ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On Proper 2-rainbow Domination in Graphs

Jaison Jose^{1,*} and V. Sangeetha²

- 1 Postgraduate Student, Department of Mathematics, Christ (Deemed to be University), Bengaluru, India.
 - 2 Department of Mathematics, Christ (Deemed to be University), Bengaluru, India.

Abstract: For a graph G, let $f:V(G)\to \mathcal{P}(\{1,2,...,k\})$ be a function. If for each vertex $v\in V(G)$ such that $f(v)=\phi$ we have $\cup_{u\in N(v)}f(u)=\{1,2,...,k\}$, then f is called a k-rainbow dominating function (or simply kRDF) of G. The weight w(f), of a kRDF f is defined as $w(f)=\sum_{v\in V(G)}|f(v)|$. The minimum weight of a kRDF of G is called the k-rainbow

domination number of G, and is denoted by $\gamma_{rk}(G)$. In this paper we define and study a new domination called proper k-rainbow domination. A k-rainbow dominating function is called a proper k-rainbow dominating function if for every pair of adjacent vertices u and v, $f(u) \not\subseteq f(v)$ and $f(v) \not\subseteq f(u)$. The weight, w(f), of a proper kRDF f is defined as $w(f) = \sum_{v \in V(G)} |f(v)|$. The minimum weight of a proper kRDF of G is called the proper k-rainbow domination number

of G, and is denoted by $\gamma_{prk}(G)$. The bounds for 2-rainbow domination and proper 2-rainbow domination for different classes of graphs namely cycles, complete multipartite graph, $P_n \times P_m$ and Harary graph are found.

MSC: 05C69, 05C76

Keywords: Rainbow domination, proper rainbow domination, Harary graph.

© JS Publication.

1. Introduction

Let G = (V(G), E(G)) be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_G(v)$, or just N(v), and its closed neighborhood by N[v]. For a vertex set $S \subseteq V(G)$, we let $N(S) = \cup_{v \in S} N(v)$ and $N[S] = \cup_{v \in S} N[v]$. A set of vertices S in G is a dominating set if N[S] = V(G). The domination number of G, $\gamma(G)$, is the minimum cardinality of a dominating set of G. For a graph G, let $f: V(G) \to \mathcal{P}(\{1, 2, ..., k\})$ be a function. If for each vertex $v \in V(G)$ such that $f(v) = \phi$ we have $\cup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$, then f is called a k-rainbow dominating function (or simply kRDF) of G. The weight w(f), of a kRDF f is defined as $w(f) = \sum_{v \in V(G)} |f(v)|$. The minimum weight of a kRDF of G is called the k-rainbow domination number of G, and is denoted by $\gamma_{rk}(G)$. We denote cartesian product of two graphs G and G by $G \times G$. The Harary graph denoted by G is a graph on the G vertices G is each vertex G is a graph of the G vertices G is each vertex G is a graph of the G vertices are subjected to the wraparound G is even, then each vertex G is adjacent to G is a graph on the G vertices are subjected to the wraparound

- If k is odd and n is even, then $H_{k,n}$ is $H_{k-1,n}$ with additional adjacencies between each v_i and $v_{i+\frac{n}{2}}$ for each i.
- If k and n are both odd, then $H_{k,n}$ is $H_{k-1,n}$ with additional adjacencies $\{v_1,v_{1+\frac{n-1}{2}}\}, \{v_1,v_{1+\frac{n+1}{2}}\}, \{v_2,v_{2+\frac{n+1}{2}}\}, \{v_3,v_{3+\frac{n+1}{2}}\}, \ldots, \{v_{\frac{n-1}{2}},v_n\}.$

The concept of rainbow domination was first introduced and studied in [2]. The exact values of 2-rainbow domination

convention that $v_i \cong v_{i+n}$.

^{*} E-mail: jsnjs1000@gmail.com

numbers of several classes of graphs namely paths, cycles, suns and trees are found in [3] and [4]. The bounds of 2-rainbow domination for generalized petersen graphs are discussed in [3] and [6]. Some bounds for classes of graphs namely Harary graph, k-regular graph, $P_1 \times P_m$ are estimated in [1]. The critical concept for 2-rainbow domination in graphs was studied in [5].

2. Proper 2-rainbow Domination and 2-rainbow Domination

2.1. Proper k-rainbow Domination

Assume that there are k different types of weapons. Our aim is that each vertex/location that is not occupied by any weapon has in its neighborhood all the k weapons and adjacent vertices/locations store different weapons so that defence becomes strong when an attack happens at a particular vertex/location. This leads us to the following definition. Let G be a graph and let $f: V(G) \to \mathcal{P}(\{1, 2, ..., k\})$ be a function. Then f is called a proper k- rainbow dominating function if, (i) for each vertex $v \in V(G)$ such that $f(v) = \phi$ we have $\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$ and (ii) for every pair of adjacent vertices u and v, $f(u) \not\subseteq f(v)$ and $f(v) \not\subseteq f(u)$ (except ϕ). The weight w(f), of a proper kRDF f is defined as $w(f) = \sum_{v \in V(G)} |f(v)|$. The minimum weight of a proper kRDF of G is called the proper k-rainbow domination number of G, and is denoted by $\gamma_{prk}(G)$. Clearly, when k = 1 this concept coincides with the ordinary domination and rainbow domination. In this paper we consider the 2-rainbow domination and proper 2-rainbow domination of graphs. The following are some observations on proper 2-rainbow domination.

Observation 2.1. $\gamma_{rk}(G) \leq \gamma_{prk}(G)$.

Observation 2.2. $\gamma_{pr2}(P_n) = \lfloor \frac{n}{2} \rfloor + 1; n \ge 1.$

Observation 2.3. $\gamma_{pr2}(C_n) = \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil - \lfloor \frac{n}{4} \rfloor; n = 2k, k \geq 2.$

Observation 2.4. $\gamma_{pr2}(C_n) = \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil - \lfloor \frac{n}{4} \rfloor; n = 4k - 1, k \ge 1.$

Observation 2.5. $\gamma_{pr2}(K_n) = 2; n \geq 1.$

Observation 2.6. $\gamma_{pr2}(F_n) = 2; n \geq 1$, where F_n is the friendship graph.

2.2. Bounds for 2-rainbow Domination and Proper 2-rainbow Domination

Theorem 2.7. For $n_1, n_2, ..., n_m > 1$, $\gamma_{pr2}(K_{n_1, n_2, ..., n_m}) = min\{n_1, n_2, ..., n_m\}$.

Proof. Let G be a complete multipartite graph with m partitions V_1, V_2, \ldots, V_m of sizes n_1, n_2, \ldots, n_m respectively. Without loss of generality, assume that V_1 has least number of vertices. Now we define a proper 2-rainbow dominating function as follows:

Assign $\{1\}$ to u_1 and $\{2\}$ to u_2 where $u_1, u_2 \in V_1$. Since u_1, u_2 are adjacent to all vertices in V_2, \ldots, V_m , the vertices in V_2, \ldots, V_m can be assigned ϕ . The remaining $n_1 - 2$ vertices in V_1 can be assigned $\{1\}$ or $\{2\}$. Now this is a proper 2-rainbow dominating function with weight n_1 . Hence, $\gamma_{pr2}(G) \leq n_1$. It suffices to show that $\gamma_{pr2}(G) \not< n_1$. Let f be a proper 2-rainbow dominating function with minimum weight. If suppose we assign $\{1\}$ to a vertex u_1 in V_1 . Then no vertex in V_2, \ldots, V_m can receive the same label, as u_1 is adjacent to all vertices in V_2, \ldots, V_m . Therefore, assign $\{2\}$ to a vertex u_2 in V_2 . Now all vertices in V_3, \ldots, V_m can be assigned ϕ . But the remaining vertices cannot assign $\{2\}$ in V_1 and $\{1\}$ in in V_2 . $w(f) \geq n_1 + n_2$. This is a contradiction, since $\gamma_{pr2}(G) \leq n_1$. If suppose $\{1,2\}$ is assigned to a vertex u_1 in V_1 . Then all vertices in the partitions V_2, \ldots, V_m can be assigned ϕ . Since V_1 is an independent set, the remaining vertices cannot be assigned ϕ . Therefore, $w(f) \geq n_1 + 1$. This is not possible, since $\gamma_{pr2}(G) \leq n_1$.

Theorem 2.8. $\gamma_{r2}(K_{n_1,n_2,...,n_m}) \leq 4$, where $\max\{n_1,n_2,...,n_m\} > 1$ and $m \geq 3$.

Proof. Let G be a complete multipartite graph with m (m > 3) partitions V_1, V_2, \ldots, V_m of sizes n_1, n_2, \ldots, n_m respectively. Without loss of generality, assume that $n_1 > 1$. Now we construct a 2-rainbow dominating function as follows: Assign $\{1\}$ to u_1 and $\{2\}$ to u_2 where $u_1, u_2 \in V_1$. Assign $\{1\}$ to u_3 and $\{2\}$ to u_4 where $u_3 \in V_2$ and $u_4 \in V_3$. Now we can assign ϕ to all other vertices in G, as these vertices has $\{1,2\}$ in its neighborhood. Clearly this is a 2-rainbow dominating function whose weight is 4.

Theorem 2.9. For $k \ge 1$, $\gamma_{pr2}(C_{4k+1}) = \gamma_{r2}(C_{4k+1}) + 1$.

Proof. Let C_n be the cycle v_1v_2 ... v_nv_1 , where n=4k+1. Let $f:V(C_n)\to \mathcal{P}(\{1,2\})$ be a function defined as follows: For $1\leq i\leq n-2$,

$$f(v_i) = \begin{cases} \{1\} & \text{if } i \cong 1 \pmod{4} \\ \{2\} & \text{if } i \cong 3 \pmod{4} \\ \phi & \text{otherwise} \end{cases}$$
$$f(v_{n-1}) = \{1\}$$
$$f(v_n) = \{2\}$$

Now, f is a proper 2-rainbow dominating function of C_n . Therefore,

$$w(f) = 2 + \gamma_{pr2}(P_{n-2})$$

$$= 2 + \lfloor \frac{n-2}{2} \rfloor + 1$$

$$= \lceil \frac{n}{2} \rceil + 1$$

$$= \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil - \lfloor \frac{n}{4} \rfloor$$

$$= \gamma_{r2}(C_n) + 1.$$

It suffices to prove that $\gamma_{pr2}(C_n) \geq \gamma_{r2}(C_n) + 1$. Let f be a proper 2-rainbow dominating function of C_n with minimum weight. If suppose there is a vertex $x \in C_n$ with $f(x) = \{1, 2\}$. Then,

$$w(f) \ge 2 + \gamma_{pr2}(P_{n-3}) = 2 + \lfloor \frac{n-3}{2} \rfloor + 1$$
$$= \lceil \frac{n}{2} \rceil + 1$$
$$= \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil - \lfloor \frac{n}{4} \rfloor + 1$$
$$= \gamma_{r2}(C_n) + 1.$$

Assume that $|f(x)| \leq 1 \ \forall x \in C_n$. Then for any pair of adjacent vertices x and y, to at least one of them f assigns a non empty value where $x, y \notin \{v_{n-1}, v_n\}$. Therefore,

$$\begin{split} w(f) &\geq 2 + \lceil \frac{n-2}{2} \rceil = \lceil \frac{n}{2} \rceil + 1 \\ &= \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil - \lfloor \frac{n}{4} \rfloor + 1 \\ &= \gamma_{r2}(C_n) + 1. \end{split}$$

Theorem 2.10. $\gamma_{pr2}(P_n \times P_m) \leq \frac{nm}{2}$, where n is even and m > 1.

Proof. It suffices to construct a proper 2-rainbow dominating function of $P_n \times P_m$ with weight $\frac{nm}{2}$. In $P_n \times P_m$, there are nm vertices. Let

$$v_{11}, v_{12}, \ldots, v_{1n}$$
 $v_{21}, v_{22}, \ldots, v_{2n}$
 $\ldots \ldots \ldots$
 $v_{m1}, v_{m2}, \ldots, v_{mn}$

be vertices in $P_n \times P_m$. We define a proper 2-rainbow dominating function $f: V(P_n \times P_m) \to \mathcal{P}(\{1,2\})$ as follows: For $1 \le i \le m, 1 \le j \le n$,

$$f(v_{ij}) = \begin{cases} \{1\} & \text{if } i \text{ and } j \text{ are odd} \\ \{2\} & \text{if } i \text{ and } j \text{ are even} \end{cases}$$

$$\phi \quad \text{otherwise}$$

Since nm is even and every vertex with indices i, j of same parity are labeled with a non empty singleton set, $w(f) = \frac{nm}{2}$.

Theorem 2.11. $\gamma_{pr2}(P_n \times P_m) \leq \frac{(n-1)m}{2} + \lfloor \frac{m}{2} \rfloor$, where n is odd and m > 1.

Proof. In $P_n \times P_m$, there are nm vertices. Let

$$v_{11}, v_{12}, \ldots, v_{1n}$$
 $v_{21}, v_{22}, \ldots, v_{2n}$
 $\ldots \ldots \ldots$
 $v_{m1}, v_{m2}, \ldots, v_{mn}$

be vertices in $P_n \times P_m$. We define a proper 2-rainbow dominating function of $P_n \times P_m$ with weight $\frac{(n-1)m}{2} + \lfloor \frac{m}{2} \rfloor$ as follows: For $1 \le i \le m$, $1 \le j \le n$,

$$f(v_{ij}) = \begin{cases} \{1\} & \text{if } i \text{ is even and } j \text{ is odd} \\ \{2\} & \text{if } i \text{ is odd and } j \text{ is even} \end{cases}$$

$$\phi \quad \text{otherwise}$$

Case (1): Assume that m is even.

Since nm is even and every vertex with indices i, j of opposite parity are labeled with a non empty singleton set, $w(f) = \frac{nm}{2} = \frac{(n-1)m}{2} + \lfloor \frac{m}{2} \rfloor$.

Case (2): Suppose that m is odd.

Since there are $(\frac{m-1}{2})(\frac{n+1}{2})$ vertices with indices i as even, j as odd and $(\frac{m+1}{2})(\frac{n-1}{2})$ vertices with indices i as odd, j as even, $w(f) = (\frac{m-1}{2})(\frac{n+1}{2}) + (\frac{m+1}{2})(\frac{n-1}{2}) = \frac{mn-1}{2} = \frac{(n-1)m}{2} + \lfloor \frac{m}{2} \rfloor$.

Theorem 2.12. $\gamma_{pr2}(H_{3,n}) \leq \frac{n}{2}$, where n is even and $n \geq 4$.

Proof. Clearly it suffices to construct a proper 2-rainbow dominating function of $H_{3,n}$ with weight $\frac{n}{2}$. We define a proper 2-rainbow dominating function $f: V(H_{3,n}) \to \mathcal{P}(\{1,2\})$ as follows:

For $1 \le i \le n$,

$$f(v_i) = \begin{cases} \{1\} & \text{if } i \cong 1 \pmod{4} \\ \{2\} & \text{if } i \cong 3 \pmod{4} \\ \phi & \text{otherwise} \end{cases}$$

Since n is even and every odd indexed vertices are labeled with a non empty singleton set, $w(f) = \frac{n}{2}$.

Theorem 2.13. $\gamma_{r2}(H_{k,n}) \leq 2\lceil \frac{n}{k+1} \rceil$, where n is even, k is odd, $k \geq 5$ and $n \neq k+3$.

Proof. It suffices to define a 2-rainbow dominating function of $H_{k,n}$ with weight $2\lceil \frac{n}{k+1} \rceil$. We define a 2-rainbow dominating function $f: V(H_{k,n}) \to \mathcal{P}(\{1,2\})$ as follows:

Case (1): Suppose that $n \cong 0, k-1 \pmod{k+1}$

For $1 \le i \le n$,

$$f(v_i) = \begin{cases} \{1\} & \text{if } i \cong 1 \pmod{k+1} \\ \{2\} & \text{if } i \cong \frac{k+3}{2} \pmod{k+1} \\ \phi & \text{otherwise} \end{cases}$$

If $n \cong 0 \pmod{k+1}$, then n = p(k+1). $w(f) = 2p = \frac{2n}{k+1}$. When $n \cong k-1 \pmod{k+1}$, $\frac{k+3}{2} < k-1$ for $k \geq 5$. Hence, there are exactly $\lceil \frac{n}{k+1} \rceil$ vertices that receive the label $\{1\}$ and $\lceil \frac{n}{k+1} \rceil$ vertices that receive the label $\{2\}$. Therefore, $w(f) = 2\lceil \frac{n}{k+1} \rceil$.

Case (2): Assume that $n \not\cong 0, k-1 \pmod{k+1}$

For $1 \le i \le n-1$,

$$f(v_i) = \begin{cases} \{1\} & \text{if } i \cong 1 \pmod{k+1} \\ \{2\} & \text{if } i \cong \frac{k+3}{2} \pmod{k+1} \\ \phi & \text{otherwise} \end{cases}$$
$$f(v_n) = \{2\}$$

Since there are exactly $\lceil \frac{n}{k+1} \rceil$ vertices that receive the label $\{1\}$ and $\lceil \frac{n}{k+1} \rceil$ vertices that receive the label $\{2\}$, $w(f) = \lceil \frac{n}{k+1} \rceil$.

Proposition 2.14. $\gamma_{r2}(H_{k,n}) \leq 3$, where n is even, k is odd, $k \geq 5$ and n = k + 3.

Proof. We construct a 2-rainbow dominating function of $H_{k,n}$ with weight 3. We define a 2-rainbow dominating function $f: V(H_{k,n}) \to \mathcal{P}(\{1,2\})$ as follows:

For $1 \leq i \leq n$,

$$f(v_i) = \begin{cases} \{1\} & \text{if } i \cong 1 \pmod{k+1} \\ \{2\} & \text{if } i \cong \frac{k+3}{2} \pmod{k+1} \\ \phi & \text{otherwise} \end{cases}$$

Since n = k + 3 and $k \ge 5$, there are exactly 2 vertices whose indices are congruent to 1 modulo k + 1 and 1 vertex whose index is congruent to $\frac{k+3}{2}$ modulo k + 1. Therefore, w(f) = 3.

Proposition 2.15. $\gamma_{pr2}(H_{k,n}) = 2$, where n = k + 2 and n, k are odd.

Proof. Since there is a vertex of degree n-1, assigning $\{1,2\}$ to that vertex will result all other vertices receiving the label ϕ . Hence w(f)=2. It suffices to show that $\gamma_{pr2}(H_{k,n})\neq 1$. Let f be a proper 2-rainbow dominating function with minimum weight. If suppose $\gamma_{pr2}(H_{k,n})=1$. Then only one vertex has $|f(v_i)|=1$ and all other vertices should be assigned ϕ , which is not possible.

3. Conclusion

In this paper we defined and discussed on proper 2-rainbow domination in graphs. Also we have found bounds for proper 2-rainbow domination number for various classes of graphs namely complete multipartite graphs, Harary graphs, $P_n \times P_m$ and cycles. Further works can be done in this area by finding proper 2-rainbow domination numbers for other classes of graphs and by characterizing graphs G such that $\gamma_{pr2}(G) = \gamma_{r2}(G)$.

References

^[1] M.Ali, M.T.Rahim, M.Zeb and G.Ali, On 2-rainbow domination of some families of graphs, Int. J. Math. Soft Comput., 1(1)(2011), 47-53.

^[2] B.Bresar, M.A.Henning and D.F.Rall, Rainbow domination in graphs, Taiwaneese J. Math., 12(1)(2008), 213-225.

^[3] B.Bresar and T.K.Sumenjakb, On the 2-rainbow domination in graphs, Discrete Appl. Math., 155(2007), 2394-2400.

^[4] G.J.Chang, J.Wu and X.Zhu, Rainbow domination on trees, Discrete Appl. Math., 158(2010), 8-12.

^[5] N.J.Rad, Critical concept for 2-rainbow domination in graphs, Australas. J. Combin., 51(2011), 4960.

^[6] G.Xu, 2-rainbow domination in generalized Petersen graphs P(n, 3), Discrete Appl. Math., 157(2009), 2570-2573.