1 (G) =

∑
u∈V (G)

[
degne(u)

]2
and

Mne
2 (G) =

∑
uv∈E(G) degne(u)degne(v), respectively, where dege(u) and degne(u) denotes the equitable and non-equitable

degrees of vertex u. Exact values for wheel, firecracker and firefly graph families are obtained, some properties of the
equitable and non-equitable Zagreb indices are established.

MSC: 05C69.

Keywords: First equitable Zagreb index, Second equitable Zagreb index, First non-equitable Zagreb index, Second non-equitable

Zagreb index.

c© JS Publication.

1. Introduction

In this research work, we concerned about simple graphs which are finite, undirected with no loops and multiple edges.

Throughout this paper, we denote p = |V (G)| and q = |E(G)|. The complement of G, denoted by G, is a simple graph

on the same set of vertices V (G) in which two vertices u and v are adjacent if and only if they are not adjacent in G.

Obviously, E(G) ∪ E(G) = E(Kp) and q =
(
p
2

)
− q. The open neighborhood and the closed neighborhood of v are denoted

by N(v) = {u ∈ V : uv ∈ E} and N [v] = N(v) ∪ {v}, respectively. The degree of a vertex v in G, is denoted by deg(v),

and is defined to be the number of edges incident with v, shortly deg(v) = |N(v)|, the degree of the same vertex in G is

then given by degG(v) = p − 1 − deg(v). The minimum degree of G is denoted by δ, and the maximum degree is denoted

by ∆. If δ = ∆ = k for any graph G, we say G is a regular graph of degree k. A graph G is called bi-regular graph with

degrees (l, k) if the degrees of all the vertices of G either l or k. Any two vertices u and v in G are side to be equitable

adjacent if they are adjacent and |deg(u)− deg(v)| ≤ 1. The open equitable neighborhood of a vertex v ∈ V (G) denoted by

Ne(v) = {u ∈ V (G) : u is equitable to v}, and the equitable degree of v is denoted by dege(v) = |Ne(v)|. The maximum and

minimum equitable degree of G are defined by ∆e(G) = max{dege(v) : v ∈ V (G)} and δe(G) = min{dege(v) : v ∈ V (G)},

respectively. The equitable complete graph is a connected graph which all its edges are equitable edges. For a connected

graph G, a vertex v is called equitable isolated if |deg(v)−deg(u)| ≥ 2, ∀u ∈ N(v). A graph G is called an equitable edge-free

graph if for any two adjacent vertices u and v in G, |deg(u)− deg(v)| ≥ 2. The sum of the equitable degrees of a graph G

is twice the number of equitable edges in it, that is
∑

v∈V (G) dege(v) = 2qe, [1].

∗ E-mail: aalqesmah@gmail.com
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We define the set of non-equitable neighborhood of a vertex v as Nne(v) = {u ∈ N(v) : |deg(v) − deg(u)| ≥ 2} and denote

degne(v) = |Nne(v)|. It is clear that, degne(v) = deg(v)− dege(v). All the definitions and terminologies about graph in this

paper available in [8].

The Zagreb indices have been introduced by Gutman and Trinajestic [7]. They are defined as:

M1(G) =
∑

u∈V (G)

[
deg(u)

]2
=

∑
u∈V (G)

∑
v∈N(u)

deg(v) =
∑

uv∈E(G)

[
deg(u) + deg(v)

]
.

M2(G) =
∑

uv∈E(G)

deg(u)deg(v) =
1

2

∑
u∈V (G)

deg(u)
∑

v∈N(u)

deg(v).

Here M1(G) and M2(G) denote the first and the second Zagreb indices, respectively. For more information on Zagreb

indices, we refer to [3, 6, 10–14].

Degree equitable adjacency has interesting applications in the context of social networks. In a network, nodes with nearly

equal capacity may interact with each other in a better way. In society, persons with nearly equal status, tend to be friendly.

In industry, employees with nearly equal powers form associations and move closely. Equitability among citizens in terms

of wealth, health, status, etc is the goal of a democratic nation, [1]. This ideas and the Zagreb indices of graphs motivated

us in this paper to introduce the equitable Zagreb indices of graphs. Exact values for wheel, firecracker and firefly graph

families are obtained, some properties of the equitable and non-equitable Zagreb indices are established.

2. Some properties of the equitable and non-equitable Zagreb indices
of graphs

In this section, we define the first and second equitable, relative equitable, non-equitable and relative non-equitable Zagreb

indices of graphs and study some of their properties and exact values of some standard graphs.

Definition 2.1. Let G = (V,E) be a graph. Then the first and second equitable Zagreb indices of G are defined by

(1). Me
1 (G) =

∑
u∈V (G)

[
dege(u)

]2
=

∑
u∈V (G)

∑
v∈Ne(u)

dege(v).

(2). Me
2 (G) =

∑
uv∈E(G)

dege(u)dege(v) =
1

2

∑
u∈V (G)

dege(u)
∑

v∈N(u)

dege(v).

Definition 2.2. For a graph G, the first and second relative equitable Zagreb indices of G are defined by

(1). RMe
1 (G) =

∑
uv∈E(G)

[dege(u) + dege(v)] =
∑

u∈V (G)

dege(u)deg(u)

=
∑

u∈V (G)

∑
v∈N(u)

dege(v).

(2). RMe
2 (G) =

∑
uv∈E(G)

[
dege(u)deg(v) + deg(u)dege(v)

]
=

∑
u∈V (G)

dege(u)
∑

v∈N(u)

deg(v) =
∑

u∈V (G)

deg(u)
∑

v∈N(u)

dege(v).

Definition 2.3. Let G = (V,E) be a graph. Then the first and second non-equitable Zagreb indices of G are defined by

(1). Mne
1 (G) =

∑
u∈V (G)

[
degne(u)

]2
=

∑
u∈V (G)

∑
v∈Nne(u)

degne(v).

(2). Mne
2 (G) =

∑
uv∈E(G)

degne(u)degne(v) =
1

2

∑
u∈V (G)

degne(u)
∑

v∈N(u)

degne(v).
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Definition 2.4. For a graph G, the first and second relative non-equitable Zagreb indices of G are defined by

(1). RMne
1 (G) =

∑
uv∈E(G)

[degne(u) + degne(v)] =
∑

u∈V (G)

degne(u)deg(u)

=
∑

u∈V (G)

∑
v∈N(u)

degne(v).

(2). RMne
2 (G) =

∑
uv∈E(G)

[
degne(u)deg(v) + deg(u)degne(v)

]
=

∑
u∈V (G)

degne(u)
∑

v∈N(u)

deg(v) =
∑

u∈V (G)

deg(u)
∑

v∈N(u)

degne(v).

Example 2.5. Let G be a graph as in Figure 1,

(1). Me
1 (G) =

∑
u∈V (G)

(
dege(u)

)2
=

5∑
i=1

(
dege(vi)

)2
= 24.

(2). Me
2 (G) =

∑
uv∈E(G)

dege(u)dege(v) = 31.

(3). RMe
1 (G) =

∑
uv∈E(G)

[dege(u) + dege(v)] = 30.

(4). RMe
2 (G) =

∑
u∈V (G)

dege(u)
∑

v∈N(u)

deg(v) = 88.

(5). Mne
1 (G) =

∑
u∈V (G)

(
degne(u)

)2
=

5∑
i=1

(
degne(vi)

)2
= 6.

(6). Mne
2 (G) =

∑
uv∈E(G)

degne(u)degne(v) = 4.

(7). RMne
1 (G) =

∑
uv∈E(G)

[degne(u) + degne(v)] = 12.

(8). RMne
2 (G) =

∑
u∈V (G)

degne(u)
∑

v∈N(u)

deg(v) = 34.

u u

uu
v

v1

v2

v3

v4

v5

Figure 1. Graph G

Note that, Me
1 (G) = M1(Ge) and Me

2 (G) ≥ M2(Ge), where Ge is the equitable graph of the graph G which has the same

vertices of G and any two vertices are adjacent in Ge if they are equitable adjacent, [1]. According to Definitions (2.1,

2.2, 2.3, 2.4) and the Definition of Zagreb indices, the first and second equitable and non-equitable Zagreb indices can be

expressed as follows.

Theorem 2.6. For any graph G,
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(1). Me
1 (G) = M1(G) +Mne

1 (G)− 2RMne
1 (G).

(2). Me
2 (G) = M2(G) +Mne

2 (G)−RMne
2 (G).

(3). Mne
1 (G) = M1(G) +Me

1 (G)− 2RMe
1 (G).

(4). Mne
2 (G) = M2(G) +Me

2 (G)−RMe
2 (G).

Proof.

(1). Me
1 (G) =

∑
u∈V (G)

(
dege(u)

)2
=

∑
u∈V (G)

(
deg(u)− degne(u)

)2
= M1(G) +Mne

1 (G)− 2RMne
1 (G).

(2). Me
2 (G) =

∑
uv∈E(G)

dege(u)dege(v) =
∑

uv∈E(G)

(
deg(u)− degne(u)

)(
deg(v)− degne(v)

)
= M2(G) +Mne

2 (G)−RMne
2 (G).

(3). Mne
1 (G) =

∑
u∈V (G)

(
degne(u)

)2
=

∑
u∈V (G)

(
deg(u)− dege(u)

)2
= M1(G) +Me

1 (G)− 2RMe
1 (G).

(4). Mne
2 (G) =

∑
uv∈E(G)

degne(u)degne(v) =
∑

uv∈E(G)

(
deg(u)− dege(u)

)(
deg(v)− dege(v)

)
= M2(G) +Me

2 (G)−RMe
2 (G).

Corollary 2.7. For any graph G,

(1). M1(G) = RMe
1 (G) +RMne

1 (G).

(2). 2M2(G) = RMe
2 (G) +RMne

2 (G).

From Definitions (2.1, 2.2, 2.3, 2.4), it is easy to check the following proposition:

Proposition 2.8.

(1). For any graph G, Me
1 (G) ≤ RMe

1 (G) and Mne
1 (G) ≤ RMne

1 (G), where the equalities hold if and only if G is either an

equitable edge-free graph or an equitable complete graph.

(2). For any graph G, Me
1 (G) ≤ M1(G) and Me

2 (G) ≤ M2(G) with the equality if and only if G is an equitable complete

graph.

(3). For any graph G, Mne
1 (G) ≤ M1(G) and Mne

2 (G) ≤ M2(G) with the equality if and only if G is equitable edge-free

graph.

Proposition 2.9. For any regular or bi-regular with degrees (k, k + 1) graph G, M1(G) = Me
1 (G) and M2(G) = Me

2 (G).

Proposition 2.10. For any complete bipartite graph Kr,m,

(1). M1(Kr,m) =

 Me
1 (Kr,m), if |r −m| ≤ 1;

Mne
1 (Kr,m), if |r −m| ≥ 2.
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(2). M2(Kr,m) =

 Me
2 (Kr,m), if |r −m| ≤ 1;

Mne
2 (Kr,m), if |r −m| ≥ 2.

The equitable complement graph of a graph G denoted by G
e

is the graph with the same vertices as G and any two vertices

u, v are adjacent if u and v are not equitable adjacent in G, [1]. The relation between the complement of a graph and its

equitable complement graph can be found in the following Lemma.

Lemma 2.11 ([1]). For any graph G, G ⊆ Ge
. Furthermore, G ∼= G

e
if and only if G is isomorphic to an equitable complete

graph.

Theorem 2.12. For any graph G,

(1). Me
1 (G) ≤ p

(
p− 1

)2 − 4qe(p− 1) +Me
1 (G),

(2). Me
2 (G) ≤ 1

2
(2p− 3)Me

1 (G)−M2(Ge) + 1
2

(
p− 1

)2(
p(p− 1)− 6qe

)
+ 2q2e ,

where the equalities are attained if and only if G is isomorphic to an equitable complete graph.

Proof. Let G be a graph and G its complement. According to Lemma 2.11, we have

(1). Me
1 (G) ≤Me

1 (G
e
) =

∑
u∈V (G)

(
degG

e

e (u)
)2

=
∑

u∈V (G)

(
p− 1− dege(u)

)2
=p
(
p− 1

)2 − 4qe(p− 1) +Me
1 (G).

(2). Me
2 (G) ≤Me

2 (G
e
) =

1

2

∑
u∈V (G)

degG
e

e (u)
∑

v∈NGe
(u)

degG
e

e (v)

=
1

2

∑
u∈V (G)

(
p− 1− dege(u)

) ∑
v∈NGe

(u)

(
p− 1− dege(v)

)
=

1

2

∑
u∈V (G)

(
p− 1− dege(u)

)[(
p− 1

)2 − (p− 2)dege(u)− 2qe +
∑

v∈Ne(u)

dege(v)

]

=
1

2
(2p− 3)Me

1 (G)−M2(Ge) +
1

2

(
p− 1

)2(
p(p− 1)− 6qe

)
+ 2q2e .

Note that, the equality
∑

v∈NGe
(u)

dege(v) = 2qe − dege(u) −
∑

v∈Ne(u)

dege(v) is used. The equalities of the bounds are

straightforward by Lemma 2.11.

3. First and Second equitable Zagreb indices for some graphs families

In this section, we will compute the first and second equitable Zagreb indices for the wheel, firecracker and firefly graphs as

follows.

Proposition 3.1. For the wheel graph Wp, where p ≥ 3,

(1). Me
1 (Wp) =

 M1(Wp), if p ≤ 5;

M1(Cp−1), otherwise.

(2). Me
2 (Wp) =

 M2(Wp), if p ≤ 5;

M2(Cp−1), otherwise.

Proof. If p ≤ 5, then the wheel graph becomes regular (with degree 2 or 3) or bi-regular graph with degrees (3, 4). Thus

by Proposition 2.9, Me
1 (Wp) = M1(Wp) and Me

2 (Wp) = M2(Wp). On the other hand, if p ≥ 6, the center vertex in Wp has

equitable degree zero, so (Wp)e ∼= Cp−1.
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An (n, k)-firecracker graph denoted by Fn,k is a graph obtained by the concatenation of n k-stars by linking one leaf from

each, [4].

Proposition 3.2. For the firecracker graph Fn,k, where n, k ≥ 2, the first and second equitable Zagreb indices are given by,

(1). Me
1 (Fn,k) =



4n+ 2, if k = 2;

14n− 19, if k = 3;

10(n− 1), if k = 4;

2(5n− 9), if k = 5;

4n− 6, if k ≥ 6.

(2). Me
2 (Fn,k) =



4n, if k = 2;

17n− 19, if k = 3;

12n− 17, if k = 4 and n ≥ 3;

3(4n− 9), if k = 5 and n ≥ 3;

4n− 8, if k ≥ 6.

Proof. From the definition of the firecracker graph, one can see that Fn,k consists of n k-stars and one path Pn linking

them. So, we have the following cases:

Case 1. If k = 2, then all the leafs whose adjacent to the middle vertices of Pn have equitable degrees zero. Thus,

(Fn,k)e ∼= Pn+2. Hence, Me
1 (Fn,2) = M1(Pn+2) = 4(n+ 2)− 6 = 4n+ 2 and Me

2 (Fn,2) = M2(Pn+2) = 4(n+ 2)− 8 = 4n.

Case 2. If k = 3, then Fn,3 is an equitable complete graph, so by Proposition 2.8, Me
1 (Fn,3) = M1(Fn,3) = 14n − 19 and

Me
2 (Fn,3) = M2(Fn,3) = 17n− 19.

Case 3. If k = 4, then all the leafs in Fn,4 have equitable degrees zero and all the center vertices of the n 4-stars have equitable

degrees one. Hence, Me
1 (Fn,4) = n+8+9(n−2) = 10(n−1) and if n ≥ 3, Me

2 (Fn,4) = 3(n−2)+9(n−3)+4+12 = 12n−17.

Case 4. If k = 5, then all the leafs in Fn,5 and the center vertices of the first and last 5-stars have equitable degrees zero.

Hence, Me
1 (Fn,5) = n+ 9(n− 2) = 2(5n− 9) and if n ≥ 3, Me

2 (Fn,5) = 3(n− 2) + 9(n− 3) + 6 = 3(4n− 9).

Case 5. If k ≥ 6, then all the leafs in Fn,k and the center vertices of the n k-stars have equitable degrees zero. Thus

(Fn,k)e ∼= Pn. Hence, Me
1 (Fn,k) = M1(Pn) = 4n− 6 and Me

2 (Fn,2) = M2(Pn) = 4n− 8.

A firefly graph Fs,t,p−2s−2t−1 (s ≥ 0, t ≥ 0 and p − 2s − 2t − 1 ≥ 0) is a graph of order p that consists of s triangles, t

pendent paths of length 2 and p− 2s− 2t− 1 pendent edges, sharing a common vertex.

Let Fp be the set of all firefly graphs Fs,t,p−2s−2t−1. Note that Fp contains the stars Sp (∼= F0,0,p−1), stretched stars

(∼= F0,t,p−2t−1), friendship graphs (∼= F p−1
2

,0,0
) and butterfly graphs (∼= Fs,0,p−2s−1), [9]. In the following, we will compute

the first and second equitable Zagreb indices of the firefly graph in cases s, t > 0, s = 0 and t > 0, s > 0 and t = 0 and

s = t = 0.

Proposition 3.3. For the firefly graph Fs,t,p−2s−2t−1, where s, t > 0,

(1). Me
1 (Fs,t,p−2s−2t−1) =

 22, if p = 5 and s = t = 1;

2(s+ t), otherwise.

(2). Me
2 (Fs,t,p−2s−2t−1) =

 24, if p = 5 and s = t = 1;

s+ t, otherwise.

Proof. We have Fs,t,p−2s−2t−1, where s, t > 0. By the definition of Fs,t,p−2s−2t−1, if s = t = 1, then p ≥ 5. So, if

p = 5, then F1,1,5 is an equitable complete graph. Hence, Me
1 (F1,1,5) = M1(F1,1,5) = 22 and Me

2 (F1,1,5) = M2(F1,1,5) = 24.

Otherwise,
(
Fs,t,p−2s−2t−1

)
e
∼= (s+ t)P2. Hence, Me

1 (Fs,t,p−2s−2t−1) = 2(s+ t) and Me
2 (Fs,t,p−2s−2t−1) = s+ t.
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Figure 2. Firefly graph Fs,t,p−2s−2t−1

Proposition 3.4. For the firefly graph F0,t,p−2t−1, where t > 0,

(1). If t = 1, then

(1). Me
1 (F0,1,p−3) =


6, if p = 3 or 5;

10, if p = 4;

2, otherwise.

(2). Me
2 (F0,1,p−3) =


4, if p = 3 or 5;

8, if p = 4;

1, otherwise.

(2). If t = 2, then

(1). Me
1 (F0,2,p−5) =

 14, if p = 5 or 6;

4, otherwise.

(2). Me
2 (F0,2,p−5) =

 12, if p = 5 or 6;

2, otherwise.

(3). If t = 3, then

(1). Me
1 (F0,3,p−7) =

 24, if p = 7;

6, otherwise.

(2). Me
2 (F0,3,p−7) =

 24, if p = 7;

3, otherwise.

(4). If t ≥ 4, then Me
1 (F0,t,p−2t−1) = 2t and Me

2 (F0,t,p−2t−1) = t.

Proof. We have four cases:

Case 1. Let t = 1. If p = 3 or 5, then
(
F0,1,p−3

)
e
∼= P3. Also, if p = 4, then

(
F0,1,1

)
e
∼= P4 and if p ≥ 6, then(

F0,1,p−3

)
e
∼= P2. Hence the result.

Case 2. Suppose t = 2. If p = 5 or 6, then
(
F0,2,p−5

)
e
∼= P5 and if p ≥ 7, then

(
F0,2,p−5

)
e
∼= 2P2. Hence the result.

Case 3. Let t = 3. If p = 7, then F0,3,0 is an equitable complete graph. Hence, Me
1 (F0,3,0) = M1(F0,3,0) = 24 and
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Me
2 (F0,3,0) = M2(F0,3,0) = 24. Otherwise,

(
F0,3,p−7

)
e
∼= 3P2.

Case 4. If t ≥ 4, then
(
F0,t,p−2t−1

)
e
∼= tP2. Hence the result.

Proposition 3.5. For the firefly graph Fs,0,p−2s−1, where s > 0,

(1). If s = 1, then

(1). Me
1 (F1,0,p−3) =

 12, if p = 3 or 4;

2, otherwise.

(2). Me
2 (F1,0,p−3) =

 12, if p = 3 or 4;

1, otherwise.

(2). If s ≥ 2, then Me
1 (Fs,0,p−2s−1) = 2s and Me

2 (Fs,0,p−2s−1) = s.

Proof. We have two cases:

Case 1. Let s = 1. If p = 3 or 4, then
(
F1,0,p−3

)
e
∼= C3 and if p ≥ 5, then

(
F1,0,p−3

)
e
∼= P2. Hence the result.

Case 2. If s ≥ 2, then
(
Fs,0,p−2s−1

)
e
∼= sP2. Hence the result.

Proposition 3.6. For the firefly graph F0,0,p−1,

(1). Me
1 (F0,0,p−1) =

 4p− 6, if p = 2 or 3;

0, otherwise.

(2). Me
2 (F0,0,p−1) =


1, if p = 2;

4, if p = 3;

0, otherwise.

Proof. It is clear that, F0,0,p−1
∼= Sp. So, if p = 2 or 3, then F0,0,p−1 is a path. Otherwise,

(
F0,0,p−1

)
e
∼= Kp.

4. Conclusion

In this paper, we initiate the study of the equitable Zagreb indices of graphs, and there are a lot of problems in this concept

for future study, we mention some of them as follows:

(1). Classification the graphs G such that Me
1 (G) = Me

2 (G).

(2). Calculate the equitable Zagreb indices of G1 + G2, G1�G2, G1 ◦ G2,. . . for any two graphs G1 and G2.

References

[1] A.N.Alkenani, N.D.Soner and Anwar Alwardi, Graphs and degree equitability, Scientific Research, Applied Mathematics,

4(2013) 1199-1203.
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