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1. Introduction

In nonlinear functional analysis, fixed point theory and best proximity point theory play an important role in the estab-

lishment of the existence of a certain differential and integral equations. As a consequence fixed point theory is very much

useful for various quantitative sciences that involve such equations. The most remarkable paper in this field was reported by

Banach in 1922 [2]. In his paper Banach proved that every contraction in a complete metric space has a unique fixed point.

Following this paper many have extended and generalized this remarkable fixed point theorem of Banach by changing either

the conditions of the mappings or the construction of the space. In particular, one of the notable generalizations of Banach

fixed point theorem was introduced by Geraghty [8].

Theorem 1.1 ([8]). Let (X, d) be a complete metric space and f : X → X be an operator. Suppose that there exists

β : [0,∞)→ (0, 1) satisfying if f satisfies the following inequality:

d(f(x), f(y)) ≤ β(d(x, y))d(x, y) for any x, y ∈ X,

then f has unique fixed point.

It is natural that some mapping, especially non-self mappings defined on a complete metric space (X, d), do not necessarily

possess a fixed point, that is d(x, f(x)) > 0 for all x ∈ X. In such situations it is reasonable to search for the existence and

uniqueness of a point x∗ ∈ X such that d(x∗, f(x∗)) is an approximation of an x ∈ X such that d(x, f(x)) = 0.

In other words one speculates to determine an approximate solution x∗ that is optimal in the sense that the distance between

x∗ and f(x∗) is minimum. Here the point x∗ is called the best proximity point. In this paper we generalize and improve

certain results of J.Caballero et al [7].
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2. Preliminaries

Let (X, d) be a metric space and A and B be nonempty subsets of a metric space X. A mapping f : A → B is called a

k-contraction if there exists k ∈ (0, 1) such that d(f(x), f(y)) ≤ kd(x, y) for any x, y ∈ A. It is clear that a k-contraction

coincides with the celebrated Banach fixed point theorem if one takes A = B where A is a complete subset of X. Let A and

B be nonempty subsets of a metric space (X, d). we denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B}

B0 = {y ∈ B : d(x, y) = d(A,B), for some x ∈ A} where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Definition 2.1 ([9]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d) with A0 6= ∅. Then the pair (A,B)

is said to have the P-property if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0; d(x1, y1) = d(A,B) and d(x2, y2) = d(A,B)

implies that d(x1, x2) = d(y1, y2).

It can be easily seen that for any nonempty subset A of (X, d), the pair (A,A) has the P-property. In [11] V.Sankarraj

has proved that any pair (A,B) of nonempty closed convex subsets of a real Hilbert space H satisfies P-property. Now we

introduce the class of those functions β : [0,∞)→ [0, 1) satisfying the following condition: β(tn)→ 1⇒ tn → 0.

Definition 2.2 ([7]). Let A and B be nonempty subsets of a metric space (X, d). A mapping f : A → B is said to be a

Geraghty contraction if there exists β ∈ F such that d(f(x), f(y)) ≤ β(d(x, y))d(x, y) for any x, y ∈ A.

Remark 2.1. Notice that since β : [0,∞)→ (0, 1), we have d(f(x), f(y)) ≤ β(d(x, y))d(x, y) < d(x, y) for any x, y ∈ A with

x 6= y.

Theorem 2.3 ([7]). Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that A0 is

nonempty. Let f : A → B be a continuous Geraghty contraction satisfying f(A0) ⊆ B0. Suppose that the pair (A,B) has

the P-property. Then there exists a unique x∗ ∈ A such that d(x∗, f(x∗)) = d(A,B).

We would like to extend the result of J.Caballero and explore the best proximity point based on the well known result of

Boyd and Wong [5].

Theorem 2.4 ([1]). Let X be a complete metric space and let f : X → X satisfy d(f(x), f(y)) ≤ ψ(d(x, y)) where

ψ : R+ → R+ is upper semi-continuous from the right and satisfies 0 ≤ ψ(t) < t. Then f has a unique fixed point. Further

if x0 ∈ X and xn+1 = f(xn), then {xn} converges to the fixed point. A mapping f : X → X is said to be contractive if

d(f(x), f(y)) < d(x, y) for each x, y ∈ X with x 6= y. (1)

3. Main Results

Theorem 3.1. Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that A0 6= ∅. Let

f : A → B be such that f(A0) ⊆ B0. Suppose d(f(x), f(y)) ≤ ψ(d(x, y)) for each x, y ∈ A, where ψ : R+ → [0,∞) is upper

semi-continuous from the right satisfies 0 ≤ ψ(t) < t for t > 0. Furthermore the pair (A,B) has the P-property. Then there

exists a unique x∗ ∈ A such that d(x∗, f(x∗)) = d(A,B).

Proof. Regarding that A0 is nonempty, we take x0 ∈ A0. Since f(x0) ∈ f(A0) ⊆ B0, we can find x1 ∈ A0 such that

d(x1, f(x0)) = d(A,B). Analogously regarding the assumption f(x1) ∈ f(A0) ⊆ B0, we determine x2 ∈ A0 such that

d(x2, f(x1)) = d(A,B). Recursively we obtain a sequence {xn} in A0 satisfying

d(xn+1, f(xn)) = d(A,B) for any n ∈ N (2)
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Since (A,B) has the P-property we derive that

d(xn, xn+1) = d(f(xn−1), f(xn)) for any n ∈ N (3)

If there exists n0 ∈ N such that d(xn0 , xn0+1) = 0, then the proof is completed. Indeed

0 = d(xn0 , xn0+1) = d(f(xn0−1), f(xn0)) (4)

and consequently f(xn0−1) = f(xn0). On the other hand due to (2) we have d(xn0 , f(xn0−1)) = d(A,B). Therefore we

conclude that

d(A,B) = d(xn0 , f(xn0−1)) = d(xn0 , f(xn0)) (5)

For the rest of the proof we suppose that d(xn, xn+1) > 0 for any n ∈ N . Since f is contractive, for any n ∈ N , we have

that

d(xn+1, xn+2) = d(f(xn), f(xn+1)) ≤ ψ(d(xn, xn+1)) < d(xn, xn+1) (6)

consequently {d(xn, xn+1)} is monotonically decreasing sequence and bounded below and so we have limn→∞ d(xn, xn+1) = r

exists. Let limn→∞ d(xn, xn+1) = r ≥ 0. Assume that r > 0. Then from (1) we have d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) which

implies that r ≤ ψ(r)⇒ r = 0. That is

lim
n→∞

d(xn, xn+1) = 0 (7)

Notice that since d(xn+1, f(xn)) = d(A,B) for any n ∈ N , for fixed p, q ∈ N , we have d(xp, f(xp−1)) = d(xq, f(xq−1)) =

d(A,B) and since (A,B) satisfies the P-property, d(xp, xq) = d(f(xp−1), f(xq−1)). In what follows, we prove that {xn} is

cauchy sequence. On the contrary, assume that we have

ε = lim sup
m,n→∞

d(xn, xm) > 0 (8)

Then there exists ε > 0, such that for any k ∈ N , there exists mk > nk ≥ k, such that

d(xmk , xnk ) ≥ ε (9)

Furthermore assume that for each k, mk is the smallest number greater than nk for which (9) holds. In view of (6), there

exists k0 such that k ≥ k0 implies that d(xk, xk+1) ≥ ε. For such k, we have

ε ≤ d(xmk , xnk )

≤ d(xmk , xmk−1) + d(xmk−1 , xnk )

≤ d(xmk , xmk−1) + ε

≤ d(xk, xk−1) + ε.

This proves limk→∞ d(xmk , xnk ) = ε. On the other hand

d(xmk , xnk ) ≤ d(xmk , xmk+1) + d(xmk+1 , xnk+1) + d(xnk+1 , xnk )

≤ 2d(xk, xk+1) + ψ(d(xmk , xnk )).

Since limk→∞ d(xk, xk+1) = 0, the above inequality yields
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ε ≤ lim supm,n→∞ d(xmk , xnk ) ≤ lim supm,n→∞ ψ(d(xmk , xnk )) ≤ ψ(ε).

It follows that ε ≤ ψ(ε), a contradiction. Therefore {xn} is a cauchy sequence. Since {xn} ⊂ A and A is closed subset of the

complete metric space (X, d), we can find x∗ ∈ A such that xn → x∗. Since the mapping is contractive and continuous, we have

f(xn)→ f(x∗). This implies that d(xn, xn+1)→ d(x∗, f(x∗)). Taking into consideration that the sequence {d(xn+1, f(xn))}

is a constant sequence with the value d(A,B), we deduce that d(x∗, f(x∗)) = d(A,B). This means that x∗ is a best

proximity point of f . This proves the existence of our result. For the uniqueness, suppose that x1 and x2 are two best

proximity points of f with x1 6= x2. This means that d(xi, f(xi)) = d(A,B) for i = 1, 2. Using the P-property, we have

d(x1, x2) = d(f(x1), f(x2)). Using the fact that f is contractive and continuous, we have

d(x1, x2) = d(f(x1), f(x2)) ≤ ψ(d(x1, x2)) < d(x1, x2)

which is a contradiction. Therefore x1 = x2. This completes the proof. In the following result we introduce the concept of

generalized weakly contractive mapping and find best proximity point based on the work of Binayak S. Choudhury [6].

Definition 3.2 ([3]). A mapping f : X → X, where (X, d) is a metric space, is said to be weakly contractive if for any

x, y ∈ X, then

d(f(x), f(y) ≤ d(x, y)− φ(d(x, y)) (10)

where φ : [0,∞) → [0,∞) is continuous and nondecreasing function such that φ(t) = 0 if and only if t = 0. If one takes

φ(t) = (1− k)t, where 0 < k < t, a weak contraction reduces to a Banach contraction.

In [4] Alber and Guerre proved that if f : Ω → Ω is a weakly contractive self-map, where Ω is a closed convex subset of a

Hilbert space, then f has a unique fixed point in Ω. Later, in [3] Rhodes proved that the existence of a unique fixed point

for a weakly contractive self-map could be achieved even in a complete metric space setting.

Definition 3.3 ([12]). Let A,B be nonempty subsets of a metric space X. A map f : A→ B is said to be weakly contractive

mapping if

d(f(x), f(y)) ≤ d(x, y)− ψ(d(x, y)), for all x, y ∈ A,

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that ψ is positive on (0,∞), ψ(0) = 0 and

limn→∞ ψ(t) =∞. If A is bounded, then the infinity condition can be omitted.

Note that d(f(x), f(y)) ≤ d(x, y)− ψ(d(x, y)) < d(x, y) if x, y ∈ A with x 6= y. That is f is a contractive map. The notion

called the P-property was introduced in [11] and was used to prove a extended version of Banach’s contraction principle.

Theorem 3.4 ([12]). Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that A0 is

nonempty. Let f : A → B be a weakly contractive mapping satisfying f(A0) ⊆ B0. Assume that the pair (A,B) has the

p-property. Then there exists a unique x∗ ∈ A such that d(x∗, f(x∗)) = d(A,B).

Definition 3.5 ([10]). A function ψ : [0,∞)→ [0,∞) is called an altering function if the following properties are satisfied:

(a) ψ is monotone increasing and continuous

(b) ψ(t) = 0 if and only if t = 0.

Definition 3.6 ([6]). Let (X, d) be a metric space, f a self-mapping of X. We shall call f a generalized weakly contractive

mapping if for all x, y ∈ X, then
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ψ(d(f(x), f(y)) ≤ ψ(m(x, y))− φ(max{d(x, y), d(y, f(y))})

where

m(x, y) = max{d(x, y), d(x, f(x)), d(y, f(y)), 1
2
[d(x, f(y)) + d(y, f(x))]}

and ψ is an altering distance function also φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0 if and only if t = 0.

A generalized weakly contractive mapping is more general than that satisfying d(f(x), f(y)) ≤ km(x, y) for some constant

0 ≤ k < 1 and is included in those mappings which satisfy

d(f(x), f(y)) < m(x, y).

Definition 3.7. Let A,B be nonempty subsets of a metric space X. A map f : A → B is said to be a generalized weakly

contractive mapping if for all x, y ∈ A, then

ψ(d(f(x), f(y)) ≤ ψ(m(x, y))− φ(max{d(x, y), d(y, f(y))− d(A,B))})

where

m(x, y) = max{d(x, y), d(x, f(x))− d(A,B), d(y, f(y))− d(A,B), 1
2
[d(x, f(y)) + d(y, f(x))]− d(A,B)}.

A generalized weakly contractive mapping is more general than that satisfying d(f(x), f(y)) ≤ km(x, y) for some constant

0 ≤ k < 1 and is included in those mappings which satisfy

d(f(x), f(y)) < m(x, y).

Theorem 3.8. Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that A0 is nonempty.

Let f : A→ B be such that f(A0) ⊆ B0. Suppose

ψ(d(f(x), f(y)) ≤ ψ(m(x, y))− φ(max{d(x, y), d(y, f(y))− d(A,B))}) (11)

Furthermore the pair (A,B) has the p-property. Then there exists a unique x∗ in A such that d(x∗, f(x∗)) = d(A,B).

Proof. Choose x0 ∈ A. Since f(x0) ∈ f(A0) ⊆ B0, there exists x1 ∈ A0 such that d(x1, f(x0)) = d(A,B). Analogously

regarding the assumption, f(x1) ∈ f(A0) ⊆ B0, we determine x2 ∈ A0 such that d(x2, f(x1)) = d(A,B). Recursively we

obtain a sequence {xn} in A0 satisfying

d(xn+1, f(xn)) = d(A,B) for any n ∈ N (12)

Claim: d(xn, xn+1)→ 0.

If xN = xN+1, then xN is a best proximity point. By the P-property, we have

d(xn+1, xn+2) = d(f(xn), f(xn+1)).

Hence we assume that xn 6= xn+1 for all n ∈ N . Since d(xn+1, f(xn)) = d(A,B), from (11) we have for all n ∈ N

ψ(d(xn+1, xn+2)) = ψ(d(f(xn), f(xn+1)))

≤ ψ(max{d(xn, xn+1), d(xn, f(xn))− d(A,B), d(xn+1, f(xn+1))− d(A,B),

1

2
[d(xn, f(xn+1)) + d(xn+1, f(xn))]− d(A,B)})− φ(max{d(xn, xn+1), d(xn+1, f(xn+1))− d(A,B)})

≤ ψ(max{d(xn, xn+1), d(xn, f(xn))− d(A,B), d(xn+1, f(xn+1))− d(A,B),

1

2
(d(xn, f(xn+1)))− d(A,B)})− φ(max{d(xn, xn+1), d(xn+1, f(xn+1))− d(A,B)})
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Since

1

2
(d(xn, f(xn+1)))− d(A,B) ≤ 1

2
(d(xn, xn+1) + d(xn+1, f(xn+1)))− d(A,B)

≤ max{d(xn, xn+1), d(xn+1, f(xn+1))− d(A,B)}

d(xn, f(xn))− d(A,B) ≤ d(xn, xn+1) + d(xn+1, f(xn))− d(A,B)

= d(xn, xn+1)

It follows that

ψ(d(f(xn), f(xn+1)) ≤ ψ(max{d(xn, xn+1), d(xn+1, f(xn+1))− d(A,B)})

− φ(max{d(xn, xn+1), d(xn+1, f(xn+1))− d(A,B)})

ψ(d(xn+1, xn+2)) ≤ ψ(max{d(xn, xn+1), d(xn+1, xn+2)})− φ(max{d(xn, xn+1), d(xn+1, xn+2)}) (13)

Suppose that d(xn, xn+1) ≤ d(xn+1, xn+2), for some positive integer n. Then from (13), we have

ψ(d(xn+1, xn+2) ≤ ψ(d(xn+1, xn+2))− φ(d(xn+1, xn+2)),

that is φ(d(xn+1, xn+2)) ≤ 0, which implies that d(xn+1, xn+2) = 0, contradicting our assumption. Therefore

d(xn+1, xn+2) < d(xn, xn+1) for any n ∈ N and hence {d(xn, xn+1)} is monotone decreasing sequence of non-negative

real numbers, hence there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. In view of the facts from (13) for any n ∈ N , we

have

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1))− φ(d(xn, xn+1)),

Taking the limit as n→∞ in the above inequality and using the continuities of ψ and φ we have ψ(r) ≤ ψ(r)− φ(r) which

implies φ(r) = 0. Hence

lim
n→∞

d(xn, xn+1) = 0 (14)

Next we show that {xn} is a cauchy sequence. If otherwise there exists an ε > 0 for which we can find two sequences of

positive integers {mk} and {nk} such that for all positive integers k, nk > mk > k,

d(xmk , xnk ) ≥ ε and d(xmk , xnk−1) < ε.

Now ε ≤ d(xmk , xnk ) ≤ d(xmk , xnk−1) + d(xnk−1, xnk ), that is ε ≤ d(xmk , xnk ) < ε + d(xnk−1, xnk ). Taking the limit as

k →∞ in the above inequality and using (14) we have

lim
k→∞

d(xmk , xnk ) = ε (15)

Again d(xmk , xnk ) ≤ d(xmk , xmk+1)+d(xmk+1, xnk+1)+d(xnk+1, xnk ). Taking the limit as k →∞ in the above inequalities

and using (14) and (15) we have

lim
k→∞

d(xmk+1, xnk+1) = ε (16)

Again

d(xmk , xnk ) ≤ d(xmk , xnk+1) + d(xnk+1, xnk ) and d(xmk , xnk+1) ≤ d(xmk , xnk ) + d(xnk , xnk+1)

86



S.Arul Ravi and A.Anthony Eldred

Letting k →∞ in the above inequalities and using (14) and (15), we have

lim
k→∞

d(xmk , xnk+1) = ε (17)

Similarly

lim
k→∞

d(xnk , xmk+1) = ε (18)

For x = xmk , y = ymk , we have

d(xmk , f(xmk ))− d(A,B) ≤ d(xmk , xmk+1) + d(xmk+1, f(xmk ))− d(A,B)

= d(xmk , xmk+1)

similarly d(xnk , f(xnk )) − d(A,B) = d(xnk , xnk+1). Also d(xmk , f(xnk )) − d(A,B) = d(xmk , xnk+1) and d(xnk , f(xmk )) −

d(A,B) = d(xnk , xmk+1). From (11) we have

ψ(d(xmk+1, xnk+1)) = ψ(d(f(xmk ), f(xnk )))

≤ ψ(max{d(xmk , xnk ), d(xmk , f(xmk ))− d(A,B), d(xnk , f(xnk ))− d(A,B),

1

2
[d(xmk , f(xnk )) + d(xnk , f(xmk ))− d(A,B)]})− φ(max{d(xmk , xnk ), d(xnk , f(xnk ))− d(A,B)})

≤ ψ(max{d(xmk , xnk ), d(xmk , xmk+1), d(xnk , xnk+1),

1

2
[d(xmk , xnk+1) + d(xnk , xmk+1)]})− φ(max{d(xmk , xnk ), d(xnk , xnk+1)})

It follows that

ψ(d(f(xmk ), f(xnk ))) ≤ ψ(max{d(xmk , xnk ), d(xnk , f(xnk+1)),
1

2
[d(xmk , xnk+1) + d(xnk , xmk+1)]})

− φ(max{d(xmk , xnk ), d(xnk , f(xnk+1))})

ψ(d(xmk+1, xnk+1) ≤ ψ(max{d(xmk , xnk ), d(xnk , xnk+1)})− φ(max{d(xmk , xnk ), d(xnk , xnk+1)})

From (14), (15), (17), (18) and Letting k → ∞ in the above inequalities and using the continuities of ψ and φ, we have

ψ(ε) ≤ ψ(ε)− φ(ε) which is contradiction by virtue of property of φ. Hence {xn} is a cauchy sequence. Since {xn} ⊂ A and

A is a closed subset of the complete metric space (X, d), there exists x∗ in A such that xn → x∗. Putting x = xn and y = x∗

in (11) and since

d(xn, f(x∗)) ≤ d(xn, x
∗) + d(x∗, f(xn)) and d(x∗, f(xn)) ≤ d(x∗, f(x∗)) + d(f(x∗), f(xn))

we have

ψ(d(xn+1, f(x∗))− d(A,B) ≤ ψ(d(f(xn), f(x∗)))

≤ ψ(max{d(xn, x
∗), d(xn, xn+1), d(x∗, f(x∗))− d(A,B),

1

2
[d(xn, f(x∗)) + d(x∗, f(xn))]− d(A,B)})− φ(max{d(xn, x

∗), d(x∗, f(x∗))− d(A,B)})

Taking the limit as n→∞ in the above inequality and using the continuities of ψ and φ, we have

ψ(d(x∗, f(x∗))− d(A,B)) ≤ ψ(d(x∗, f(x∗))− d(A,B))− φ(d(x∗, f(x∗))− d(A,B).
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Which implies that d(x∗, f(x∗)) = d(A,B). Hence x∗ is a best proximity point of f . For the uniqueness. Let p and q be two

best proximity points of f and suppose that p 6= q. Then putting x = p and y = q in (11) we obtain

ψ(d(f(p), f(q))) ≤ ψ(max{d(p, q), d(p, f(p))− d(A,B), d(q, f(q))− d(A,B),
1

2
[d(p, f(q)) + d(q, f(p))]− d(A,B)})

− φ(max{d(p, q), d(q, f(q))− d(A,B)})

That is

ψ(d(p, q)) ≤ ψ(d(p, q))− φ(d(p, q))

which is contradiction by virtue of a property of φ. Therefore p = q. This completes the proof.
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