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1. Introduction

Fuzzy graphs were introduced by Rosenfeld [13], who has described the fuzzy analogue of several graph theoretic concepts

like paths, cycles, trees and connectedness and established some of their properties [13]. Bhutani and Rosenfeld have

introduced the concept of strong arcs [2]. The concept of domination in graphs was introduced by Ore and Berge in 1962,

the domination number and independent domination number are introduced by Cockayne and Hedetniemi [5]. For the

terminology of domination in crisp graphs we refer to [4].

For a node v of a graph G : (V,E), a neighbor of v is a node adjacent to v in G. Also the neighborhood N(v) of v is

the set of neighbors of v. The closed neighborhood N [v] is defined as N [v] = N(v) ∪ {v} . A node v in G is said to

dominate itself and each of its neighbors, that is v dominates the nodes in N [v]. A set S of nodes of G is a dominating set

of G if every node of V (G) − S is adjacent to some node in S. A minimum dominating set in G is a dominating set of

minimum cardinality. The cardinality of a minimum dominating set is called the domination number of G and is denoted

by γ(G). Somasundaram studied the effect of removal of a node or an arc in fuzzy graphs using effective arcs [16]. Nagoor

Gani and Vijayalakshmi discussed domination critical nodes in fuzzy graphs using strong arcs [12]. In this paper, the

effect of the removal of a node or an arc of a fuzzy graph on the minimum strong dominating set of the fuzzy graph is studied.

This paper is organized as follows. Section 2 contains preliminaries and in section 3, we have investigated the effect of

removal of a node or an arc of a fuzzy graph on the minimum strong dominating set.

∗ E-mail: manjushaot@gmail.com
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The Strong Domination Alteration Sets in Fuzzy Graphs

2. Preliminaries

We summarize briefly some basic definitions in fuzzy graphs which are presented in [1, 2, 6, 8–10, 13–15, 17].

A fuzzy graph is denoted by G : (V, σ, µ) where V is a node set, σ and µ are mappings defined as σ : V → [0, 1] and

µ : V × V → [0, 1], where σ and µ represent the membership values of a node and an arc respectively. For any fuzzy

graph, µ(x, y) ≤ min{σ(x), σ(y)}. We consider fuzzy graph G with no loops and assume that V is finite and nonempty,

µ is reflexive (i.e.,µ(x, x) = σ(x), for all x) and symmetric (i.e., µ(x, y) = µ(y, x), for all (x, y)). In all the examples σ

is chosen suitably. Also, we denote the underlying crisp graph by G∗ : (σ∗, µ∗) where σ∗ = {u ∈ V : σ(u) > 0} and

µ∗ = {(u, v) ∈ V × V : µ(u, v) > 0}. Throughout we assume that σ∗ = V . The fuzzy graph H : (τ, ν) is said to be a

partial fuzzy subgraph of G : (σ, µ) if ν ⊆ µ and τ ⊆ σ. In particular we call H : (τ, ν) a fuzzy subgraph of G : (σ, µ)

if τ(u) = σ(u) for all u ∈ τ∗ and ν(u, v) = µ(u, v) for all (u, v) ∈ ν∗. A fuzzy graph G : (V, σ, µ) is called trivial if |σ∗| = 1.

Two nodes u and v in G are said to be adjacent if µ(u, v) > 0.

A path P of length n in a fuzzy graph G : (V, σ, µ) is a sequence of distinct nodes u0, u1, ..., un such that

µ(ui−1, ui) > 0, i = 1, 2, ..., n and the degree of membership of a weakest arc is defined as its strength. If u0 = un

and n ≥ 3 then P is called a cycle and P is called a fuzzy cycle, if it contains more than one weakest arc. The strength

of a cycle is the strength of the weakest arc in it. The strength of connectedness between two nodes x and y is defined

as the maximum of the strengths of all paths between x and y and is denoted by CONNG(x, y). A fuzzy graph G : (V, σ, µ)

is connected if for every x, y in σ∗, CONNG(x, y) > 0.

An arc (u, v) of a fuzzy graph G : (V, σ, µ) is called an effective arc (M-strong arc) if µ(u, v) = σ(u) ∧ σ(v). Then u and v

are called effective neighbors. The set of all effective neighbors of u is called effective neighborhood of u and is denoted

by EN(u). A fuzzy graph G : (V, σ, µ) is said to be complete if µ(u, v) = σ(u) ∧ σ(v), for all u, v ∈ σ∗.

The order p and size q of a fuzzy graph G : (σ, µ) are defined to be p =
∑
x∈V σ(x) and q =

∑
(x,y)∈µ∗ µ(x, y). Let

G : (V, σ, µ) be a fuzzy graph and S ⊆ V . Then the scalar cardinality of S is defined to be
∑
v∈S σ(v). Let p denotes the

scalar cardinality of V , also called the order of G. The complement of a fuzzy graph G : (V, σ, µ), denoted by G is defined

to be G = (V, σ, µ) where µ(x, y) = σ(x) ∧ σ(y)− µ(x, y) for all x, y ∈ V [18].

An arc of a fuzzy graph G : (V, σ, µ)is called strong if its weight is at least as great as the strength of connectedness of

its end nodes when it is deleted. A fuzzy graph G : (V, σ, µ) is called a strong fuzzy graph if each arc in G is a strong

arc. Depending on CONNG(x, y) of an arc (x, y) in G, Mathew and Sunitha [17] defined three different types of arcs. Note

that CONNG−(x,y)(x, y) is the the strength of connectedness between x and y in the fuzzy graph obtained from G by

deleting the arc (x, y). An arc (x, y) in G is α− strong if µ(x, y) > CONNG−(x,y)(x, y). An arc (x, y) in G is β− strong

if µ(x, y) = CONNG−(x,y)(x, y). An arc (x, y) in G is δ− arc if µ(x, y) < CONNG−(x,y)(x, y).

Thus an arc (x, y) is a strong arc if it is either α− strong or β− strong. A path P is called strong path if P contains only

strong arcs. If µ(u, v) > 0, then u and v are called neighbors. The set of all neighbors of u is denoted by N(u). Also v is

called strong neighbor of u if arc (u, v) is strong. The set of all strong neighbors of u is called the strong neighborhood

of u and is denoted by Ns(u). The closed strong neighborhood Ns[u] is defined as Ns[u] = Ns(u) ∪ {u}.
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A fuzzy graph G : (V, σ, µ) is said to be bipartite [15] if the node set V can be partitioned into two non empty sets V1 and

V2 such that µ(v1, v2) = 0 if v1, v2 ∈ V1 or v1, v2 ∈ V2. Further if µ(u, v) = σ(u)
∧
σ(v) for all u ∈ V1 and v ∈ V2 then G is

called a complete bipartite graph and is denoted by Kσ1,σ2 , where σ1 and σ2 are respectively the restrictions of σ to V1

and V2. A node u in a fuzzy graph G : (V, σ, µ) is said to be isolated if µ(u, v) = 0 for all v 6= u.

A fuzzy subgraph H : (τ, ν) spans the fuzzy graph G : (V, σ, µ) if τ = σ [8]. A fuzzy graph G = (V, σ, µ) is called a fuzzy

forest if it has a fuzzy spanning subgraph F : (σ, ν), which is a forest, where for all arcs (x, y) not in F there exists a path

from x to y in F whose strength is more than µ(x, y) [13]. If G is connected we call G a fuzzy tree. Note that here F is

a tree which contains all nodes of G and is a spanning tree of G. Also note that F is the unique maximum spanning tree

(MST) of G [18], where a maximum spanning tree of a connected fuzzy graph G : (V, σ, µ) is a fuzzy spanning subgraph

T : (σ, ν), such that T is a tree, and for which
∑
u6=v ν(u, v) is maximum [8].

An arc is called a fuzzy bridge of a fuzzy graph G : (V, σ, µ) if its removal reduces the strength of connectedness between

some pair of nodes in G [13]. Similarly a fuzzy cut node w is a node in G whose removal from G reduces the strength of

connectedness between some pair of nodes other than w [13]. A node z in a fuzzy graph G : (V, σ, µ) is called a fuzzy end

node if it has exactly one strong neighbor in G [3].

Theorem 2.1 ([3]). A non trivial fuzzy tree G : (V, σ, µ) contains at least two fuzzy end nodes.

Theorem 2.2 ([3]). Every node is either a fuzzy cutnode or a fuzzy end node in a non trivial fuzzy tree G : (V, σ, µ) except

K2.

In a fuzzy tree G, an arc is strong if and only if it is an arc of F where F is the associated unique maximum spanning tree

of G [2, 18]. Note that these strong arcs are α-strong and there are no β-strong arcs in a fuzzy tree [17]. Also note that in

G, an arc (x, y) is α-strong if and only if (x, y) is a fuzzy bridge of G [17].

Theorem 2.3 ([14]). The strong arc incident with a fuzzy end node is a fuzzy bridge in any non trivial fuzzy graph

G : (V, σ, µ).

Corollary 2.4 ([14]). In a non trivial fuzzy tree G : (V, σ, µ) except K2, the strong neighbor of a fuzzy end node is a fuzzy

cut node of G.

3. Strong Domination Alteration in Fuzzy Graphs

Nagoorgani and Chandrasekaran [9] introduced the concept of domination using strong arcs in fuzzy graphs as follows.

Definition 3.1. [9] A node v in a fuzzy graph G : (V, σ, µ) is said to strongly dominate itself and each of its strong neighbors,

i.e., v strongly dominates the nodes in Ns[v]. A set D of nodes of G is a strong dominating set [SD−set] of G if every node

of V (G)−D is a strong neighbor of some node in D.

In 2002, Somasundaram studied the effect of removal of a node or an arc in fuzzy graphs using effective arcs [16]. Later in

2011, Nagoor Gani and Vijayalakshmi discussed domination critical nodes in fuzzy graphs using strong arcs [12]. Manjusha

and Sunitha [7] defined strong domination number using membership values (weights) of arcs in fuzzy graphs as follows.

Definition 3.2 ([7]). The weight of a strong dominating set [SD−set] D in a fuzzy graph G : (V, σ, µ) is defined as

W (D) =
∑
u∈D µ(u, v), where µ(u, v) is the minimum of the membership values(weights) of strong arcs incident on u. The
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strong domination number of G is defined as the minimum weight of strong dominating sets of G and it is denoted by γs(G)

or simply γs. A minimum strong dominating set [MSD−set] in G is a strong dominating set of minimum weight.

Motivated by the following application in networks, the effect on the number of nodes in the MSD−set (minimum strong

dominating set) of a fuzzy graph G : (V, σ, µ) when G is modified by deleting a node or deleting or adding an arc is examined

in this paper.

One of the basic needs for the topological design of a network is the identification of fault tolerance, that is the ability of

the network to provide service even when it contains a faulty component or components. The behavior of a network in the

presence of a fault can be analyzed by determining the effect on fault tolerance criterion after removing an arc (link failure)

or a node (processor failure) from its underlying fuzzy graph G : (V, σ, µ). For example, an MSD−set in G represents a

minimum set of processors that can communicate directly with all other processors in the system. If it is essential for file

servers to have this property and that the number of processors designated as file servers be limited, the number of nodes

in an MSD−set of G is the fault tolerance criterion. In this example, it may be noted that the number of nodes in the

MSD−set of G does not increase when G is modified by removing a node or an arc. Also networks can be made fault

tolerant by providing redundant communication links (adding arcs).

Let G − v (respectively G − e) denote the fuzzy graph obtained by removing a node v (respectively arc e) from G. The

following acronyms are used to denote the following classes of fuzzy graphs. (C represents changing; N : node; A: arc; R:

removal).

Definition 3.3. Let G : (V, σ, µ) be any fuzzy graph. Then G ∈ CNR [changing node removal] if |MSD(G− v)| 6=

|MSD(G)| ∀v ∈ σ∗. Similarly G ∈ CAR [changing arc removal] if |MSD(G− e)| 6= |MSD(G)| ∀e ∈ µ∗.

Next, the effect of the removal of a node of a fuzzy graph G : (V, σ, µ) on an MSD−set of G is investigated.

Example 3.4. Consider the fuzzy graph G in Fig 1.

v v

v v

u(0.3) v(0.5)

w(0.4) x(0.6)

0.3

0.3

0.4

0.4

Fig 1: The effect “decreasing” the number of nodes in an MSD−set

0.3

In the fuzzy graph of Fig 1, strong arcs are (u, v), (v, x), (x,w) and (u,w). The set D = {u, v} forms an MSD−set and

|MSD(G)| = 2 and γs(G) = 0.3 + 0.3 = 0.6.

Also

|MSD(G− u)| = 1, γs(G− u) = 0.4

|MSD(G− v)| = 1, γs(G− v) = 0.3

|MSD(G− w)| = 1, γs(G− w) = 0.3

|MSD(G− x)| = 1, γs(G− x) = 0.3.
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Thus the removal of any node of G decreases the number of nodes in an MSD−set.

Example 3.5. Consider the fuzzy graph G in Fig 2.

v

v v
0.5

u(0.9)

v(0.8) w(0.7)

0.4 0.4

Fig 2: The effect “unaltered” and “increasing” the number of nodes in an MSD−set

v
0.3

x(0.6)

In the fuzzy graph of Fig 2, all arcs are strong.

MSD(G) = {w} , |MSD(G)| = 1 and γs(G) = 0.3

|MSD(G− u)| = 1, γs(G− u) = 0.3.

|MSD(G− v)| = 1, γs(G− v) = 0.3.

|MSD(G− x)| = 1, γs(G− x) = 0.4.

|MSD(G− w)| = 2, γs(G− w) = 0.4.

Hence the removal of u or v or x does not change the cardinality of an MSD−set. But the removal of w increases the

cardinality of an MSD−set.

The illustrated examples [Example 3.4 and Example 3.5] have shown that the number of nodes in an MSD−set of a fuzzy

graph G : (V, σ, µ) may increase or decrease or remain unaltered after removing a node from the fuzzy graph. It is beneficial

to partition the nodes of G into three crisp subsets according to how their removal affects the cardinality of an MSD−set.

V os = {v ∈ V/ |MSD(G− v)| = |MSD(G)|}

V +
s = {v ∈ V/ |MSD(G− v)| > |MSD(G)|}

V −s = {v ∈ V/ |MSD(G− v)| < |MSD(G)|}

Clearly every isolated node belongs to V −s . Also every node of a complete fuzzy graph is in V os . Note that V = V +
s ∪V −s for

a fuzzy graph G : (V, σ, µ) for which the cardinality of an MSD−set changes when an arbitrary node is removed (CNR).

Remark 3.6. Note that removing a node from a fuzzy graph G : (V, σ, µ) can increase the number of nodes in an MSD−set

by more than one, but can decrease it by at most one.

Remark 3.7. Also note that if D is an MSD−set of a fuzzy graph G : (V, σ, µ), then removing any node in V −D cannot

increase the number of nodes in the MSD−set of G. Hence
∣∣V +
s

∣∣ ≤ |MSD(G)|.

Theorem 3.8. If G : (V, σ, µ) is a fuzzy tree such that G∗ is a tree, then V os is never empty.

Proof. First note that all arcs in the fuzzy tree G : (V, σ, µ) are strong arcs since G∗ is a tree. Clearly the result is true

when G∗ = K2. Since G is a fuzzy tree, G has at least two fuzzy end nodes [Theorem 2.1] and every node is either a fuzzy

cutnode or a fuzzy end node [Theorem 2.2]. Next, let G contains at least 3 nodes. Then G has at least one node v that is

adjacent to at least one fuzzy end node and at most one fuzzy cutnode. Then we consider the following two cases.

Case 1: v is adjacent to two (or more) fuzzy end nodes u1 and u2. In this case, v is contained in every MSD−set of
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G, since the only strong neighbor of u1 and u2 is v and |MSD(G− u1)| = |MSD(G)|, since as u1 is a fuzzy end node its

deletion makes no change in the MSD−set of G.

Case 2: v is adjacent to one fuzzy end node u.

Claim: For any fuzzy tree G, if u is a fuzzy end node then |MSD(G− u)| ≤ |MSD(G)|, for, let w be a strong neighbor

of u and if w is adjacent to at least one fuzzy end node other than u then as in Case 1, w is in the MSD−set of G and

|MSD(G− u)| = |MSD(G)|. Next, if the strong neighbors of w other than u are fuzzy cutnodes of G, then u or w belongs

to MSD(G). If u ∈ MSD(G) then |MSD(G− u)| = |MSD(G)|. If w ∈ MSD(G), then in G − u, w may become a fuzzy

end node and strong neighbor of w other than u strongly dominates w. Hence |MSD(G− u)| < |MSD(G)|. Thus the claim.

Now let G
′

= G−v−u. Then
∣∣∣MSD(G

′
)
∣∣∣ ≤ |MSD(G− u)| ≤ |MSD(G)|, by the claim. Also

∣∣∣MSD(G
′
)
∣∣∣ ≥ |MSD(G)|−1,

since removing a node from a fuzzy graph G can decrease the number of nodes in an MSD−set by at most one [Remark 3.3.4].

If
∣∣∣MSD(G

′
)
∣∣∣ = |MSD(G)| − 1, then |MSD(G− v)| = |MSD(G)|, which implies v ∈ V os . If

∣∣∣MSD(G
′
)
∣∣∣ > |MSD(G)| − 1,

then
∣∣∣MSD(G

′
)
∣∣∣ = |MSD(G)| = |MSD(G− u)|, which implies u ∈ V os .

Remark 3.9. The converse of Theorem 3.8 is not true. That is V os is non- empty does not imply that G is a fuzzy tree

which is illustrated in the following example.

Example 3.10. In Fig 2 of Example 3.5, V os = {u, v, x} which is non- empty. But G is not a fuzzy tree.

The following theorem gives a characterization of the nodes in V +
s in strong fuzzy graphs. Note that Ns[u] is the closed

strong neighborhood of u for any node u ∈ σ∗.

Theorem 3.11. Let G : (V, σ, µ) be a strong fuzzy graph. A node v ∈ V +
s if and only if the following conditions hold.

(a). v is not an isolate and is in every SD−set of G with cardinality |MSD(G)| and

(b). no subset D ⊆ V −Ns[v] with cardinality |MSD(G)| strongly dominates G− v.

Proof. Let G : (V, σ, µ) be a strong fuzzy graph. First suppose that v ∈ V +
s . Then |MSD(G− v)| > |MSD(G)|. If v is

an isolated node then v ∈ V −s , a contradiction. If there exists an SD−set D of G with cardinality |MSD(G)| not containing

v then D is also an SD−set of G− v. Hence |MSD(G− v)| ≤ |MSD(G)|, a contradiction, since v ∈ V +
s . Hence v belongs

to every SD−set of G with cardinality |MSD(G)|. If there exists a subset D ⊆ V −Ns[v] with cardinality |MSD(G)| that

strongly dominates G− v, then |MSD(G− v)| ≤ |MSD(G)|, a contradiction. Hence all conditions are necessary.

Conversely, suppose that a node v ∈ G satisfies conditions (a) and (b). To prove that v ∈ V +
s . Suppose if possible, v /∈ V +

s .

Then v ∈ V os or v ∈ V −s .

Case 1: v ∈ V os . Then |MSD(G− v)| = |MSD(G)|. Hence there exists an MSD−set D
′

of G − v not containing v

with cardinality |MSD(G)|. By condition (b), no subset D ⊆ V − Ns[v] with cardinality |MSD(G)| strongly dominates

G− v. Then the set D
′

must contain a strong neighbor of v. Hence D
′

is an SD−set of G not containing v with cardinality

|MSD(G)|, which contradicts condition (a).

Case 2: v ∈ V −s .

Then |MSD(G− v)| < |MSD(G)|. Also since removing a node from a fuzzy graph G can decrease the number of nodes in

a MSD−set by at most one, |MSD(G− v)| = |MSD(G)| − 1. Let D
′

be an MSD−set of G− v. Take a strong neighbor of

v as u. Then D
′
∪{u} is an SD−set of G not containing v with cardinality |MSD(G)|, which is a contradiction to condition

(a). Thus from Case 1 and Case 2, it follows that v ∈ V +
s .

Remark 3.12. In a general fuzzy graph which is not a strong fuzzy graph, Theorem 3.11 is not true which is illustrated in

the following example.
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Example 3.13. Consider the fuzzy graph G : (V, σ, µ) in Fig 3.

�
�

�
�
�

@
@
@
@
@@

u v
v

v
v v

u

v

0.6 0.7

0.9

0.4 0.5

0.3

Fig 3: Illustration of Remark 3.12

u1 u2

v1 v2

In the fuzzy graph G of Fig 3, all node weights are taken as 1. All arcs except (v1, v2) are strong arcs. Hence G is not a

strong fuzzy graph. The MSD−set of G is the set {u, v} , |MSD(G)| = 2 and γs(G) = 0.6 + 0.4 = 1. By removing the

nodes u and v we get the following graphs G− u and G− v as follows.

�
�
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�
�

@
@
@
@
@@

u v

v
v v

v

0.4 0.5

0.3

u1 u2

v1 v2

v v
v

v v

u

0.6 0.7

0.3

u1 u2

v1 v2

G− u G− v

For the fuzzy graph G− u,

MSD(G− u) = {u1, u2, v} , |MSD(G− u)| = 3 and γs(G− u) = 0.4.

For the fuzzy graph G− v,

MSD(G− v) = {u, v1} , {u, v2} , |MSD(G− v)| = 2 and γs(G− v) = 0.9.

Hence u ∈ V +
s , and v ∈ V os . But for both u and v, conditions (a) and (b) of Theorem 3.11 hold. That is,

(a). u and v are not isolated nodes and are in every SD− set of G with cardinality |MSD(G)|.

(b). V −Ns[u] = {u1, u2, u, v, v1, v2} − {u1, u2, u, v} = {v1, v2} and

V −Ns[v] = {u1, u2, u, v, v1, v2} − {u, v, v1, v2} = {u1, u2}.
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No subset of V −Ns[u] and V −Ns[v] with cardinality |MSD(G)| strongly dominates G− u and G− v.

Theorem 3.14. In a fuzzy graph G : (V, σ, µ) if a node v ∈ V +
s then v is a fuzzy cutnode.

Proof. Let G : (V, σ, µ) be a fuzzy graph. Suppose v ∈ V +
s . Then it follows that v is in every SD−set of G with cardinality

|MSD(G)| by using the proof technique in the first part of Theorem 3.11. To prove that v is a fuzzy cutnode. Suppose

if possible, v is not a fuzzy cutnode. Then by definition of a fuzzy cutnode, removal of v does not reduce the strength of

connectedness between any pair of nodes x, y both different from v.

Claim: v has at least two strong neighbors. For, suppose v has only one strong neighbor say u. Let D be an SD−set of G

containing v with cardinality |MSD(G)|. Then we consider two cases.

Case 1: u ∈ D. Then D − v is an SD−set of G − v. Hence |MSD(G− v)| < |MSD(G)|, which is a contradiction to the

assumption that v ∈ V +
s .

Case 2: u /∈ D. Then (D−v)∪{u} is an SD−set of G−v with cardinality |MSD(G)|. Hence |MSD(G− v)| ≤ |MSD(G)|,

which is a contradiction to the assumption that v ∈ V +
s . Hence in either case [Case 1 and Case 2] we get a contradiction.

Hence the claim.

Since v ∈ V +
s and v is in every SD−set of G with cardinality |MSD(G)|, at least one of the strong neighbors say x of v is

strong dominated as well as connected by only v and the deletion of v makes x as an isolated node of G− v [If such a node

x does not exist then G− v is a fuzzy subgraph of G and hence at most |MSD(G)| nodes are needed to strongly dominate

G− v, which is a contradiction since v ∈ V +
s ]. Consider a strong neighbor say y ( 6= x) of v. Then the path say P : x− v− y

connecting x and y is a strong path and strength of P= S(P ) = min {µ(x, v), µ(v, y)} > 0. Since CONNG(x, y) is the

maximum of the strengths of all paths connecting x and y it follows that CONNG(x, y) > 0.

Now, since the deletion of v makes x as an isolated node, the strength of connectedness between x and any node in Ns(v)

other than x becomes zero in G − v. Hence CONNG−v(x, y) = 0. That is the removal of v reduces the strength of

connectedness between the nodes x and y from a nonzero value to zero, which contradicts the assumption that v is not a

fuzzy cutnode. Hence it follows that v is a fuzzy cutnode of G.

The following example shows that a fuzzy cutnode v need not belong to V +
s .

Example 3.15. Consider the fuzzy graph G in Fig 4.

v v
v v

v
v

u v

w x

y

z

0.2

0.3

0.1

0.4
0.4

0.5

Fig 4: A fuzzy cutnode not in V +
s

In the fuzzy graph of Fig 4, all node weights are taken as 1. Here all arcs except (u, v) are strong arcs. The nodes x and w

are fuzzy cutnodes. One of the MSD − set is {w, x}. Hence |MSD(G)| = 2. But |MSD(G− w)| = 2. Hence w /∈ V +
s .

Theorem 3.16. In any strong fuzzy graph G : (V, σ, µ) with at least 3 nodes, if a fuzzy cutnode v is in every SD−set of G

with cardinality |MSD(G)| then v ∈ V +
s .
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Proof. Let G : (V, σ, µ) be any strong fuzzy graph with at least 3 nodes. Let v be a fuzzy cutnode of G which is in every

SD−set of G with cardinality |MSD(G)|. Suppose if possible, v /∈ V +
s . Since v is in every SD−set of G with cardinality

|MSD(G)|, condition (a) of Theorem 3.11 holds and since v /∈ V +
s , condition (b) should get violated. Hence there must

exist at least one subset D ⊆ V − Ns[v] with cardinality |MSD(G)|, and D strongly dominates G − v. Now by definition

of a fuzzy cutnode, there are two nodes say u and w such that v is on every strongest as well as strong path (since G is a

strong fuzzy graph) joining u and w. Since v is in every SD−set of G with cardinality |MSD(G)|, either u or w or both are

strongly dominated only by the node v. Suppose u is strongly dominated only by v. Then the deletion of v makes u as an

isolated node in G− v. Since D ⊆ V −Ns[v] with cardinality |MSD(G)| and D strongly dominates G− v, u must belong

to D, which is a contradiction, since u ∈ Ns(v) and D cannot contain any node in Ns[v] by the condition D ⊆ V −Ns[v].

The proofs follow similarly when w or both u and w are strongly dominated only by v. Hence it follows that v ∈ V +
s .

Remark 3.17. In a general fuzzy graph which is not a strong fuzzy graph, Theorem 3.16 is not true which is illustrated in

the following example.

Example 3.18. In the fuzzy graph of Fig 3 in Example 3.13, v is a fuzzy cutnode since deletion of v reduces the strength

of connectedness between the nodes v1 and v2 from 0.4 to 0.3. Also v is in every SD−set of G with cardinality |MSD(G)|.

But v /∈ V +
s .

Remark 3.19. The major difference between strong domination number of fuzzy graphs and that of crisp graphs is that in

any crisp graph G, the number of nodes in a minimum dominating set of G is strictly less than that of any other dominating

set. But in fuzzy graphs, the strong domination number of fuzzy graph is defined based on weight of strong arcs and not based

on node weights. Hence in fuzzy graphs, there are strong dominating sets with same number of nodes as minimum strong

dominating set. That is, there are fuzzy graphs G with |SD(G)| = |MSD(G)|.

Theorem 3.20. If a node v in a non trivial fuzzy graph G : (V, σ, µ) is in V +
s , then v is in every SD−set of G with

cardinality |MSD(G)|.

Proof. Let G : (V, σ, µ) be a non trivial fuzzy graph. Suppose v ∈ V +
s . Then

|MSD(G− v)| > |MSD(G)| (1)

To prove that v is in every SD−set of G with cardinality |MSD(G)|. If possible, let D be an SD−set of G not containing

v with cardinality |MSD(G)|. Then D is also an SD−set G− v. Hence

|MSD(G− v)| ≤ |D| = |MSD(G)|.

which is a contradiction to (1). Hence v is in every SD−set of G with cardinality |MSD(G)|.

Remark 3.21. The converse of Theorem 3.20 is not true which is illustrated in the following example.

Example 3.22. In the fuzzy graph of Fig 3 in Example 3.13, G is a non trivial fuzzy graph. The node v is in every SD−set

of G with cardinality |MSD(G)|. But v /∈ V +
s .

The following definitions of strong independent set and private strong neighbor in fuzzy graphs are due to Nagoorgani,

Chandrasekharan and Vadivel [9, 11]. The authors used strong arcs to define these concepts as follows.

Definition 3.23 ([9]). Two nodes in a fuzzy graph G : (V, σ, µ) are said to be strongly independent if there is no strong arc

between them. A set of nodes in G is strong independent if any two nodes in the set are strongly independent.

117



The Strong Domination Alteration Sets in Fuzzy Graphs

Definition 3.24 ([11]). Let G : (V, σ, µ) be any fuzzy graph. Let D ⊆ V be a set of nodes and let u ∈ D. Then a node v is

called a private strong neighbor of u (with respect to D) if Ns[v] ∩D = {u}. Also the private strong neighbor set of u with

respect to D is defined to be psn[u,D] = {v : Ns[v] ∩D = {u}} or psn[u,D] = Ns[u]−Ns[D − u].

Note that u ∈ psn[u,D] if D is a strong independent set of nodes, in which case u is said to be its own private strong

neighbor. The above defined concepts are illustrated in the following example.

Example 3.25. Consider the fuzzy graph G in Fig 5.

v v

v v

u v

w x

0.4

0.5

0.6

0.7

Fig 5: Illustration of private strong neighbor set

In this fuzzy graph, all node weights are taken as 1. All arcs except (u, v) are strong arcs. Consider the set D = {u, v}.

Then D is a strong independent set of G, since no strong arc between the nodes u and v. Now in Fig 3.6,

Ns[u] = {u,w} , Ns[v] = {v, x} , Ns[w] = {u,w, x} , Ns[x] = {x,w, v}.

Ns[u] ∩D = {u,w} ∩ {u, v} = {u},

Ns[v] ∩D = {v, x} ∩ {u, v} = {v},

Ns[w] ∩D = {u,w, x} ∩ {u, v} = {u} ,

Ns[x] ∩D = {x,w, v} ∩ {u, v} = {v}.

Hence u and w are private strong neighbors of u with respect to D. Also v and x are private strong neighbors of v with

respect to D. The private strong neighbor set of u with respect to D is

psn[u,D] = {v : Ns[v] ∩D = {u}} = Ns[u]−Ns[D − u] = Ns[u]−Ns[v] = {u,w} − {v, x} = {u,w}.

Similarly psn[v,D] = {v, x}. Also note that u ∈ psn[u,D] and v ∈ psn[v,D]. Hence u and v are said to be its own private

strong neighbors.

The next theorem gives a characterization of nodes in V −s in strong fuzzy graphs.

Theorem 3.26. Let G : (V, σ, µ) be a strong fuzzy graph. Then a node v ∈ V −s if and only if psn[v,D] = {v}, for some

strong dominating set D containing v with cardinality |MSD(G)|.

Proof. Let G : (V, σ, µ) be a strong fuzzy graph. Let v ∈ V −s and S be an MSD−set of G− v. Then D = S ∪ {v} is an

SD−set of G with cardinality |MSD(G)|. By Definition 3.24,

psn[v,D] = Ns[v]−Ns[D − v] = Ns[v]−Ns[S]. (2)

We have to prove that psn[v,D] = {v}. Suppose if possible, psn[v,D] contains a node say u other than v. Then u is a

strong neighbor of v. Also u /∈ Ns[S] by (2). That is, u is not in S and u is not a strong neighbor of any node in S, which

is a contradiction, since S is a strong dominating set of G− v. Hence our assumption is wrong and psn[v,D] = {v}.
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Conversely suppose that psn[v,D] = {v} for some strong dominating set D containing v with cardinality |MSD(G)|.

Obviously D − v strongly dominates G− v. Hence v ∈ V −s .

Remark 3.27. In a general fuzzy graph except strong fuzzy graphs, Theorem 3.26 is not true which is illustrated in the

following example.

Example 3.28. Consider the fuzzy graph G in Fig 6.

v v

v v

u v

w x

Fig 6: Illustration of Remark 3.27

0.5

0.60.8

0.7

In the fuzzy graph of Fig 6, all node weights are taken as 1. All arcs except (u, v) are strong arcs. The MSD− sets are

D1 = {v, w} and D2 = {w, x} with γs(G) = 0.7+0.6 = 1.3. Also D3 = {u, x} and D4 = {u, v} are SD−sets with cardinality

|MSD(G)|. Here, u, v, w, x ∈ V −s . But psn[x,D2] = Ns[x] − Ns[w]. That is psn[x,D2] = {v, w, x} − {u,w, x} = {v}.

Also psn[x,D3] = {v, w, x} − {u,w} = {v, x}. Hence x /∈ psn[x,D2], and psn[x,D3] 6= {x}, which is a contradiction, since

x ∈ V −s .

Theorem 3.29. For any strong fuzzy graph G : (V, σ, µ) with at least 2 nodes,

(a). If v ∈ V +
s , then for every SD−set D of G with cardinality |MSD(G)|, v ∈ D and psn[v,D] contains at least two non

adjacent nodes.

(b). If x ∈ V +
s and y ∈ V −s then x and y are not adjacent.

(c). |V os | ≥ 2
∣∣V +
s

∣∣.
(d). |MSD(G)| 6= |MSD(G− v)| ∀v ∈ V if and only if V = V −s .

(e). If v ∈ V −s and v is not an isolate in G, then there exists an SD−set D of G with cardinality |MSD(G)| such that

v /∈ D.

Proof.

(a). Let G : (V, σ, µ) be any strong fuzzy graph with at least 2 nodes. Suppose v ∈ V +
s . Then from Theorem 3.11, v is not

an isolated node and is in every SD−set D of G with cardinality |MSD(G)|. If psn[v,D] = {v} then by Theorem 3.26,

v ∈ V −s , a contradiction, since v ∈ V +
s . Next, we have to prove that psn[v,D] contains at least two non adjacent nodes.

Suppose on the contrary that the strong private neighbors of v induce a fuzzy subgraph H such that H∗ is a complete

graph. Then (D − v) ∪ {u} for any u ∈ psn[v,D] is an SD−set of G with cardinality |MSD(G)| not containing v,

which is a contradiction, since v ∈ V +
s and hence v should belong to every SD−set of G with cardinality |MSD(G)| by

Theorem 3.11. Hence the result follows.
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(b). Assume that x ∈ V +
s and y ∈ V −s . To prove that x and y are not adjacent. Suppose on the contrary that x and y are

adjacent (i.e. µ(x, y) > 0). Since removing a node from a fuzzy graph G : (V, σ, µ) can decrease the number of nodes

in a MSD−set by at most one by Remark 3.6 and since y ∈ V −s , ∃ an SD−set D
′

(say) of G − y with cardinality

|MSD(G)| − 1. Then we consider the following two cases.

Case 1: D
′

contains x.

Then D
′

strongly dominates G and hence D
′

is an SD−set of G. But
∣∣∣D′ ∣∣∣ = |MSD(G)| − 1 < |MSD(G)| which is a

contradiction, since |MSD(G)| nodes are necessary to strongly dominate G.

Case 2: D
′

does not contain x.

Then D
′
∪ {y} is an SD−set of G with cardinality |MSD(G)| not containing x, which is a contradiction since x ∈ V +

s

and hence x should belong to every SD−set of G with cardinality |MSD(G)|. Hence if x ∈ V +
s and y ∈ V −s , then x

and y are not adjacent.

(c). To prove that |V os | ≥ 2
∣∣V +
s

∣∣.
For each v ∈ V +

s , (a) describes that for every SD−set D of G with cardinality |MSD(G)|, v ∈ D and psn[v,D] contains

at least two non adjacent nodes say x and y. Hence these private strong neighbors x and y of v are in V − D, since

psn[v,D] = Ns[v]−Ns[D − v]. Thus these private strong neighbors x and y of v are not in V +
s , since any node in V +

s

is a node of D. Also from (b), since v ∈ V +
s , note that v has no private strong neighbor in V −s , and thus these private

strong neighbors x and y must be in V os . Hence the result follows.

(d). Clearly if V = V −s , then |MSD(G)| 6= |MSD(G− v)|, ∀v ∈ V . Conversely suppose that |MSD(G)| 6= |MSD(G− v)|,

∀v ∈ V . Then

V = V +
s ∪ V −s . (3)

If any v ∈ V +
s , then by (c), V os is non empty, which contradicts (1). Thus V +

s = φ and V = V −s .

(e). Suppose v ∈ V −s and v is not an isolate in G. To prove that ∃ an SD−set D of G with cardinality |MSD(G)|

such that v /∈ D. Suppose on the contrary that every SD−set of G with cardinality |MSD(G)| contains v. Since

v ∈ V −s , by Theorem 3.26, psn[v,D] = {v}, for some SD−set D containing v with cardinality |MSD(G)|. Since

psn[v,D] = Ns[v]−Ns[D− v] by Def.3.24, psn[v,D] = {v} implies that either D− v contains all strong neighbors of v

or the nodes of D − v are strong neighbors of the nodes in Ns(v). Then in both of these cases, we get a contradiction

as follows.

Case 1: D − v contains all strong neighbors of v.

Then D − v itself is an SD−set of G with cardinality less than |MSD(G)|, which is a contradiction.

Case 2: The nodes of D − v are strong neighbors of the nodes in Ns(v).

Then (D − v) ∪ {u} for any strong neighbor u of v is an SD−set of G with cardinality |MSD(G)| not containing v,

which is a contradiction to our assumption.

Corollary 3.30. A strong fuzzy graph G : (V, σ, µ) ∈ CNR if and only if for each node v ∈ V , psn[v,D] = {v} for some

strong dominating set D containing v with cardinality |MSD(G)|.

Proof. A strong fuzzy graph G : (V, σ, µ) ∈ CNR if and only if |MSD(G)| 6= |MSD(G− v)| ∀v ∈ V , by Definition 3.3.

That is if and only if V = V −s , by part (d) of Theorem 3.29. That is if and only if for each node v ∈ V , psn[v,D] = {v} for

some strong dominating set D containing v with cardinality |MSD(G)|, by Theorem 3.26.
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Next, we discuss the effect of the removal of an arc in the MSD−set of a fuzzy graph G : (V, σ, µ). Let us partition the arcs

of G into two crisp subsets according to how their removal affects the cardinality of a MSD−set as follows.

Eos = {(u, v) ∈ E/ |MSD(G− (u, v))| = |MSD(G)|}

E+
s = {(u, v) ∈ E/ |MSD(G− (u, v))| > |MSD(G)|}

Remark 3.31. Clearly all δ and δ∗− arcs of a fuzzy graph G : (V, σ, µ) are in Eos . Also note that the removal of any

arc of G does not decrease the number of nodes in a MSD−set of G and can increase it by at most one. Thus a fuzzy

graph G, for which the number of nodes in a MSD−set changes when an arbitrary arc is removed, has the property that

|MSD(G− e)| = |MSD(G)| + 1 ∀ arcs e ∈ µ∗. The fuzzy graphs in CAR [Definition 3.3] are called MSD+ critical fuzzy

graphs.

Proposition 3.32. A non trivial complete fuzzy graph G : (V, σ, µ) is in CAR if and only if G is K2.

Proof. Let G : (V, σ, µ) be a non trivial complete fuzzy graph. If G is K2, then clearly G is in CAR.

Conversely assume that G is a non trivial complete fuzzy graph and G ∈ CAR. Then by Remark 3.31,

|MSD(G− e)| = |MSD(G)|+ 1 ∀ e ∈ µ∗. (4)

To prove that G = K2. Suppose if possible G 6= K2. Hence |V | = n ≥ 3. We have |MSD(G)| = 1. Hence by (4),

|MSD(G− e)| = 2 ∀ e ∈ µ∗ (5)

Let e = (x, y) be any arbitrary arc of G. Note that each node in G is adjacent with the the remaining n − 1 nodes of G

and every arc in G and G− e is an effective arc. Since each of x and y is adjacent to n− 1 nodes in G, each of x and y is

adjacent to n− 2 nodes in G− e. Let D = {u1, u2, · · · , un−2} be the n− 2 nodes of G except x and y. Note that each node

in D is adjacent to the remaining n−1 nodes of G− e by an effective arc. Hence D
′

= {ui} for each ui ∈ D is an MSD−set

of G− e. Hence |MSD(G− e)| = 1, which contradicts (5). Now since e = (x, y) is arbitrary, this is true for every arc of G.

Hence the proposition follows.

Proposition 3.33. If G : (V, σ, µ) is a fuzzy cycle, then Eos = µ∗. That is E+
s is empty.

Proof. In a fuzzy cycle G : (V, σ, µ) on n nodes, every arc is strong. Also, the number of nodes in any SD−set of G and G∗

is same because each arc in both graphs is strong. Now, the strong domination number of G∗ is dn
3
e. Hence the minimum

number of nodes in any SD−set of G is dn
3
e. Now the deletion of any arc e in G makes G− e as a path Pn on n nodes and

every arc in Pn is strong. Hence the minimum number of nodes in any SD−set of G− e = Pn is dn
3
e. Hence the number of

nodes in any MSD−set of G and G− e is same. That is, |MSD(G− e)| = |MSD(G)| for any e ∈ µ∗. Hence Eos = µ∗.

Proposition 3.34. If G : (V, σ, µ) is a fuzzy tree such that G∗ contains at least one cycle, then Eos is never empty.

Proof. Let G : (V, σ, µ), be a fuzzy tree such that G∗ contains at least one cycle. Let C be a cycle in G. Then the weakest

arc of C is a δ−arc say e, since G is a fuzzy tree. Then for the arc e, |MSD(G− e)| = |MSD(G)|. Hence e ∈ Eos and Eos is

non-empty.
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Next theorem shows that the only fuzzy graphs in CAR are fuzzy galaxy. The notion of fuzzy galaxy is introduced as

follows.

Definition 3.35. A fuzzy star is a bipartite fuzzy graph G : (V, σ, µ) with |V1| = 1 or |V2| = 1. A fuzzy galaxy is a fuzzy

forest in which each component is a fuzzy star.

Theorem 3.36. A fuzzy graph G : (V, σ, µ) is in CAR if and only if G is a fuzzy galaxy.

Proof. If G is a fuzzy galaxy then each component of G is a fuzzy star [Definition 3.35]. Hence deletion of any arc in G

increases the cardinality of any MSD−set of G. Hence G ∈ CAR. Conversely, let G ∈ CAR. Then

|MSD(G− e)| 6= |MSD(G)| , ∀ e ∈ µ∗. (6)

First note that all arcs in G are strong, for, if G contains a δ− arc (say) e, then e ∈ Eos [Remark 3.31], which contradicts

(6). To prove that G is a fuzzy galaxy. Suppose on the contrary that G is not a fuzzy galaxy. Then at least one of the

component of G contains a cycle say C. Then C contains more than one weakest arc, for, if C has only one weakest arc

then it is a δ−arc and it belongs to Eos which contradicts (6). Hence C is a fuzzy cycle. Let D be an MSD−set of G. Then

all arcs in C with both ends in D or both ends in V −D are in Eos since D will still strongly dominate V −D if such an arc

is removed. This is a contradiction, since by our assumption, G ∈ CAR implies that all arcs of G should be in E+
s . Hence

it follows that G is a fuzzy galaxy. This completes the proof.

4. Conclusion

In this paper, the effect of the removal of a node or an arc on the MSD−set of a fuzzy graph is investigated.
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