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1. Introduction

Let R be a commutative ring with unity and let Z(R) be its set of zero divisors. The zero divisor graph of R denoted by

Γ(R) is a graph which is undirected with vertices Z(R)∗ = Z(R) − {0}, the set of non-zero divisors of R, and for distinct

x, y ∈ Z(R)∗, the vertices x and y are adjacent iff xy = 0. Throughout this paper, we consider the commutative ring by R

and the zero divisor graph Γ(R) by Γ(Zn).The idea of a zero divisor graph of a commutative ring was introduced by I. Beck

[2]. For notation and graph theory terminology are considered as in [1, 2].

The crossing number cr(G) of a graph G is the minimum number of edge crossings among the drawings of G in the plane

such that the edges of G are Jordan arcs [3, 7]. The rectilinear crossing number of a graph with minimum number of edge

crossing drawn in a plane satisfies the following conditions: (i) edges are line segments. (ii) no three vertices are collinear.

(iii) no three edges may intersect at a common vertex. The rectilinear crossing number of G is denoted by c̄r(G).

2. Maximum Rectilinear Crossing Number

We derived the Rectilinear crossing number of some zero divisor graphs [4–6]. In this paper, we evaluate the rectilinear

crossing number of Γ(Z2p2) in a commutative ring. we will show that this graph involves only the drawing of complete graph

and complete bipartite graph only. we find that crossings between these graphs will be minimum only if we immbed complete

graph inside the complete bipartite graph. Our task is to minimize the rectilinear crossings can be achieved by maximizing
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from inside, that is the complete graph. So first we prove the theorem for finding maximum rectilinear crossing number for

complete graphs. Although we come across many rectilinear drawings for maximum crossings, we give a convenient way so

that crossings from complete bipartite graph is minimized from the total crossings.The convenient way is that keeping all

the vertices of a complete graph in a cresent shaped manner and arranging majority of the vertices of complete bipartite

graphs horizontally below the cresent. This will be evident from the following theorems.

Theorem 2.1. For any complete graph Kp−1, the maximum Rectilinear crossing number is Max c̄r(Kp−1) =p−1 C4.

Proof. Since Kp−1 is a complete graph, all the vertices are adjacent to every vertex in Kp−1.Since p − 1 is even, place

equally all the vertices in a cresent shaped manner on either side of the cresent which is symmetrical. The crossings will be

as follows:

max c̄r(Kp−1) = c̄r(2p) + c̄r(3p) + · · ·+ c̄r(p(p− 3))

= 1 [(p− 4) + (p− 5) + · · ·+ 1] + 2 [(p− 5) + (p− 4) + · · ·+ 1]

+ 2 [(p− 6) + (p− 5) + · · ·+ 1] + · · ·+ (p− 4) [1]

Case(i): p = 5

max c̄r(K4) = c̄r(10) = 1(1) = 1 =4 C4 =5−1 C4 =p−1 C4

Case(ii): p = 7

max c̄r(K6) = c̄r(14) + c̄r(21) + c̄r(28)

= 1(3 + 2 + 1) + 2(2 + 1) + 3(1)

= 6 + 6 + 3 = 15 =6 C4 =7−1 C4 =p−1 C4

Case(iii): p = 11

max c̄r(K10) = c̄r(22) + c̄r(33) + c̄r(44) + · · ·+ c̄r(88)

= 1(7 + 6 + 5 + 4 + 3 + 2 + 1) + 2(6 + 5 + 4 + 3 + 2 + 1) + 3(5 + 4 + 3 + 2 + 1)

+ 4(4 + 3 + 2 + 1) + 5(3 + 2 + 1) + 6(2 + 1) + 7(1)

= 28 + 42 + 45 + 40 + 30 + 18 + 7

= 210 =10 C4 =11−1 C4 =p−1 C4

Case(iv): p = 13

max c̄r(K12) = 495 =12 C4 =13−1 C4 =p−1 Cr

Case(v): p = 17

max c̄r(K16) = 1820 =16 C4 =17−1 C4 =p−1 C4

In general,for any p,

max c̄r(Kp−1) =p−1 C4.
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3. Rectilinear Crossing Number of Γ(Z2p2) and Γ(Z3p2)

As the graph Γ(Z2p2) and Γ(Z3p2) consists of star graph, complete graph and complete bipartite graph which lead us to a

new approach in finding the minimum number of Rectilinear crossing of these composition which can be embedded in a single

graph with minimum number of crossings. We obtain the minimum number of crossings by imbedding the complete graph

(outer planar) and star graph within the middle of complete bipartite graph by following the prescribed orderly manner. So

the zero divisor graph facilitates, in finding the different types of graphs embedded in different combinations. The same can

be obtained for any combinations of graphs if possible.

Theorem 3.1. For any graph Γ(Z2p2),where p is any prime p > 3, then

c̄r(Γ(Z2p2)) =p−1 C4 + (p−Odd)

[
(p− 1)2(p− 3)

8
−

p+1
2

P3

3

]
+

Kp−1,p−Odd + Kp−1,p+Odd

2
,

where 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,. . . are the odd numbers chosen for the prime numbers, p = 5, 5 and 7, 11, 13, 17, 17

and 19, 23, 23, 29, 29,. . . respectively by rightly chosen.

Proof. The vertex set of Γ(Z2p2), is V (Γ(Z2p2)) = {2, 4, 6, 8, . . . , 2(p2 − 1), p, 2p, 3p, 5p, . . . , p(2p − 1)}. Hence,∣∣V (Γ(Z2p2))
∣∣ = p2 +p−1. Let u = 4 and v = p(2p−1). Then uv = 4p(2p−1). This implies 2p2 does not divides 4p(2p−1).

Therefore,u and v are non-adjacent vertices. Let S1 be the set which contains only the vertices with multiples of 2p , and S2

be the set which consists multiples of 2 other than the vertices of S1. Let x = 10 and y = 20 when p = 5. Then xy = 200.

Hence 2p2 divides 200, which implies x and y are adjacent. Similarly, all the vertices in S1 are adjacent. Therefore we get

a complete graph Kp−1. The centre point p2 is adjacent to all the vertices in the set S1 and S2, since if x = p2, y = 2 then

xy = 2p2, which clearly divides 2p2. Therefore, we get a star graph kp2,p2−1. Finally the vertices p, 3p, 5p...p(2p − 1) are

adjacent to all the vertices in the set S1.

Similarly if x = 2p, y = p(2p− 1), implies xy = 2p2(2p− 1) which divides 2p2. Therefore we get a complete bipartite graph

Kp−1,p−1. As the graph of kp2,p2−1 is a star graph, the vertices of S2 which are adjacent only to the vertex p2, whose edges

between them involves no crossing with the other edges of the graph if p2 is placed either at the topmost end or at the last

vertex in the bottom so the crossings of p2, with the set S1 is zero.

Now, the graph Γ(Z2p2) involves the drawing of complete graph Kp−1 and complete bipartite graph Kp−1,p−1 along with

the vertex p2 only. It can be observed that p2 is adjacent only to kp−1 but non adjacent to S3 of Kp−1,p−1. Therefore, we

include p2 in Kp−1,p−1. Then the modified bipartite graph will be Kp+1,p−1.

Finally, we arrive at the crossings of only the complete bipartite graph Kp+1,p−1 and complete graph Kp−1. First,

we give rectilinear drawing of Kp−1. Place all the (p − 1) vertices of S1 in crescent shaped manner and the edges

are drawn such that all the (p − 1) vertices are adjacent to each other. Therefore the drawing of Kp−1 will lead to

maximum upper bound for any rectilinear drawing. Next we place all the (p + 1) vertices of the set S3 and p2 verti-

cally from above and below Kp−1. The task of splitting the vertices from above and below minimizes from the total crossings.

We observe that the number of vertices in the complete bipartite graph is p which is greater than the number of vertices

in complete graph i.e, Kp−1. So the inner complete graph Kp−1 has maximum crossing, but not greater than the crossings

from above and below Kp−1. Let V1 be the vertex set from above and V2 be the vertex set from below the crescent. We
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infer that the combination of vertices taken in V1 and V2 differs for every prime. Let c̄r

(
K

′
p−1,p−odd

2

)
denote the crossings

between the vertices in the set V1 and c̄r

(
Kp−1,p+odd

2

)
denote the crossings between the vertices in the set V2.

Case(i): Let p = 5

The vertex set of Γ(Z50), is {2, 4, 6, 8, ..., 48, 5, 15, ..., 45}. Hence, |V (Γ(Z50))| = 29. Let S1 = {10, 20, 30, 40}, S2 =

{2, 4, 6, ..., 48} and S3 = {5, 15, 25, 35, 45}. Here S1 is the complete graph of Γ(Z50), where p = 5 is K4. Therefore by

Theorem (1.4.1), c̄r(K4) =5−1 C4 =4 C4 = 1. Let V1 = {5, 25} and let V2 = {15, 35, 45}. Then,

c̄r(V1) = c̄r

(
K4,4

2

)
=

2.1.2.1

2
= 2

c̄r(V2) = c̄r

(
K4,6

2

)
=

2.1.3.2

2
= 6

c̄r(V1) + c̄r(V2) = c̄r

(
Kp−1,p−1 + Kp−1,p+1

2

)
= c̄r

(
K

′
p−1,p−odd + Kp−1,p+odd

2

)

= 2 + 6 = 8

Crossings of V1 over K4 is,

c̄r(5) + c̄r(25) = 2 [2 + 2(1)]

= (4)(4− 2)

= (5− 1)

[
16× 2

8

]
− 6

3

= (5− 1)

[
(5− 1)2(5− 3)

8
−

5+1
2 P3

3

]

= (p− 1)

[
(p− 1)2(p− 3)

8
−

p+1
2 P3

3

]
, where odd=1.

Therefore total crossings is,

c̄r(K4) + c̄r

(
K4,4 + K4,6

2

)
+ (5− 1)

[
(5− 1)2(5− 3)

8
−

5+1
2 P3

3

]
= 1 +

4 + 12

2
+ 4 [4− 2] = 1 + 8 + 8 = 17

Case(ii): Let p = 7

The vertex set of Γ(Z98), is {2, 4, 6, 8, ..., 96, 7, 21, ..., 91}. Hence, |V (Γ(Z98))| = 54. Let S1 = {14, 28, 42, 56, 70, 84}, S2 =

{2, 4, 6, ..., 96} and S3 = {7, 21, 35, 49, 63, 77, 91}. Here S1 is the complete graph of Γ(Z98), where p = 7 is K6. Therefore by

theorem (1.4.1), c̄r(K6) =7−1 C4 =6 C4 = 15. Let V1 = {7, 49} and let V2 = {21, 35, 63, 77, 91}. Then,

c̄r(V1) = c̄r

(
K6,4

2

)
=

3.2.2.1

2
= 6

c̄r(V2) = c̄r

(
K6,10

2

)
=

3.2.5.4

2
= 60

c̄r(V1) + c̄r(V2) = c̄r

(
Kp−1,p−3 + Kp−1,p+3

2

)
= c̄r

(
K

′
p−1,p−odd + Kp−1,p+odd

2

)

= 6 + 60 = 66
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Crossings of V1 over K6 is,

c̄r(7) + c̄r(49) = 2 [4 + 2(3) + 3(2)]

= (4)(18− 8)

= (7− 3)

[
36× 4

8

]
− 24

3

= (7− 3)

[
(7− 1)2(7− 3)

8
−

7+1
2 P3

3

]

= (p− 1)

[
(p− 1)2(p− 3)

8
−

p+1
2 P3

3

]
, where odd=3.

Therefore total crossings is,

c̄r(K6) + c̄r

(
K6,4 + K6,10

2

)
+ (7− 1)

[
(7− 1)2(7− 3)

8
−

7+1
2 P3

3

]
= 15 +

12 + 120

2
+ 4 [18− 8] = 15 + 40 + 66 = 121

Case(iii): Let p = 11

The vertex set of Γ(Z242), is {2, 4, 6, 8, ..., 240, 11, 22, ..., 231}. Hence, |V (Γ(Z242))| = 131. Let S1 = {22, 44, 66, ..., 220},

S2 = {2, 4, 6, ..., 240} and S3 = {11, 33, 55, ..., 231}. Here S1 is the complete graph of Γ(Z242), where p = 11 is K12.

Therefore by theorem (1.4.1), c̄r(K12) =11−1 C4 =10 C4 = 210. Let V1 = {11, 33, 121} and let V2 = {55, 77, 99, ..., 231}.

Then,

c̄r(V1) = c̄r

(
K10,6

2

)
=

5.4.3.2

2
= 60

c̄r(V2) = c̄r

(
K10,16

2

)
=

5.4.8.7

2
= 560

c̄r(V1) + c̄r(V2) = c̄r

(
Kp−1,p−5 + Kp−1,p+5

2

)
= c̄r

(
K

′
p−1,p−odd + Kp−1,p+odd

2

)

= 60 + 560 = 620

Crossings of V1 over K6 is,

c̄r(11) + c̄r(33) + c̄r(121) = 6 [8 + 2(7) + 3(6) + 4(5)]

= (6)(100− 40)

= (11− 5)

[
100× 8

8

]
− 120

3

= (11− 5)

[
(11− 1)2(11− 3)

8
−

11+1
2 P3

3

]

= (p− 5)

[
(p− 1)2(p− 3)

8
−

p+1
2 P3

3

]
, where odd=5.

Therefore total crossings is,

c̄r(K10)+c̄r

(
K10,5 + K10, 16

2

)
+(11−5)

[
(11− 1)2(11− 3)

8
−

11+1
2 P3

3

]
= 210+

120 + 1120

2
+6 [100− 40] = 210+620+360 = 1190

In general, for any prime p > 3, then c̄r(Γ(Z2p2)) =p−1 C4 + (p − Odd)

[
(p−1)2(p−3)

8
−

p+1
2 P3
3

]
+

c̄r

(
Kp−1,p−Odd + Kp−1,p+Odd

2

)
where Odd represents the odd numbers, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, ... for the corresponding

prime, p = 5, 5 and 7, 11, 13, 17, 17 and 19, 23, 23, 29, 29, ... by rightly choosen.
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Theorem 3.2. For any graph Γ(Z3p2),where p is any prime, then

c̄r(Γ(Z3p2)) =p+1 C4+2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)]+c̄r

(
Kp−1, 2(p + n)

2
+

Kp−1, 2(p− (2 + n))

2

)
,

and for p > 3 where S = p + 1, S0 = p−3
2

, S1 = p−1
2

and n = 1, 2, 3, 4, 5, ... for the corresponding primes p = 5, 7, 11, 13, ...

Proof. The vertex set of Γ(Z3p2), is V (Γ(Z3p2)) = {3, 6, 9, ......3(p2 − 1), p, 2p, 3p, .....p(3p − 1)}. Hence,
∣∣V (Γ(Z2p2))

∣∣ =

p2 + 2p− 1. The vertices of Γ(Z3p2) be partitioned into V1, V2, V3, and V4 where V1 = {p2, 2p2},V2 = {3p, 6p, 9p, ...3p(p− 1)}

,V3 = {p, 2p, 4p, ...p(3p− 1)} and V4 = {3, 6, 9, ...3(p2 − 1)}.

Next, consider the set V2. Let u = 3p, v = 6p. Then uv = 18p2 divides 3p2. Similarly all the vertices in V2 are adjacent

among itself. Therefore the vertex set V2 forms the complete graph Kp−1. Next consider the set V1. Let u = p2, v = 2p2.

Then uv = 2p4 does not divides 3p2. But if, u = p2 in V1 and v = 3p in V2. Then uv = 3p3 divides 3p2. Similarly, all the

the vertices in V1 are adjacent to every vertex in V2. Therefore V1 and V2 together forms a complete graph except an edge

(p2, 2p2) in V1. Let us denote the complete graph without an edge as K
′
p+1. Therefore, K

′
p+1 = Kp+1 − (p2, 2p2).Then edge

set of K
′
p+1 will be E

(
K

′
p+1

)
=
{

(p2, 2p2), ...(p2, 3p(p− 1)), (2p2, 3p), ...(2p2, 3p(p− 1))
}
− (p2, 2p2).

Now consider the vertex set V3. Let x = 4p, y = 2p. Then xy = 8p2 doesnot divide 3p2. Therefore x and y are non-adjacent.

Similarly every vertices of V3 are non-adjacent among themselves. Let r = p in V3 and s = 3p in V2. Then rs = 3p2 divides

3p2. Therefore V2 and V3 together forms a complete bipartite graph Kp−1,2(p−1). With the same verification, we note that

V1 and V4 together forms a complete bipartite graph K2,p(p−1). Now let us find the rectilinear crossing number of Γ(Z3p2).

The minimum number of rectilinear crossing number is obtained by imbedding complete graph K
′
p+1 inside the complete

bipartite graph Kp−1,2(p−1). The vertices of K
′
p+1 contains the vertex set V1 and V2. Therefore the vertex set of K

′
p+1 is

V (K
′
p+1) =

{
p2, 2p2, 3p, ...3p(p− 1)

}
.

The drawing of D involves first in drawing of K
′
p+1. The vertices of K

′
p+1 are arranged in a crescent shaped such that

the vertices of V1 comes in the middle. That is V (K
′
p+1) =

{
3p, ..., p2, 2p2, ..., 3p(p− 1)

}
. Now the vertices of V4 are kept

vertically between p2 and 2p2, such that a complete bipartite graph K2,p(p−1) is formed. Clearly the rectilinear crossing

number is zero for K2,p(p−1). Finally, we are left only with the crossings between complete graph K
′
p+1 and complete

bipartite graph Kp−1,2(p−1). Since only p− 1 vertices in the crescent are adjacent to 2(p− 1) vertices of V3, the vertices are

arranged on either side of the cresent vertically, which doesnot disturbs the K2,p(p−1) crossings. Let p+ n be the number of

vertices placed below the cresent and the remaining vertices are placed above the cresent. We observe that n = 1, 2, 3, ... for

the subsequent primes p = 5, 7, 11, 13, ... which will be revealed from the following cases. Now let us find the total rectilinear

crossing number of Γ(Z3p2) by the method of induction.

Case(i): When p = 5,

The vertex set of Γ(Z75), is {3, 6, 9, ......72, 5, 10, 15, ..., 70}. Hence, |V (Γ(Z75))| = 34. Here V1 = {25, 50}, V2 =

{15, 30, 45, 60}, V3 = {5, 10, 20, 35, 40, 55, 65, 70} and V4 = {3, 6, ..72}. The complete graph of Γ(Z75) where p = 5 is

K6 has the vertices {15, 30, 45, 60, 25, 50}. Since we place the vertices of V1 in the middle then, K
′
6 = {15, 30, 25, 50, 45, 60}.

Therefore the rectilinear crossing number of K6 =6 C4 = 15. As n = 1, 6 vertices are placed below the cresent.

Then c̄r

(
K4,12

2

)
= 2.1.6.5

2
= 30. Similarly, the remaining 2 vertices of V3 are placed above the crescent. Then

c̄r

(
K4,4

2

)
=

2.1.2.1

2
= 2. Therefore the total rectilinear crossing number of complete bipartite graph is 32. The rec-
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tilinear crossing number over K
′
6 is

= c̄r(5) over K
′
6 + c̄r(10) over K

′
6

= 16

= 2(2)(4)

= 2 [5− (2 + 1)] [1(6− 2)]

= 2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)]

where S = 6, S0 = 1, S1 = 2, n = 1. Therefore c̄r(Γ(Z3p2)) is

= 63

= 15 + 16 + 32

=6 C4 + 2 [5− (2 + 1)] [1(6− 2)] + c̄r

(
K4,12

2

)
+ c̄r

(
K4,4

2

)
=p+1 C4 + 2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)] + c̄r

(
Kp−1, 2(p + n)

2

)
+ c̄r

(
Kp−1, 2(p− (2 + n))

2

)
,

where S = p + 1, S0 = p−3
2

, S1 = p−1
2

Case(ii): When p = 7

The vertex set of Γ(Z147), is {3, 6, 9, ......144, 7, 14, ..., 140}. Hence, |V (Γ(Z147))| = 62. Here V1 = {49, 98},V2 =

{21, 42, 63, 84, 105, 126}, V3 = {7, 14, ..., 140} and V4 = {3, 6, ..144}. The complete graph of Γ(Z147) where p = 7

is K8 has the vertices {21, 42, 63, 84, 105, 126, 49, 98}. Since we place the vertices of V1 in the middle then K
′
8 =

{21, 42, 63, 49, 98, 84, 105, 126}. Therefore the rectilinear crossing number of K8 =8 C4 = 70. As n = 2, 9 vertices are

placed below the cresent. Then c̄r

(
K6,18

2

)
= 3.2.9.8

2
= 216. Similarly, the remaining 3 vertices of V3 are placed above the

crescent. Then c̄r

(
K6,6

2

)
=

3.2.3.2

2
= 18. Therefore the total rectilinear crossing number of complete bipartite graph is

234. The rectilinear crossing number over K
′
8 is

= c̄r(7) over K
′
8 + c̄r(14) over K

′
8 + c̄r(28) over K

′
8

= 96

= 2(3)(6 + 2.5)

= 2 [7− (2 + 2)] [1(8− 2) + 2(8− 3)]

= 2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)]

where S = 8, S0 = 2, S1 = 3, n = 2. Therefore c̄r(Γ(Z3p2)) is

= 400 = 70 + 96 + 234

=8 C4 + 2 [7− (2 + 2)] [1(8− 2) + 2(8− 3)] + c̄r

(
K6,18

2

)
+ c̄r

(
K6,6

2

)
=p+1 C4 + 2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)] + c̄r

(
Kp−1, 2(p + n)

2

)
+ c̄r

(
Kp−1, 2(p− (2 + n))

2

)
,

where S = p + 1, S0 = p−3
2

, S1 = p−1
2

.

Case(iii): When p = 11,
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The vertex set of Γ(Z363), is {3, 6, 9, ......360, 11, 22, ..., 352}. Hence, |V (Γ(Z363))| = 142. Here V1 = {121, 242}, V2 =

{33, 66, 99, 132, 165, 198, 231, 264, 297, 330}, V3 = {11, 22, 44, 55, 77, ...352} and V4 = {3, 6, ..360}. The complete graph of

Γ(Z363) where p = 11 is K12 has the vertices {33, 66, 99, 132, 165, 198, 231, 264, 297, 330}. Since we place the vertices of V1

in the middle then K
′
12 = {33, 66, 99, 132, 165, 121, 242, 198, 231, 264, 297, 330}. Therefore the rectilinear crossing number of

K12 =12 C4 = 495. As n = 3, 14 vertices are placed below the cresent. Then c̄r

(
K10,28

2

)
=

5.4.14.13

2
= 1820. Similarly, the

remaining 6 vertices of V3 are placed above the crescent. Then c̄r

(
K10,12

2

)
= 5.4.6.5

2
= 300. Therefore the total rectilinear

crossing number of complete bipartite graph is 2120. The rectilinear crossing number over K
′
12 is

= c̄r(11) over K
′
12 + c̄r(22) over K

′
12 + c̄r(44) over K

′
12 + c̄r(55) over K

′
12 + c̄r(77) over K

′
12 + c̄r(88) over K

′
12

= 960

= 2(6)(10 + 2.9 + 3.8 + 4.7)

= 2 [11− (2 + 3)] [1(12− 2) + 2(12− 3) + 3(12− 4) + 4(12− 5)]

= 2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)]

where S = 12, S0 = 2, S1 = 3, n = 3. Therefore c̄r(Γ(Z3p2)) is

= 3575 = 495 + 960 + 2120

=12 C4 + 2 [11− (2 + 3)] [1(12− 2) + 2(12− 3)] + c̄r

(
K10,28

2

)
+ c̄r

(
K10,12

2

)
=p+1 C4 + 2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)] + c̄r

(
Kp−1, 2(p + n)

2

)
+ c̄r

(
Kp−1, 2(p− (2 + n))

2

)
,

where S = p + 1, S0 = p−3
2

, S1 = p−1
2

. In general, for any prime p > 3,

c̄r(Γ(Z3p2)) =p+1 C4+2 [p− (2 + n)] [1(s− 2) + 2(s− 3) + ... + S0(S − S1)]+c̄r

(
Kp−1, 2(p + n)

2
+

Kp−1, 2(p− (2 + n))

2

)
,

where S = p + 1, S0 = p−3
2

, S1 = p−1
2

and n = 1, 2, 3, 4, 5... for the corresponding primes p = 5, 7, 11, 13, ...
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