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1. Introduction

The Fixed point Theory has wide applications in Many Branches of Science and Engineering field, S.Banach [1]derived a

well known theorem for a contraction mapping in a Complete metric space.Which states that,”A contraction has a Unique

fixed point theorem in a Complete metric space.” After that many authors proved fixed point theorems for mappings

satisfying certain contraction conditions. In 1968 R.Kanan [4] introduced another type of map called as Kanan Map and

investigated Unique fixed point theorem in complete metric space. In 1973 B.K. Das and Sattya Gupta [2] Generalized

Banach contraction principle in terms of rational expression. Recently V.V. Latpate and Dolhare U.P.[3] generalized fixed

point theorem in Generalized metric space. The study of common fixed points of a functions satisfying a certain conditions

has been a very interesting research activity since last some years. Kanan R.[4] has proved common fixed point theorem for

a pair of self maps, J.Madhusudan Rao [6] proved important common fixed point theorem .Fisher [5] defined Kanan type

map and obtain relation between Kanan map and Contraction. In this paper we have proved a common fixed point theorem

for a pair of self maps similar to map of B.k. Das and Satya Gupta [2].

2. Some Preliminaries

Definition 2.1. Let X be a non empty set. A mapping d : X ×X → R is said to be a metric or a distance function if it

satisfies following conditions.

(1). d(x, y) is non negative.
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(2). d(x, y) = 0 if and only if x and y coincides i.e. x = y

(3). d(x, y) = d(y, x) (symmetry)

(4). d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Then the function d is referred to as metric on X.And (X, d) or simply X is said to as metric space.

Definition 2.2. A metric space (x, d) is said to be a complete metric space if every cauchy sequence in X converges to a

point of X.

Definition 2.3. If (X, d) be a complete metric space and a function F : X → X is said to be a contraction map if

d(F (x), F (y)) ≤ β d(x, y) for all x, yε X and for 0 < β < 1.

Definition 2.4. Let F : X → X, then xεX is said to be a fixed point of F if F (x) = x.

Example 2.5. If f(x) = sin(x) , then o is the fixed point of f since f(0)=0.

Definition 2.6. Let X be a metric space and if F1 and F2 be any two maps .An element aεX is said to be a common fixed

point of F1 andF2 if F1(a) = F2(a).

Example 2.7. If F1(x) = Sin(x) and F2(x) = Tan(x). Then o is the common fixed point of F1 andF2 since F1(0) =

Sin(0) = 0 and F2(0) = Tan(0) = 0.

3. Main Result

Theorem 3.1. Let (X, d) be a complete metric space. A mapping F : X → X be continuous and F satisfies the condition

d(F (x), F (y) ≤ µ d(x, F (x)) d(y, F (y))

d(x, y)
+ µ λd(x, y) (1)

for all x, yεX , x 6= y and for µ , λ ε[0, 1
2
) with µ + λ < 1

2
and µ λ < 1

2
. Then F has a Unique fixed point in X.

Proof. Let us consider x0εX an arbitrary point and Let xn be a sequence in X s.t. fn(x0) = xn for n be a positive integer.

If xn = xn+1 for some n then the result is obvious. Let xn 6= xn+1 for all n. Consider d(xn+1, xn) = d(F (xn), F (xn−1))

d(xn+1, xn) ≤ µ d(xn, F (xn)) d(xn−1, F (xn−1))

d(xn, xn−1)
+ µ λd(xn, xn−1)

d(xn+1, xn) ≤
(

µλ

1− µ

)
d(xn, xn−1)

≤
(

µλ

1− µ

)2

d(xn−1, xn−2)

≤ . . .

≤
(

µλ

1− µ

)n
d(x1, x0) for m ≥ n ,using the triangle inequality, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ (αn + αn + 1 + .....+ αm − 1) d(x1, x0) where α =
µλ

1− µ

≤ αn

1− α d(x1, x0)

But αn

1−α → 0 as m, n→∞.

R.H.S.→ 0. xn be a Cauchy sequence in X and Since X is complete. Converges to some element of X. Say p ∈ X xn → p
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and since F is continuous. Consider

F (p) = F
(

lim
n→∞

xn
)

= lim
n→∞

F (xn) = p

p is a fixed point of F in X. For Uniqueness if q be distinct point F from p in X. Then F (q) = q. Consider

d(q, p) = d(F (q), F (p))

≤ d(F (q), F (p)) ≤ µ d(q, F (q)) d(p, F (p))

d(q, p)
+ µ λd(q, p)

= µ λd(q, p)

< d(q, p)

which is a contradiction. p is a fixed point of F in X.

Theorem 3.2. Let F : X → X where X be a complete metric space such that F satisfies (1) and if for some nεI+ if Fn is

uniformly continuous, then F has a unique fixed point.

Now we prove a unique common fixed theorem of a pair of self mappings defined on a complete metric space (X,d) which

satisfies (1).

Theorem 3.3. Let F1, F2 be two mappings which maps X × X to R, where (X, d) be a complete metric space satisfying

the condition

(1). d(F (x), F (y) ≤ µ d(x,F (x)) d(y,F (y))
d(x,y)

+µ λd(x, y) for all x, yεX , x 6= y and for µ , λ ε[0, 1
2
) with µ +λ < 1

2
and µ λ < 1

2
.

(2). there is an x0εX , the sequence xn is such that xn = F1(xn−1), if n is even and xn = F2(xn−1), if n is odd, and

xn 6= xn+1 for all n.

(3). F1F2 is continuous on X. Then F1 F2 has a unique common fixed point in X.

Proof. consider

d(x2n+1, x2n) = d(F2(x2n), F1(x2n−1))

≤ µ d(x2n, F2(x2n)) d(x2n−1, F1(x2n−1))

d(x2n, x2n−1)
+ µ λd(x2n, x2n−1), which gives

d(x2n+1, x2n) ≤
(

µλ

1− µ

)
d(x2n, x2n−1)

≤ . . .

≤
(

µλ

1− µ

)2n

d(x0, x1)

d(x2n+2, x2n+1) ≤
(

µλ

1− µ

)2n+1

d(x0, x1)

For m ≥ n, using triangle inequality. Consider

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ (αn + αn+1 + · · ·+ αm−1) d(x1, x0) where α =
µλ

1− µ

≤ αn

1− α d(x1, x0)
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αn

1−α → 0 as m, n → 0. Since X is complete,there exists p in X such that xn → p. Therefore its subsequence xnk also

converges to p where nk = 2k. Since F1F2 be continuous on X. Therefore, we have

F1F2(p) = F1F2( lim
k→∞

xnk ) = lim
k→∞

(xnk+1) = p.

If possible suppose that F2(p) 6= p, then

d(F2(p), p) = d(F2(u), F1F2(u))

≤ µd(p, F2(p)).d(F2(p), F1F2(p))

d(p, F2(p))
+ µλd(p, F2(p))

≤ (µ+ λ)d(p, F2(p))

which is impossible, since µ+ λ ≤ 1. Therefore, we have F2(p) = p. Similarly,

d(F1(p), p) = d(F1(F2(p)), p) = d(p, p) = 0

as d(F1(p), p) = 0. Therefore F1(p) = p. Therefore p is a common fixed point of F1 and F2. For Uniqueness if possible

suppose that qεX is another fixed point of F1 which is distinct from p. Consider

d(q, p) = d(F1(q), F2(p))

≤ µ d(q, F1(q)) d(p, F2(p))

d(q, p)
+ µ λd(q, p)

d(q, p) ≤ 0 + µ λd(q, p) < d(q, p)

∴ d(q, p) < d(q, p)

Which is not possible. Therefore p is a unique fixed point of F1. Similarly we can prove that p is also a unique fixed point

of F2. Therefore p is the unique common fixed point of F1 and F2.

4. Conclusion

We have proved unique common fixed point for pair of self maps in Complete metric space.
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