

International Journal of Mathematics And its Applications

Weak Forms Bitopological Semiopen Sets

Research Article

R.Giridharan¹ and N.Rajesh^{2*}

1 Durkai Amman Kovil Street, Veeraganur, Salem, Tamilnadu, India.

2 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India.

Abstract: In this section, we introduce and study maximal (i, j)-semiopen and minimal (i, j)-semiclosed sets in bitopological space. **MSC:** 54C10, 54C08, 54C05.

Keywords: Bitopological space, (i, j)-semiopen sets. © JS Publication.

1. Introduction

The concept of bitopological spaces was first introduced by Kelly [1]. After the introduction of the definition of a bitopological space by Kelly, a large number of topologists have turned their attention to the generalization of different concepts of a single topological space in this space. In this section, we introduce and study maximal (i, j)-semiopen and minimal (i, j)-semiclosed sets in bitopological space Throughout this paper, the triple (X, τ_1, τ_2) where X is a set and τ_1 and τ_2 are topologies on X, will always denote a bitopological space. For a subset A of a bitopological space (X, τ_1, τ_2) , the closure of A and the interior of A with respect to τ_i are denoted by $i \operatorname{Cl}(A)$ and $i \operatorname{Int}(A)$, respectively, for i = 1, 2.

2. Preliminaries

Definition 2.1 ([2]). A subset S of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-semiopen if $S \subset j \operatorname{Cl}(i \operatorname{Int}(S))$. The complement of an (i, j)-semiopen set is called an (i, j)-semiclosed set.

Definition 2.2 ([2]). The intersection of all (i, j)-semiclosed sets containing $S \subset X$ is called the (i, j)-semiclosure of Sand is denoted by (i, j)-s Cl(S). The family of all (i, j)-semiopen (resp. (i, j)-semiclosed) sets of (X, τ_1, τ_2) is denoted by (i, j)-SO(X) (resp. (i, j)-SC(X)). The family of all (i, j)-semiopen (resp. (i, j)-semiclosed) sets of (X, τ_1, τ_2) containing a point $x \in X$ is denoted by (i, j)-SO(X, x) (resp. (i, j)-SC(X, x)).

3. Weak Forms Bitopological Semiopen Sets

In this section, we introduce and study maximal (i, j)-b-open and minimal (i, j)-b-closed sets in bitopological space.

^{*} E-mail: nrajesh_topology@yahoo.co.in

Definition 3.1. A proper nonempty (i, j)-semiclosed subset F of a bitopological space (X, τ_1, τ_2) is said to be a minimal (i, j)-semiclosed set if any (i, j)-semiclosed set contained in F is \emptyset or F.

Definition 3.2. A proper nonempty (i, j)-semiopen U of a bitopological space (X, τ_1, τ_2) is said to be a maximal (i, j)-semiopen set if any (i, j)-semiopen set containing U is either X or U.

The following theorem shows the relation between minimal (i, j)-semiclosed sets and maximal (i, j)-semiopen sets.

Theorem 3.3. A proper nonempty subset U of a bitopological space (X, τ_1, τ_2) is maximal (i, j)-semiopen if, and only if $X \setminus U$ is minimal (i, j)-semiclosed.

Proof. Let U be a maximal (i, j)-semiopen set. Suppose $X \setminus U$ is not a minimal (i, j)-semiclosed set. Then there exists an (i, j)-semiclosed set $V \neq X \setminus U$ such that $\emptyset \neq V \subset X \setminus U$. That is $U \subset X \setminus V$ and $X \setminus V$ is an (i, j)-semiclosed set, which is a contradiction for U is a minimal (i, j)-semiclosed set. Conversely, let $X \setminus U$ be a minimal (i, j)-semiclosed set. Suppose U is not a maximal (i, j)-semiopen set. Then there exists an (i, j)-semiopen set $E \neq U$ such that $U \subset E \neq X$. That is $\emptyset \neq X \setminus E \subset X \setminus U$ and $X \setminus E$ is an (i, j)-semiclosed set, which is a contradiction for $X \setminus U$ is a minimal (i, j)-semiclosed set. Therefore, U is a maximal (i, j)-semiclosed set.

Lemma 3.4. For the subsets U and V of a bitopological space (X, τ_1, τ_2) , we have the following:

- (1). If U is minimal (i, j)-semiclosed and V an (i, j)-semiclosed set, then $U \cap V = \emptyset$ or $U \subset V$.
- (2). If U and V are minimal (i, j)-semiclosed sets, then $U \cap V = \emptyset$ or U = V.

Proof.

- (1). If $U \cap V = \emptyset$, then there is nothing to prove. If $U \cap V \neq \emptyset$, then $U \cap V \subset U$. Since U is a minimal (i, j)-semiclosed set, $U \cap V = U$. Hence $U \subset V$.
- (2). If $U \cap V \neq \emptyset$, then $U \subset V$ and $V \subset U$ by (1). Hence U = V.

Theorem 3.5. Let U be a minimal (i, j)-semiclosed subset of a bitopological space (X, τ_1, τ_2) . If $x \in U$, then $U \subset W$ for some (i, j)-semiclosed set W containing x.

Proof. Let $x \in U$ and W be an (i, j)-semiclosed set such that $x \in G$. Then $U \cap W = \emptyset$. By Lemma 3.4 (1), $U \subset W$.

Theorem 3.6. If U is a minimal (i, j)-semiclosed subset of a bitopological space (X, τ_1, τ_2) , then $U = \cap \{W : W \in (i, j) - SC(X, x)\}$.

Proof. By Theorem 3.5 and U is an (i, j)-semiclosed set containing x, we have $U \subset \cap \{W : W \in (i, j) - SC(X, x)\}$. Next let, $x \in \cap \{W : W \in (i, j) - SC(X, x)\}$. This implies that $x \in W$ for all (i, j)-semiclosed set W. As U is (i, j)-semiclosed, $x \in U$; hence $\cap \{W : W \in (i, j) - SC(X, x)\} = U$.

Theorem 3.7. Let U be a nonempty (i, j)-semiclosed subset of a bitopological space (X, τ_1, τ_2) . Then the following statements are equivalent:

- (1). U is a minimal (i, j)-semiclosed set.
- (2). $U \subset (i, j)$ -s Cl(S) for any nonempty subset S of U.

(3). (i, j)-s Cl(U) = (i, j)-s Cl(S) for any nonempty subset S of U.

Proof.

 $(1)\Rightarrow(2)$: Let $x \in U$; U be a minimal (i, j)-semiclosed set and $S(\neq \emptyset) \subset U$. By Theorem 3.5, for any (i, j)-semiclosed set W containing $x, S \subset U \subset W$ gives $S \subset W$. Now $S = S \cap U \subset S \cap W$. Since $S \neq \emptyset, S \cap W \neq \emptyset$. Since W is any (i, j)-semiclosed set containing x, by Theorem 3.5, $x \in (i, j)$ -s Cl(S). That is, $x \in U \Rightarrow x \in (i, j)$ -s Cl(S). Hence $U \subset (i, j)$ -s Cl(S) for any nonempty subset S of U.

 $(2)\Rightarrow(3)$: Let S be a nonempty subset of U. Then (i, j)-s $\operatorname{Cl}(S) \subset (i, j)$ -s $\operatorname{Cl}(U)$. By (2), (i, j)-s $\operatorname{Cl}(U) \subset (i, j)$ -s $\operatorname{Cl}((i, j)$ -s $\operatorname{Cl}(S)) = (i, j)$ -s $\operatorname{Cl}(S)$. That is, (i, j)-s $\operatorname{Cl}(U) \subset (i, j)$ -s $\operatorname{Cl}(S)$. We have (i, j)-s $\operatorname{Cl}(U) = (i, j)$ -s $\operatorname{Cl}(S)$ for any nonempty subset S of U.

 $(3)\Rightarrow(1)$: Suppose U is not a minimal (i, j)-semiclosed set. Then there exists a nonempty (i, j)-semiclosed set V such that $V \subset U$ and $V \neq U$. Now, there exists an element a in U such that $a \notin V$. That is, (i, j)-s $\operatorname{Cl}(\{a\}) \subset (i, j)$ -s $\operatorname{Cl}(X \setminus V) = X \setminus V$, as $X \setminus V$ is (i, j)-semiclosed in X. It follows that (i, j)-s $\operatorname{Cl}(\{a\}) \neq (i, j)$ -s $\operatorname{Cl}(U)$. This is a contradiction for (i, j)-s $\operatorname{Cl}(\{a\}) = (i, j)$ -s $\operatorname{Cl}(U)$ for any $\{a\} \neq \emptyset \subset U$. Therefore, U is a minimal (i, j)-semiclosed set.

Theorem 3.8. If V is a nonempty finite (i, j)-semiclosed subset of a bitopological space (X, τ_1, τ_2) , then there exists at least one (finite) minimal (i, j)-semiclosed set U such that $U \subset V$.

Proof. If V is a minimal (i, j)-semiclosed set, we may set U = V. If V is not a minimal (i, j)-semiclosed set, then there exists a (finite) (i, j)-semiclosed set V_1 such that $\emptyset \neq V_1 \subset V$. If V_1 is a minimal (i, j)-semiclosed set, we may set $U = V_1$. If V_1 is not a minimal (i, j)-semiclosed set, then there exists a (finite) (i, j)-semiclosed set V_2 such that $\emptyset \neq V_2 \subset V_1$. Continuing this process, we have a sequence of (i, j)-semiclosed sets $V \supset V_1 \supset V_2 \supset V_3 \supset ... \supset V_k \supset ...$. Since V is a finite set, this process repeats only finitely many time and finally we get a minimal (i, j)-semiclosed set $U = V_n$ for some positive integer n.

Theorem 3.9. Let U and U_{α} be minimal (i, j)-semiclosed subsets of a bitopological space (X, τ_1, τ_2) for any element $\alpha \in \Delta$. If $U \subset \bigcup_{\alpha \in \Delta} U_{\alpha}$, then there exists an element $\alpha \in \Delta$ such that $U = U_{\alpha}$.

Proof. Let $U \subset \bigcup_{\alpha \in \Delta} U_{\alpha}$. Then $U \cap (\bigcup_{\alpha \in \Delta} U_{\alpha}) = U$. That is $\bigcup_{\alpha \in \Delta} (U \cap U_{\alpha}) = U$. Also by Lemma 3.4 (2), $U \cap U_{\alpha} = \emptyset$ or $U = U_{\alpha}$ for any $\alpha \in \Delta$. It follows that there exists an element $\alpha \in \Delta$ such that $U = U_{\alpha}$.

Theorem 3.10. Let U and U_{α} be minimal (i, j)-semiclosed subsets of a bitopological space (X, τ_1, τ_2) for any $\alpha \in \Delta$. If $U \neq U_{\alpha}$ for any $\alpha \in \Delta$, then $(\bigcup_{\alpha \in \Delta} U_{\alpha}) \cap U = \emptyset$.

Proof. Suppose that $(\bigcup_{\alpha \in \Delta} U_{\alpha}) \cap U \neq \emptyset$. Then there exists an element $\alpha \in \Delta$ such that $U \cap U_{\alpha} \neq \emptyset$. By Lemma 3.4 (2), we have $U = U_{\alpha}$, which contradicts the fact that $U \neq U_{\alpha}$ for any $\alpha \in \Delta$. Hence $(\bigcup_{\alpha \in \Delta} U_{\alpha}) \cap U = \emptyset$.

Lemma 3.11. Let A and B be any two subsets of a bitopological space (X, τ_1, τ_2) . Then we have the following:

(1). If A is maximal (i, j)-semiopen set and B an (i, j)-semiopen set, then $A \cup B = X$ or $B \subset A$.

(2). Let A and B are maximal (i, j)-semiopen sets, then $A \cup B = X$ or A = B.

Proof.

- (1). If $A \cup B = X$, then there is nothing to prove. If $A \cup B \neq X$, then $A \cup B$ is an (i, j)-semiopen set such that $A \subset A \cup B$. Then $A \cup B = A$. Hence $B \subset A$.
- (2). If $A \cup B \neq X$, then $A \cup B$ is an (i, j)-semiopen set such that $A, B \subset A \cup B$, that is, $A \cup B = A$ and $A \cup B = B$. Hence A = B.

Theorem 3.12. Let F be a maximal (i, j)-semiopen subset of a bitopological space (X, τ_1, τ_2) . If $x \in F$, then $S \subset F$ for some (i, j)-semiopen set S containing x.

Proof. Similar to the proof of Theorem 3.5.

Theorem 3.13. Let A, B and C be three maximal (i, j)-semiopen sets of a bitopological space (X, τ_1, τ_2) such that $A \neq B$. If $A \cap B \subset C$, then either A = C or B = C.

Proof. If A = C, then there is nothing to prove. If $A \neq C$, then we have to prove B = C. Now $B \cap C = B \cap (C \cap X) = B \cap (C \cap (A \cup B))$ (by Theorem 3.11 (2)) $= B \cap ((C \cap A) \cup (C \cap B)) = (B \cap C \cap A) \cup (B \cap C) = (A \cap B) \cup (C \cap B) = (A \cup C) \cap B = X \cap B = B$ (Since A and C are maximal (i, j)-semiopen sets by Theorem 3.11 (2), $A \cup C = X$). That is, $B \cap C = B \Rightarrow B \subset C$. Since B and C are maximal (i, j)-semiopen sets, we have B = C. Hence B = C.

Theorem 3.14. Let (X, τ_1, τ_2) be a bitopological space. If A, B and C are maximal (i, j)-semiopen sets which are different from each other, then $(A \cap B) \notin (A \cap C)$.

Proof. Let $A \cap B \subset A \cap C$. Then $(A \cap B) \cup (C \cap B) \subset (A \cap C) \cup (C \cap B)$. That is, $(A \cup C) \cap B \subset C \cap (A \cup B)$. By Theorem 3.11 (2), $A \cup C = X = A \cup B$. Hence $X \cap B \subset C \cap X \Rightarrow B \subset C$. Thus from the definition of maximal (i, j)-semiopen set, we have B = C, which is a contradiction to the fact that A, B and C are different to each other. Therefore, $(A \cap B) \nsubseteq (A \cap C)$. \Box

Theorem 3.15. Let (X, τ_1, τ_2) be a bitopological space. If F is a maximal (i, j)-semiopen set and x be an element of F, then $F = \bigcup \{S : S \text{ is an } (i, j)\text{-semiopen set containing } x \text{ such that } F \cup S \neq X \}.$

Proof. Similar to the proof of Theorem 3.6.

We call a set cofinite if its complement is finite.

Theorem 3.16. Let (X, τ_1, τ_2) be a bitopological space. If F is a proper nonempty cofinite (i, j)-semiopen set, then there exists (cofinite) maximal (i, j)-semiopen set E such that $F \subset E$.

Proof. If F is a maximal (i, j)-semiopen set, we may set E = F. If F is not a maximal (i, j)-semiopen set, then there exists a (cofinite) (i, j)-semiopen set F_1 such that $F \subset F_1 \neq X$. If F_1 is a maximal (i, j)-semiopen set, we may set $E = F_1$. If F_1 is not a maximal (i, j)-semiopen set, then there exists a (cofinite) (i, j)-semiopen set $F_2 \neq X$ such that $F \subset F_1 \subset F_2(\neq X)$. Continuing this process, we have a sequence of (i, j)-semiopen sets such that $F \subset F_1 \subset F_2 \subset ... \subset F_k \subset ...$. Since F is a cofinite set, this process repeats only finitely many times and finally we get a maximal (i, j)-semiopen set E = F.

Theorem 3.17. Let (X, τ_1, τ_2) be a bitopological space. Then we have the following:

- (1). Let A be a maximal (i, j)-semiopen set and $x \in X \setminus A$. Then $X \setminus A \subset B$ for any (i, j)-semiopen set B containing x.
- (2). Let A be a maximal (i, j)-semiopen set. Then either of the following (i) or (ii) holds:
 - (i) For each $x \in X \setminus A$ and each (i, j)-semiopen set B containing x, B = X.
 - (ii) There exists an (i, j)-semiopen set B such that $X \setminus A \subset B$.

(3). Let A be a maximal (i, j)-semiopen set. Then either of the following (i) or (ii) holds:
(i) For each x ∈ X\A and each (i, j)-semiopen set B containing x, X\A ⊂ B.
(ii) There exists an (i, j)-semiopen set B such that X\A = B.

Proof.

- (1). Since $x \in X \setminus A$, we have $B \not\subseteq A$ for any (i, j)-semiopen set B containing x. Then by Theorem 3.11 (1), $A \cup B = X \Rightarrow X \setminus A \subset B$.
- (2). If (i) holds, we are done. Let (i) do not hold. Then there exists an element $x \in X \setminus A$ and an (i, j)-semiopen set B containing x such that $B \subset X$. Then by Theorem 3.11 (1), $A \cup B = X$ or $B \subset A$. But $B \notin A \Rightarrow A \cup B = X \Rightarrow X \setminus A \subset B$.
- (3). If (ii) holds, we are done. Let (ii) do not hold. Then (by (i)) for each $x \in X \setminus A$ and each (i, j)-semiopen set B containing $x, X \setminus A \subset B$. Hence by assumption $X \setminus A \subset B$.

Theorem 3.18. Let A be a maximal (i, j)-semiopen set in a bitopological space (X, τ_1, τ_2) . Then either (i, j)-s Cl(A) = X or (i, j)-s Cl(A) = A.

Proof. Since A is maximal (i, j)-semiopen set, only the following cases (i) and (ii) occur by Theorem 3.17 (3).

- (i) For each $x \in X$ and $x \in X \setminus A$ and each (i, j)-semiopen set B containing x, we have, $X \setminus A \subset B$: Let $x \in X \setminus A$ and B be any (i, j)-semiopen set containing x. Since $X \setminus A \neq B$, we have $B \cap A \neq \emptyset$ and hence $X \setminus A \subset (i, j)$ -s Cl(A). Since $X = A \cup (X \setminus A) \subset A \cup (i, j)$ -s Cl(A) = (i, j)-s $Cl(A) \subset X$, X = (i, j)-s Cl(A).
- (ii) There exists an (i, j)-semiopen set B such that $X \setminus A = B \neq X$: Since $X \setminus A = B$, A is an (i, j)-semiclosed set $\Rightarrow (i, j)$ -s Cl(A) = A.

Theorem 3.19. Let A be a maximal (i, j)-semiopen set in a bitopological space (X, τ_1, τ_2) . Then either (i, j)-s $Int(X \setminus A) = X \setminus A$ or (i, j)-s $Int(X \setminus A) = \emptyset$.

Proof. By Theorem 3.18, we have (i, j)-s Cl(A) = A or (i, j)-s Cl(A) = X. That is, (i, j)-s $Int(X \setminus A) = X \setminus A$ or (i, j)-s $Int(X \setminus A) = \emptyset$.

Theorem 3.20. Let A be a maximal (i, j)-semiopen set and B be a nonempty subset of X\A in a bitopological space (X, τ_1, τ_2) . Then (i, j)-s Cl(B) =X\A.

Proof. Since $\emptyset \neq B \subset X \setminus A$, $W \cap B \neq \emptyset$ for any element $x \in X \setminus A$ and any (i, j)-semiopen set W containing x, by Theorem 3.17 (1). Thus, $X \setminus A \subset (i, j)$ -s Cl(B). Since $X \setminus A$ is (i, j)-semiclosed and $B \subset X \setminus A$, we have (i, j)-s $Cl(B) \subset X \setminus A$.

Corollary 3.21. Let A be a maximal (i, j)-semiopen set in a bitopological space (X, τ_1, τ_2) and $A \subset B$. Then (i, j)-s Cl(B) = X.

Proof. The proof follows from Theorem 3.18.

Theorem 3.22. Let A be a maximal (i, j)-semiopen set in a bitopological space (X, τ_1, τ_2) and let X\A have at least two elements. Then (i, j)-s $Cl(X \setminus \{a\}) = X$ for any element a of X\A.

Proof. As $A \subset X \setminus \{a\}$, we have, by Corollary 3.21, (i, j)-s $Cl(X \setminus \{a\}) = X$.

Theorem 3.23. Let A be a maximal (i, j)-semiopen set and G be a proper subset of a bitopological space (X, τ_1, τ_2) with $A \subset G$. Then (i, j)-s Int(G) = A.

Proof. If G = A, then (i, j)-s Int(G) = (i, j)-s Int(A) = A. If $G \neq A$, then we have $A \subset G$. Thus $A \subset (i, j)$ -s Int(G). Since A is maximal (i, j)-semiopen, we also have (i, j)-s $Int(G) \subset A$. Hence (i, j)-s Int(G) = A.

Theorem 3.24. Let A be a maximal (i, j)-semiopen set and F a nonempty subset of X\A in a bitopological space (X, τ_1, τ_2) . Then X\(i, j)-s Cl(F) = A.

Proof. Since $A \subset X \setminus F \subset X$, by our assumption and by Theorem 3.20, $X \setminus (i, j)$ -s Cl(F) = A.

References

^[1] J.C.Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.

^[2] S.N.Maheshwari and R.Prasad, Semiopen sets and semicontinuous functions in bitopological spaces, Math. Notae, 26(1977/78), 29-37.