

International Journal of Mathematics And its Applications

On Common Fixed Points of Pair of Selfmaps Satisfying Certain Contractive Condition

Research Article

Latpate Vishnu^{1*} and U.P.Dolhare²

1 Research Scholar, Department of Mathematics, ACS college Gangakhed, India.

 $2\;$ Associate Professor and Head Department of Mathematics, DSM College Jintur, India.

Abstract: In this paper we study a common fixed point theorem of a pair of mappings satisfying certain contractive condition in Complete Metric Space.

MSC: 47H10, 47H09.

Keywords: Fixed point, Common fixed point, Complete Metric space, Contractive Mapping.© JS Publication.

1. Introduction

The Fixed point Theory has wide applications in Many Branches of Science and Engineering field, S.Banach [1]derived a well known theorem for a contraction mapping in a Complete metric space. Which states that," A contraction has a Unique fixed point theorem in a Complete metric space." After that many authors proved fixed point theorems for mappings satisfying certain contraction conditions. In 1968 R.Kanan [4] introduced another type of map called as Kanan Map and investigated Unique fixed point theorem in complete metric space. In 1973 B.K. Das and Sattya Gupta [2] Generalized Banach contraction principle in terms of rational expression. Recently V.V. Latpate and Dolhare U.P.[3] generalized fixed point theorem in Generalized metric space. The study of common fixed points of a functions satisfying a certain conditions has been a very interesting research activity since last some years. Kanan R.[4] has proved common fixed point theorem for a pair of self maps, J.Madhusudan Rao [6] proved important common fixed point theorem .Fisher [5] defined Kanan type map and obtain relation between Kanan map and Contraction. In this paper we have proved a common fixed point theorem for a pair of self maps similar to map of B.k. Das and Satya Gupta [2].

2. Some Preliminaries

Definition 2.1. Let X be a non empty set. A mapping $d : X \times X \to R$ is said to be a metric or a distance function if it satisfies following conditions.

(1). d(x, y) is non negative.

^{*} E-mail: vishnu.latpate@yahoo.com

(2). d(x,y) = 0 if and only if x and y coincides i.e. x = y

- (3). d(x, y) = d(y, x) (symmetry)
- (4). $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)

Then the function d is referred to as metric on X.And (X, d) or simply X is said to as metric space.

Definition 2.2. A metric space (x, d) is said to be a complete metric space if every cauchy sequence in X converges to a point of X.

Definition 2.3. If (X,d) be a complete metric space and a function $F : X \to X$ is said to be a contraction map if $d(F(x), F(y)) \leq \beta \ d(x, y)$ for all $x, y \in X$ and for $0 < \beta < 1$.

Definition 2.4. Let $F: X \to X$, then $x \in X$ is said to be a fixed point of F if F(x) = x.

Example 2.5. If f(x) = sin(x), then o is the fixed point of f since f(0)=0.

Definition 2.6. Let X be a metric space and if F_1 and F_2 be any two maps . An element $a \in X$ is said to be a common fixed point of F_1 and F_2 if $F_1(a) = F_2(a)$.

Example 2.7. If $F_1(x) = Sin(x)$ and $F_2(x) = Tan(x)$. Then o is the common fixed point of F_1 and F_2 since $F_1(0) = Sin(0) = 0$ and $F_2(0) = Tan(0) = 0$.

3. Main Result

Theorem 3.1. Let (X, d) be a complete metric space. A mapping $F: X \to X$ be continuous and F satisfies the condition

$$d(F(x), F(y) \le \frac{\mu \ d(x, F(x)) \ d(y, F(y))}{d(x, y)} + \mu \ \lambda d(x, y)$$
(1)

for all $x, y \in X$, $x \neq y$ and for μ , $\lambda \in [0, \frac{1}{2})$ with $\mu + \lambda < \frac{1}{2}$ and $\mu \lambda < \frac{1}{2}$. Then F has a Unique fixed point in X.

Proof. Let us consider $x_0 \in X$ an arbitrary point and Let x_n be a sequence in X s.t. $f^n(x_0) = x_n$ for n be a positive integer. If $x_n = x_{n+1}$ for some n then the result is obvious. Let $x_n \neq x_{n+1}$ for all n. Consider $d(x_{n+1}, x_n) = d(F(x_n), F(x_{n-1}))$

$$d(x_{n+1}, x_n) \leq \frac{\mu d(x_n, F(x_n)) d(x_{n-1}, F(x_{n-1}))}{d(x_n, x_{n-1})} + \mu \lambda d(x_n, x_{n-1})$$

$$d(x_{n+1}, x_n) \leq \left(\frac{\mu\lambda}{1-\mu}\right) d(x_n, x_{n-1})$$

$$\leq \left(\frac{\mu\lambda}{1-\mu}\right)^2 d(x_{n-1}, x_{n-2})$$

$$\leq \cdots$$

$$\leq \left(\frac{\mu\lambda}{1-\mu}\right)^n d(x_1, x_0) \text{ for } m \geq n \text{ ,using the triangle inequality, we have}$$

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \cdots + d(x_{m-1}, x_m)$$

$$\leq (\alpha^n + \alpha^n + 1 + \dots + \alpha^m - 1) d(x_1, x_0) \text{ where } \alpha = \frac{\mu\lambda}{1-\mu}$$

$$\leq \frac{\alpha^n}{1-\alpha} d(x_1, x_0)$$

But $\frac{\alpha^n}{1-\alpha} \to 0$ as $m, n \to \infty$.

 $R.H.S. \rightarrow 0. x_n$ be a Cauchy sequence in X and Since X is complete. Converges to some element of X. Say $p \in X x_n \rightarrow p$

and since F is continuous. Consider

$$F(p) = F\left(\lim_{n \to \infty} x_n\right)$$
$$= \lim_{n \to \infty} F(x_n) = p$$

p is a fixed point of F in X. For Uniqueness if q be distinct point F from p in X. Then F(q) = q. Consider

$$d(q,p) = d(F(q), F(p))$$

$$\leq d(F(q), F(p)) \leq \frac{\mu \ d(q, F(q)) \ d(p, F(p))}{d(q, p)} + \mu \ \lambda d(q, p)$$

$$= \mu \ \lambda d(q, p)$$

$$< d(q, p)$$

which is a contradiction. p is a fixed point of F in X.

Theorem 3.2. Let $F: X \to X$ where X be a complete metric space such that F satisfies (1) and if for some $n \in I^+$ if F^n is uniformly continuous, then F has a unique fixed point.

Now we prove a unique common fixed theorem of a pair of self mappings defined on a complete metric space (X,d) which satisfies (1).

Theorem 3.3. Let F_1 , F_2 be two mappings which maps $X \times X$ to R, where (X, d) be a complete metric space satisfying the condition

$$(1). \ d(F(x), F(y) \leq \frac{\mu \ d(x, F(x)) \ d(y, F(y))}{d(x, y)} + \mu \ \lambda d(x, y) \ for \ all \ x, y \in X \ , \ x \neq y \ and \ for \ \mu \ , \lambda \ \epsilon[0, \frac{1}{2}) \ with \ \mu \ + \lambda < \frac{1}{2} \ and \ \mu \ \lambda < \frac{1}{2}.$$

- (2). there is an $x_0 \in X$, the sequence x_n is such that $x_n = F_1(x_{n-1})$, if n is even and $x_n = F_2(x_{n-1})$, if n is odd, and $x_n \neq x_{n+1}$ for all n.
- (3). F_1F_2 is continuous on X. Then F_1F_2 has a unique common fixed point in X.

Proof. consider

$$\begin{aligned} d(x_{2n+1}, x_{2n}) &= d(F_2(x_{2n}), F_1(x_{2n-1})) \\ &\leq \frac{\mu \ d(x_{2n}, F_2(x_{2n})) \ d(x_{2n-1}, F_1(x_{2n-1}))}{d(x_{2n}, x_{2n-1})} + \mu \ \lambda d(x_{2n}, x_{2n-1}), \text{ which gives} \\ d(x_{2n+1}, x_{2n}) &\leq \left(\frac{\mu\lambda}{1-\mu}\right) d(x_{2n}, x_{2n-1}) \\ &\leq \dots \\ &\leq \left(\frac{\mu\lambda}{1-\mu}\right)^{2n} d(x_0, x_1) \\ d(x_{2n+2}, x_{2n+1}) &\leq \left(\frac{\mu\lambda}{1-\mu}\right)^{2n+1} d(x_0, x_1) \end{aligned}$$

For $m \ge n$, using triangle inequality. Consider

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\leq (\alpha^n + \alpha^{n+1} + \dots + \alpha^{m-1}) d(x_1, x_0) \text{ where } \alpha = \frac{\mu \lambda}{1 - \mu}$$

$$\leq \frac{\alpha^n}{1 - \alpha} d(x_1, x_0)$$

155

 $\frac{\alpha^n}{1-\alpha} \to 0 \text{ as } m, n \to 0$. Since X is complete, there exists p in X such that $x_n \to p$. Therefore its subsequence x_{n_k} also converges to p where $n_k = 2k$. Since F_1F_2 be continuous on X. Therefore, we have

$$F_1F_2(p) = F_1F_2(\lim_{k \to \infty} x_{n_k}) = \lim_{k \to \infty} (x_{n_{k+1}}) = p$$

If possible suppose that $F_2(p) \neq p$, then

$$d(F_{2}(p), p) = d(F_{2}(u), F_{1}F_{2}(u))$$

$$\leq \frac{\mu d(p, F_{2}(p)) \cdot d(F_{2}(p), F_{1}F_{2}(p))}{d(p, F_{2}(p))} + \mu \lambda d(p, F_{2}(p))$$

$$\leq (\mu + \lambda) d(p, F_{2}(p))$$

which is impossible, since $\mu + \lambda \leq 1$. Therefore, we have $F_2(p) = p$. Similarly,

$$d(F_1(p), p) = d(F_1(F_2(p)), p) = d(p, p) = 0$$

as $d(F_1(p), p) = 0$. Therefore $F_1(p) = p$. Therefore p is a common fixed point of F_1 and F_2 . For Uniqueness if possible suppose that $q \in X$ is another fixed point of F_1 which is distinct from p. Consider

$$d(q,p) = d(F_1(q), F_2(p))$$

$$\leq \frac{\mu \ d(q, F_1(q)) \ d(p, F_2(p))}{d(q, p)} + \mu \ \lambda d(q, p)$$

$$d(q, p) \leq 0 + \mu \ \lambda d(q, p) < d(q, p)$$

$$\therefore \ d(q, p) < d(q, p)$$

Which is not possible. Therefore p is a unique fixed point of F_1 . Similarly we can prove that p is also a unique fixed point of F_2 . Therefore p is the unique common fixed point of F_1 and F_2 .

4. Conclusion

We have proved unique common fixed point for pair of self maps in Complete metric space.

Acknowledgement

Both Authors thanks to visitors and Editors, Referee for their valuable suggestions.

References

- S.Banach, Sur les Operations dans les ensembles abstraits et leur applications aux equaations integrals, Fund. Math., 3(1922) 133-181.
- B.K.Das and S.Gupta, An extension of Banach Contraction principle through rational expression, Indian Journal of Pure and Applied Mathematics, 6(12)(1975), 1455-1458.
- [3] V.V.Latpate and U.P.Dolhare, Uniformaly Locally Contractive mapping and fixed point theorems in Generalized metric spaces, IJAPSA, 02(09)(2016), 73-78.
- [4] R.Kanan, Some results on fixed points -II, Am. Math. Monthly, 76(1969), 71-76.
- [5] B.Fisher, Results on Common fixed points on bounded metric spaces. Math. Sem. Notes Kobe Univ., 7(1979), 73-80.
- [6] J.Madhusudan Rao, Mappings on metric spaces, Indian J.Pure appl. Math., 11(4)(1980), 502-506.