Common Coupled Fixed Point Theorems in Dislocated Quasi Fuzzy B-Metric Spaces

K. P. R. Rao ${ }^{1 *}$ and A. Sombabu ${ }^{2}$
1 Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, A.P., India.
2 Department of Mathematics, NRI Institute of technology, Agiripalli, A.P., India.

Abstract

In this paper we obtain some unique common coupled fixed point theorems in dislocated quasi fuzzy b-metric spaces. Also we give some examples which support our main results. MSC: $\quad 54 \mathrm{H} 25,47 \mathrm{H} 10$. Keywords: Fuzzy metric space, Dislocated Quasi fuzzy b-metric space, Coupled fixed point, w-compatible maps. (c) JS Publication.

1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since then, to use this concept in topology and analysis, many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [7], Kramosil and Michalek [10] have introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics, particularly in connections with both string and E-infinity theory which were given and studied by El Naschie [3-6].

Definition 1.1. Let Φ be the set all $\phi:[0,1] \rightarrow[0,1]$ satisfying
$\left(\phi_{1}\right): \phi$ is continuous,
$\left(\phi_{2}\right): \phi$ is monotonically non-decreasing and
$\left(\phi_{3}\right): \phi(t)>t$ for all $t \in(0,1)$.

From $\left(\phi_{1}\right)$ and $\left(\phi_{3}\right)$ or $\left(\phi_{2}\right)$ and $\left(\phi_{3}\right)$ it clear that $\phi(1)=1$.

Definition $1.2([8])$. A binary operation $*:[0.1] \times[0,1] \rightarrow[0,1]$ is a continuous t-norm if it satisfies the following conditions:
(1). * is associative and commutative,
(2). $*$ is continuous,
(3). $a * 1=a$ for all $a \in[0,1]$,

[^0](4). $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in[0,1]$.

Two typical examples of a continuous t-norm are $a * b=a . b$ and $a * b=\min \{a, b\}$.

Definition $1.3([8])$. A 3-tuple $(X, M, *)$ is called a fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$, satisfying the following conditions for each $x, y, z \in X$ and $t, s>0$,
(1). $M(x, y, t)>0$,
(2). $M(x, y, t)=1$ if and only if $x=y$,
(3). $M(x, y, t)=M(y, x, t)$,
(4). $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$,
(5). $M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous.

The function M is called a fuzzy metric.

Definition $1.4([16])$. A 3-tuple $(X, M, *)$ is called a b-fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$, satisfying the following conditions for each $x, y, z \in X$ and $t, s>0$ and a given real number $b \geq 1$,
(1). $M(x, y, t)>0$,
(2). $M(x, y, t)=1$ if and only if $x=y$,
(3). $M(x, y, t)=M(y, x, t)$,
(4). $M\left(x, y, \frac{t}{b}\right) * M\left(y, z, \frac{s}{b}\right) \leq M(x, z, t+s)$,
(5). $M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous.

The function M is called a b-fuzzy metric.
Example 1.5. Let $M(x, y, t)=e^{\frac{-d(x, y)}{t}}$ or $M(x, y, t)=\frac{t}{t+d(x, y)}$, where d is a b - metric on X and $a * c=$ a.c for all $a, c \in[0,1]$. Then it is easy to show that $(X, M, *)$ is a b-fuzzy metric space.

Definition 1.6 ([14]). A 3-tuple $(X, M, *)$ is called a dislocated quasi fuzzy metric space if X is an arbitrary (non-empty) set, $*$ is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$, satisfying the following conditions:
(1). $M(x, y, t)=M(y, x, t)=1, \forall t>0 \Rightarrow x=y$,
(2). $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$.

Combining these definitions, we introduce following definitions.

Definition 1.7. A 3-tuple $(X, M, *)$ is called a dislocated quasi fuzzy b-metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$, satisfying the following conditions:
$(M 1): M(x, y, t)=M(y, x, t)=1, \forall t>0 \Rightarrow x=y$,
(M2): $M\left(x, y, \frac{t}{b}\right) * M\left(y, z, \frac{s}{b}\right) \leq M(x, z, t+s)$,
(M3): $M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous.

Definition 1.8. Let $(X, M, *)$ be a dislocated quasi fuzzy b-metric space.
(1). A sequence $\left\{x_{n}\right\}$ in X is said to converge to $x \in X$ iff $M\left(x_{n}, x, t\right) \rightarrow 1$ and $M\left(x, x_{n}, t\right) \rightarrow 1, \forall t>0$
(2). A sequence $\left\{x_{n}\right\}$ in X is said to be a Cauchy sequence iff $M\left(x_{n}, x_{m}, t\right) \rightarrow 1$ and $M\left(x_{m}, x_{n}, t\right) \rightarrow 1, \forall t>0$.

One can easily prove the following

Proposition 1.9. Let $(X, M, *)$ be a dislocated quasi fuzzy b-metric space and $\left\{x_{n}\right\}$ converge to x then we have

$$
\begin{aligned}
& M\left(x, y, \frac{t}{b}\right) \leq \lim _{n \rightarrow \infty} \sup M\left(x_{n}, y, t\right) \leq M(x, y, b t) \text { and } \\
& M\left(x, y, \frac{t}{b}\right) \leq \lim _{n \rightarrow \infty} \inf M\left(x_{n}, y, t\right) \leq M(x, y, b t)
\end{aligned}
$$

Definition 1.10 ([2]). An element $(x, y) \in X \times X$ is called a coupled fixed point of a mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition 1.11 ([11]). An element $(x, y) \in X \times X$ is called a coupled coincidence point of a mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $F(x, y)=g x$ and $F(y, x)=g y$.

Definition 1.12 ([11]). An element $(x, y) \in X \times X$ is called a common coupled fixed point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $F(x, y)=g(x)=x$ and $F(y, x)=g(y)=y$.

Definition 1.13 ([1]). The mappings $S: X \times X \rightarrow X$ and $f: X \rightarrow X$ are called w-compatible if $f(S(x, y))=S(f x, f y)$ and $f(S(y, x))=S(f y, f x)$ whenever $(x, y) \in X \times X$ such that $f(x)=S(x, y)$ and $f(y)=S(y, x)$.

2. Main Section

Now we give our main results.

Theorem 2.1. Let $(X, M, *)$ be a complete dislocated quasi fuzzy b-metric space, $F, G: X \times X \rightarrow X$ and $S, T: X \rightarrow X$ be mappings satisfying
(2.1.1) $M(F(x, y), G(u, v), t) \geq \phi(\min \{M(S x, T u, t), M(S y, T v, t)\})$ for all $x, y, u, v \in X$ and $\phi \in \Phi$
(2.1.2) $M(G(x, y), F(u, v), t) \geq \phi(\min \{M(T x, S u, t), M(T y, S v, t)\})$ for all $x, y, u, v \in X$ and $\phi \in \Phi$
(2.1.3) $F(X \times X) \subseteq T(X)$ and $G(X \times X) \subseteq S(X)$,
(2.1.4) $F S=S F$ and $G T=T G$,
(2.1.5) F, G, S and T are continuous.

Then F, G, S and T have a unique common coupled fixed point in $X \times X$.

Proof. Let $\left(x_{0}, y_{0}\right) \in X \times X$. From (2.1.3), we can construct sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ in X such that $z_{2 n}=$ $F\left(x_{2 n}, y_{2 n}\right)=T x_{2 n+1}, w_{2 n}=F\left(y_{2 n}, x_{2 n}\right)=T y_{2 n+1}, z_{2 n+1}=G\left(x_{2 n+1}, y_{2 n+1}\right)=S x_{2 n+2}$ and $w_{2 n+1}=G\left(y_{2 n+1}, x_{2 n+1}\right)=$ $S y_{2 n+2}$.
Case (i): Suppose min $\left\{\begin{array}{l}M\left(z_{n-1}, z_{n}, t\right), M\left(z_{n}, z_{n-1}, t\right), \\ M\left(w_{n-1}, w_{n}, t\right), M\left(w_{n}, z_{n-1}, t\right)\end{array}\right\}=1$ for some positive integer n and for some $t>0$. Without
loss of generality assume that $n=2 m$. Then $\min \left\{\begin{array}{l}M\left(z_{2 m-1}, z_{2 m}, t\right), M\left(z_{2 m}, z_{2 m-1}, t\right), \\ M\left(w_{2 m-1}, w_{2 m}, t\right), M\left(w_{2 m}, z_{2 m-1}, t\right)\end{array}\right\}=1$. Then from (M1), we have $z_{2 m-1}=z_{2 m}$ and $w_{2 m-1}=w_{2 m}$. Consider

$$
\begin{aligned}
M\left(z_{2 m}, z_{2 m+1}, t\right) & =M\left(F\left(x_{2 m}, y_{2 m}\right), G\left(x_{2 m+1}, y_{2 m+1}\right), t\right) \\
& \geq \phi\left(\min \left\{M\left(z_{2 m-1}, z_{2 m}, t\right), M\left(w_{2 m-1}, w_{2 m}, t\right)\right\}\right) \\
M\left(z_{2 m+1}, z_{2 m}, t\right) & =M\left(G\left(x_{2 m+1}, y_{2 m+1}\right), F\left(x_{2 m}, y_{2 m}\right), t\right) \\
& \geq \phi\left(\min \left\{M\left(z_{2 m}, z_{2 m-1}, t\right), M\left(w_{2 m}, w_{2 m-1}, t\right)\right\}\right), \\
M\left(w_{2 m}, w_{2 m+1}, t\right) & =M\left(F\left(y_{2 m}, x_{2 m}\right), G\left(y_{2 m+1}, x_{2 m+1}\right), t\right) \\
& \geq \phi\left(\min \left\{M\left(w_{2 m-1}, w_{2 m}, t\right), M\left(z_{2 m-1}, z_{2 m}, t\right)\right\}\right) \\
M\left(w_{2 m+1}, w_{2 m}, t\right) & =M\left(G\left(y_{2 m+1}, x_{2 m+1}\right), F\left(y_{2 m}, x_{2 m}\right), t\right) \\
& \geq \phi\left(\min \left\{M\left(w_{2 m}, w_{2 m-1}, t\right), M\left(z_{2 m}, z_{2 m-1}, t\right)\right\}\right) .
\end{aligned}
$$

Using $\left(\phi_{2}\right)$, we have

$$
\begin{gather*}
\min \left\{\begin{array}{l}
M\left(z_{2 m}, z_{2 m+1}, t\right), M\left(z_{2 m+1}, z_{2 m}, t\right), \\
M\left(w_{2 m}, w_{2 m+1}, t\right), M\left(w_{2 m+1}, z_{2 m}, t\right)
\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{l}
M\left(z_{2 m}, z_{2 m-1}, t\right), M\left(z_{2 m-1}, z_{2 m}, t\right) \\
M\left(w_{2 m}, w_{2 m-1}, t\right), M\left(w_{2 m-1}, z_{2 m}, t\right)
\end{array}\right\}\right) \tag{1}\\
=\phi(1)=1
\end{gather*}
$$

Hence by (M1), we have $z_{2 m}=z_{2 m+1}$ and $w_{2 m}=w_{2 m+1}$. Continuing in this way, we can show that $z_{2 m-1}=z_{2 m}=$ $z_{2 m+1}=\ldots$ and $w_{2 m-1}=w_{2 m}=w_{2 m+1}=\ldots$. Hence $\left\{z_{n}\right\},\left\{w_{n}\right\}$ are Cauchy sequences in X.
Case (ii): Suppose $\min \left\{\begin{array}{l}M\left(z_{n}, z_{n-1}, t\right), M\left(z_{n-1}, z_{n}, t\right), \\ M\left(w_{n}, z_{n-1}, t\right), M\left(w_{n-1}, w_{n}, t\right)\end{array}\right\} \neq 1$ for all n and for all $t>0$. Let $a_{n}(t)=$ $\min \left\{\begin{array}{l}M\left(z_{n}, z_{n+1}, t\right), M\left(z_{n+1}, z_{n}, t\right), \\ M\left(w_{n}, w_{n+1}, t\right), M\left(w_{n+1}, w_{n}, t\right)\end{array}\right\}$ for every $t>0$. As in (1), we have $a_{2 n}(t) \geq \phi\left(a_{2 n-1}(t)\right)$ and $a_{2 n+1}(t) \geq \phi\left(a_{2 n}(t)\right)$.
Thus

$$
\begin{align*}
a_{n}(t) & \geq \phi\left(a_{n-1}(t)\right) \tag{2}\\
& >a_{n-1}(t)
\end{align*}
$$

Thus $\left\{a_{n}(t)\right\}$ is an non-decreasing sequence in $[0,1]$ for every $t>0$. Hence $\left\{a_{n}(t)\right\}$ converges to some $a(t) \leq 1$ for every $t>0$. If $a(t)<1$, taking $n \rightarrow \infty$ in (2), we get $a(t) \geq \phi(a(t))>a(t)$. Which is a contradiction. Hence $a(t)=1$ for every $t>0$. Thus for all $t>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(z_{n}, z_{n+1}, t\right)=\lim _{n \rightarrow \infty} M\left(z_{n+1}, z_{n}, t\right)=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(w_{n}, w_{n+1}, t\right)=\lim _{n \rightarrow \infty} M\left(w_{n+1}, w_{n}, t\right)=1 . \tag{4}
\end{equation*}
$$

Suppose $\left\{z_{2 n}\right\}$ or $\left\{w_{2 n}\right\}$ are not Cauchy sequences in X. Then there exists an $\epsilon \in(0,1)$ such that for each integer k, there exist integers $m(k)$ and $n(k)$ with $m(k)>n(k) \geq k$ such that

$$
\min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 m(k)}, t\right), M\left(z_{2 m(k)}, z_{2 n(k)}, t\right), \tag{5}\\
M\left(w_{2 n(k)}, w_{2 m(k)}, t\right), M\left(w_{2 m(k)}, w_{2 n(k)}, t\right)
\end{array}\right\} \leq 1-\epsilon .
$$

for $k=1,2,3, \cdots$. We may assume that

$$
\min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 m(k)-2}, t\right), M\left(z_{2 m(k)-2}, z_{2 n(k)}, t\right) \tag{6}\\
M\left(w_{2 n(k)}, w_{2 m(k)-2}, t\right), M\left(w_{2 m(k)-2}, w_{2 n(k)}, t\right)
\end{array}\right\}>1-\epsilon
$$

by choosing $m(k)$ be the smallest number exceeding $n(k)$ for which (5) holds. Let

$$
d_{k}(t)=\min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 m(k)}, t\right), M\left(z_{2 m(k)}, z_{2 n(k)}, t\right) \\
M\left(w_{2 n(k)}, w_{2 m(k)}, t\right), M\left(w_{2 m(k)}, w_{2 n(k)}, t\right)
\end{array}\right\}
$$

Using (5), we have

$$
\begin{aligned}
& 1-\epsilon \geq d_{k}(t) \\
& \geq \min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 m(k)-2}, \frac{t}{2 b}\right) * M\left(z_{2 m(k)-2}, z_{2 m(k)}, \frac{t}{2 b}\right), \\
M\left(z_{2 m(k)}, z_{2 m(k)-2}, \frac{t}{2 b}\right) * M\left(z_{2 m(k)-2}, z_{2 n(k)}, \frac{t}{2 b}\right), \\
M\left(w_{2 n(k)}, w_{2 m(k)-2}, \frac{t}{2 b}\right) * M\left(w_{2 m(k)-2}, w_{2 m(k)}, \frac{t}{2 b}\right), \\
M\left(w_{2 m(k)}, w_{2 m(k)-2}, \frac{t}{2 b}\right) * M\left(w_{2 m(k)-2}, w_{2 n(k)}, \frac{t}{2 b}\right)
\end{array}\right\} \\
& \geq \min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 m(k)-2}, \frac{t}{2 b}\right) * M\left(z_{2 m(k)-2}, z_{2 m(k)-1}, \frac{t}{4 b}\right) * \\
M\left(z_{2 m(k)-1}, z_{2 m(k)}, \frac{t}{4 b}\right), M\left(z_{2 m(k)}, z_{2 m(k)-2}, \frac{t}{2 b}\right) * \\
M\left(z_{2 m(k)-2}, z_{2 m(k)-1}, \frac{t}{4 b}\right) * M\left(z_{2 m(k)-1}, z_{2 n(k)}, \frac{t}{4 b}\right), \\
M\left(w_{2 n(k)}, w_{2 m(k)-2}, \frac{t}{2 b}\right) * M\left(w_{2 m(k)-2}, w_{2 m(k)-1}, \frac{t}{4 b}\right) * \\
M\left(w_{2 m(k)-1}, w_{2 m(k)}, \frac{t}{4 b}\right), M\left(w_{2 m(k)}, w_{2 m(k)-2}, \frac{t}{2 b}\right) * \\
M\left(w_{2 m(k)-2}, w_{2 m(k)-1}, \frac{t}{4 b}\right) * M\left(w_{2 m(k)-1}, w_{2 n(k)}, \frac{t}{4 b}\right)
\end{array}\right\} \\
& \geq \min \left\{\begin{array}{l}
(1-\varepsilon) * M\left(z_{2 m(k)-2}, z_{2 m(k)-1}, \frac{t}{4 b}\right) * M\left(z_{2 m(k)-1}, z_{2 m(k)}, \frac{t}{4 b}\right), \\
(1-\varepsilon) * M\left(z_{2 m(k)-2}, z_{2 m(k)-1}, \frac{t}{4 b}\right) * M\left(z_{2 m(k)-1}, z_{2 n(k)}, \frac{t}{4 b}\right), \\
(1-\varepsilon) * M\left(w_{2 m(k)-2}, w_{2 m(k)-1}, \frac{t}{4 b}\right) * M\left(w_{2 m(k)-1}, w_{2 m(k)}, \frac{t}{4 b}\right), \\
(1-\varepsilon) * M\left(w_{2 m(k)-2}, w_{2 m(k)-1}, \frac{t}{4 b}\right) * M\left(w_{2 m(k)-1}, w_{2 n(k)}, \frac{t}{4 b}\right)
\end{array}\right\}, \text { from (6) }
\end{aligned}
$$

Letting $k \rightarrow \infty$, we get $1-\epsilon \geq \lim _{k \rightarrow \infty} d_{k}(t) \geq 1-\epsilon$ by (3),(4). Thus

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d_{k}(t)=1-\epsilon \tag{7}
\end{equation*}
$$

for all $t>0$. On other hand, we have

$$
\begin{aligned}
& d_{k}(t) \geq \min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 n(k)+1}, \frac{t}{2 b}\right) * M\left(z_{2 n(k)+1}, z_{2 m(k)}, \frac{t}{2 b}\right), \\
M\left(z_{2 m(k)}, z_{2 m(k)+1}, \frac{t}{2 b}\right) * M\left(z_{2 m(k)+1}, z_{2 n(k)}, \frac{t}{2 b}\right), \\
M\left(w_{2 n(k)}, w_{2 n(k)+1}, \frac{t}{2 b}\right) * M\left(w_{2 n(k)+1}, w_{2 m(k)}, \frac{t}{2 b}\right), \\
M\left(w_{2 m(k)}, w_{2 m(k)+1}, \frac{t}{2 b}\right) * M\left(w_{2 m(k)+1}, w_{2 n(k)}, \frac{t}{2 b}\right)
\end{array}\right\} \\
&=\min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 n(k)+1}, \frac{t}{2 b}\right) * M\left(G\left(x_{2 n(k)+1}, y_{2 n(k)+1}\right), F\left(x_{2 m(k)}, y_{2 m(k)}\right), \frac{t}{2 b}\right), \\
M\left(z_{2 m(k)}, z_{2 m(k)+1}, \frac{t}{2 b}\right) * M\left(G\left(x_{2 m(k)+1}, y_{2 m(k)+1}\right), F\left(x_{2 n(k)}, y_{2 n(k)}\right), \frac{t}{2 b}\right), \\
M\left(w_{2 n(k)}, w_{2 n(k)+1}, \frac{t}{2 b}\right) * M\left(G\left(y_{2 n(k)+1}, x_{2 n(k)+1}\right), F\left(y_{2 m(k)}, x_{2 m(k)}\right), \frac{t}{2 b}\right), \\
M\left(w_{2 m(k)}, w_{2 m(k)+1}, \frac{t}{2 b}\right) * M\left(G\left(y_{2 m(k)+1}, x_{2 m(k)+1}\right), F\left(y_{2 n(k)}, x_{2 n(k)}\right), \frac{t}{2 b}\right)
\end{array}\right\}
\end{aligned}
$$

$$
\geq \min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 n(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 m(k)-1}, \frac{t}{2 b}\right), \\
M\left(w_{2 n(k)}, w_{2 m(k)}, \frac{t}{2 b}\right)
\end{array}\right\}\right), \tag{8}\\
M\left(z_{2 m(k)}, z_{2 m(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{\begin{array}{l}
M\left(z_{2 m(k)}, z_{2 n(k)-1}, \frac{t}{2 b}\right), \\
M\left(w_{2 m(k)}, w_{2 n(k)}, \frac{t}{2 b}\right)
\end{array}\right\}\right), \\
M\left(w_{2 n(k)}, w_{2 n(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{\begin{array}{l}
M\left(w_{2 n(k)}, w_{2 m(k)}, \frac{t}{2 b}\right), \\
M\left(z_{2 n(k)}, z_{2 m(k)-1}, \frac{t}{2 b}\right)
\end{array}\right\}\right) \\
M\left(w_{2 m(k)}, w_{2 m(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{\begin{array}{l}
M\left(w_{2 m(k)}, w_{2 n(k)}, \frac{t}{2 b}\right), \\
M\left(z_{2 m(k)}, z_{2 n(k)-1}, \frac{t}{2 b}\right)
\end{array}\right)\right.
\end{array}\right\}, ~\left\{\begin{array}{l}
M
\end{array}\right\}
$$

$M\left(z_{2 n(k)}, z_{2 m(k)-1, \frac{t}{2 b}}\right) \geq M\left(z_{2 n(k)}, z_{\left.2 m(k)-2, \frac{t}{4 b^{2}}\right)} * M\left(z_{2 m(k)-2}, z_{\left.2 m(k)-1, \frac{t}{4 b^{2}}\right) \quad \text { and } \quad M\left(z_{2 m(k)}, z_{2 n(k)-1, \frac{t}{2 b}}\right), ~(z)}\right.\right.$ $M\left(z_{2 m(k)}, z_{\left.2 n(k), \frac{t}{4 b^{2}}\right)}\right) * M\left(z_{2 n(k)}, z_{\left.2 n(k)-1, \frac{t}{4 b^{2}}\right)}\right)$ from (6). Write similarly for other values in (8)

$$
d_{k}(t) \geq \min \left\{\begin{array}{l}
M\left(z_{2 n(k)}, z_{2 n(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{1-\varepsilon * M\left(z_{2 m(k)-2}, z_{2 m(k)-1}, \frac{t}{4 b^{2}}\right), 1-\varepsilon\right\}\right), \\
M\left(z_{2 m(k)}, z_{2 m(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{1-\varepsilon * M\left(z_{2 n(k)}, z_{2 n(k)-1}, \frac{t}{4 b^{2}}\right), 1-\varepsilon\right\}\right), \\
M\left(w_{2 n(k)}, w_{2 n(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{1-\varepsilon, 1-\varepsilon * M\left(z_{2 m(k)-2}, z_{2 m(k)-1}, \frac{t}{4 b^{2}}\right)\right\}\right), \\
M\left(w_{2 m(k)}, w_{2 m(k)+1}, \frac{t}{2 b}\right) * \phi\left(\min \left\{1-\varepsilon, 1-\varepsilon * M\left(z_{2 n(k)}, z_{2 n(k)-1}, \frac{t}{4 b^{2}}\right)\right\}\right)
\end{array}\right\}
$$

Letting $k \rightarrow \infty, \operatorname{using}(7),(3),(4),\left(\phi_{1}\right)$ and $\left(\phi_{3}\right)$, we get $1-\epsilon \geq \phi(1-\epsilon)>1-\epsilon$, which is a contradiction. Thus $\left\{z_{2 n}\right\}$ and $\left\{w_{2 n}\right\}$ are Cauchy sequences. Hence $\lim _{n, m \rightarrow \infty} M\left(z_{2 n}, z_{2 m}, t\right)=1$ and $\lim _{n, m \rightarrow \infty} M\left(w_{2 n}, w_{2 m}, t\right)=1, \forall t>0$. Now

$$
\begin{aligned}
M\left(z_{2 n+1}, z_{2 m+1}, t\right) & \geq M\left(z_{2 n+1}, z_{2 m}, \frac{2 t}{3 b}\right) * M\left(z_{2 m}, z_{2 m+1}, \frac{t}{3 b}\right) \\
& \geq M\left(z_{2 n+1}, z_{2 n}, \frac{t}{3 b^{2}}\right) * M\left(z_{2 n}, z_{2 m}, \frac{t}{3 b^{2}}\right) * M\left(z_{2 m}, z_{2 m+1}, \frac{t}{3 b}\right)
\end{aligned}
$$

Letting $n, m \rightarrow \infty$, we get $\lim _{n, m \rightarrow \infty} M\left(z_{2 n+1}, z_{2 m+1}, t\right) \geq 1 * 1 * 1=1$. Thus $\lim _{n, m \rightarrow \infty} M\left(z_{2 n+1}, z_{2 m+1}, t\right)=1$. Similarly $\lim _{n, m \rightarrow \infty} M\left(w_{2 n+1}, w_{2 m+1}, t\right)=1$. Thus $\left\{z_{2 n+1}\right\}$ and $\left\{w_{2 n+1}\right\}$ are Cauchy. Hence $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are Cauchy. Since X is complete there exist $z, w \in X$ such that $\left\{z_{n}\right\}$ converges to z and $\left\{w_{n}\right\}$ converges to w. Since S and F are continuous and $S F=F S$, we have

$$
\begin{equation*}
S z=\lim _{n \rightarrow \infty} S z_{2 n}=\lim _{n \rightarrow \infty} S\left(F\left(x_{2 n}, y_{2 n}\right)\right)=\lim _{n \rightarrow \infty} F\left(S x_{2 n}, S y_{2 n}\right)=\lim _{n \rightarrow \infty} F\left(z_{2 n-1}, w_{2 n-1}\right)=F(z, w) \tag{9}
\end{equation*}
$$

Similarly we can show that

$$
\begin{equation*}
S w=F(w, z) \tag{10}
\end{equation*}
$$

Since G and T are continuous and $G T=T G$, we have

$$
\begin{equation*}
T z=\lim _{n \rightarrow \infty} T z_{2 n+1}=\lim _{n \rightarrow \infty} T\left(G\left(x_{2 n+1}, y_{2 n+1}\right)\right)=\lim _{n \rightarrow \infty} G\left(T x_{2 n+1}, T y_{2 n+1}\right)=\lim _{n \rightarrow \infty} G\left(z_{2 n}, w_{2 n}\right)=G(z, w) \tag{11}
\end{equation*}
$$

Similarly we can show that

$$
\begin{equation*}
T w=G(w, z) \tag{12}
\end{equation*}
$$

Now

$$
M(S z, T z, t)=M(F(z, w), G(z, w), t)
$$

$$
\geq \phi(\min \{M(S z, T z, t), M(S w, T w, t)\})
$$

Similarly we can show that

$$
\begin{aligned}
M(T z, S z, t) & \geq \phi(\min \{M(T z, S z, t), M(T w, S w, t)\}), \\
M(S w, T w, t) & \geq \phi(\min \{M(S w, T w, t), M(S z, T z, t)\}) \\
M(T w, S w, t) & \geq \phi(\min \{M(T w, S w, t), M(T z, S z, t)\}) .
\end{aligned}
$$

Thus we have

$$
\min \left\{\begin{array}{c}
M(S z, T z, t), M(T z, S z, t), \\
M(S w, T w, t), M(T w, S w, t)
\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{c}
M(S z, T z, t), M(T z, S z, t) \\
M(S w, T w, t), M(T w, S w, t)
\end{array}\right\}\right)
$$

which in turn yields from $\left(\phi_{3}\right)$ and (M1) that $S z=T z$ and $S w=T w$. Let $\alpha=S z=T z$ and $\beta=S w=T w$. Then $S \alpha=S(S z)=S(F(z, w))=F(S z, S w)=F(\alpha, \beta)$. Similarly $S \beta=F(\beta, \alpha), T \alpha=G(\alpha, \beta)$ and $T \beta=G(\beta, \alpha)$. Consider

$$
\begin{aligned}
M(S \alpha, \alpha, t) & =M(F(\alpha, \beta), G(z, w), t) \\
& \geq \phi(\min \{M(S \alpha, \alpha, t), M(S \beta, \beta, t)\}) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& M(\alpha, S \alpha, t) \geq \phi(\min \{M(\alpha, S \alpha, t), M(\beta, S \beta, t)\}) \\
& M(S \beta, \beta, t) \geq \phi(\min \{M(S \beta, \beta, t), M(S \alpha, \alpha, t)\}) \\
& M(\beta, S \beta, t) \geq \phi(\min \{M(\beta, S \beta, t), M(\alpha, S \alpha, t)\})
\end{aligned}
$$

Hence

$$
\min \left\{\begin{array}{c}
M(S \alpha, \alpha, t), M(\alpha, S \alpha, t), \\
M(S \beta, \beta, t), M(\beta, S \beta, t)
\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{c}
M(S \alpha, \alpha, t), M(\alpha, S \alpha, t) \\
M(S \beta, \beta, t), M(\beta, S \beta, t)
\end{array}\right\}\right)
$$

which in turn yields from (ϕ_{3}) and (M1) that $S \alpha=\alpha$ and $S \beta=\beta$. Similarly we can show that $T \alpha=\alpha$ and $T \beta=\beta$. Thus $F(\alpha, \beta)=S \alpha=\alpha=T \alpha=G(\alpha, \beta)$ and $F(\beta, \alpha)=S \beta=\beta=T \beta=G(\beta, \alpha)$. Thus (α, β) is common coupled fixed point of F, G, S and T. Using (2.1.1), (2.1.2) we can show that (α, β) is unique common coupled fixed point of F, G, S and T.

We give an example to illustrate Theorem 2.1.

Example 2.2. Let $X=[0,1]$ and $a * c=$ ac for all $a, c \in[0,1]$ and M be a fuzzy set on $X \times X \times(0, \infty)$ defined by $M(x, y, t)=e^{-\frac{\left.\| x-\left.y\right|^{2}+|x|\right]}{t}}$. Let $F, G: X \times X \rightarrow X$ and $S, T: X \rightarrow X$ be defined by $F(x, y)=\frac{x+y}{64}, G(x, y)=\frac{x+y}{96}, S x=\frac{x}{2}$ and $T x=\frac{x}{3}$. Let $\phi:[0,1] \rightarrow[0,1]$ be defined by $\phi(t)=t^{\frac{1}{16}}$, for all $t \in[0,1]$. Now $M(x, y, t)=M(y, x, t)=1 \Rightarrow e^{-\frac{\left[|x-y|^{2}+|x|\right]}{t}}=1$ and $e^{-\frac{\left.\| y-\left.x\right|^{2}+|y|\right]}{t}}=1 \Rightarrow x-y=0, x=0, y-x=0, y=0 \Rightarrow x=y=0 \Rightarrow x=y$. Consider

$$
\begin{aligned}
M(x, y, t+s) & =e^{\frac{-\left[|x-y|^{2}+|x|\right]}{t+s}} \\
& \geq e^{\frac{-2\left[\left\{|x-z|^{2}+|x|\right\}+\left\{|z-y|^{2}+|z|\right\}\right]}{t+s}} \\
& =e^{\frac{-2\left[|x-z|^{2}+|x|\right]}{t+s}} \cdot e^{\frac{-2\left[|z-y|^{2}+|z|\right]}{t+s}} \\
& \geq e^{\frac{-2\left[|x-z|^{2}+|x|\right]}{t}} \cdot e^{\frac{-2\left[|z-y|^{2}+|z|\right]}{s}} \\
& =e^{\frac{-\left[|x-z|^{2}+|x|\right]}{t / 2}} \cdot e^{\frac{-\left[|z-y|^{2}+|z|\right]}{s / 2}} \\
& =M\left(x, z, \frac{t}{2}\right) * M\left(z, y, \frac{s}{2}\right) .
\end{aligned}
$$

Thus M is a dislocated quasi fuzzy b-metric with $b=2$. Now consider

$$
\begin{aligned}
\left|\frac{x+y}{64}-\frac{u+v}{96}\right|^{2}+\frac{x+y}{64} & =\left|\frac{(3 x-2 u)+(3 y-2 v)}{6 \times 32}\right|^{2}+\frac{x+y}{64} \\
& =\left|\frac{\left(\frac{x}{2}-\frac{u}{3}\right)+\left(\frac{y}{2}-\frac{v}{3}\right)}{32}\right|^{2}+\frac{x+y}{64} \\
& \leq \frac{2}{32 \times 32}\left[\left(\frac{x}{2}-\frac{u}{3}\right)^{2}+\left(\frac{y}{2}-\frac{v}{3}\right)^{2}\right]+\frac{x+y}{64} \\
& \leq \frac{1}{32}\left[\frac{1}{16}\left(\frac{x}{2}-\frac{u}{3}\right)^{2}+\frac{x}{2}+\frac{1}{16}\left(\frac{y}{2}-\frac{v}{3}\right)^{2}+\frac{y}{2}\right] \\
& \leq \frac{1}{32}\left[\left\{\left(\frac{x}{2}-\frac{u}{3}\right)^{2}+\frac{x}{2}\right\}+\left\{\left(\frac{y}{2}-\frac{v}{3}\right)^{2}+\frac{y}{2}\right\}\right] \\
& \leq \frac{2}{32}\left[\max \left\{\left(\frac{x}{2}-\frac{u}{3}\right)^{2}+\frac{x}{2},\left(\frac{y}{2}-\frac{v}{3}\right)^{2}+\frac{y}{2}\right\}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
M(F(x, y), G(u, v), t) & =e^{\frac{-\left\{\left|\frac{x+y}{64}-\frac{u+v}{96}\right|^{2}+\frac{x+y}{64}\right\}}{t}} \\
& \geq e^{\frac{-\frac{1}{16} \max \left\{\left(\frac{x}{2}-\frac{u}{3}\right)^{2}+\frac{x}{2},\left(\frac{y}{2}-\frac{v}{3}\right)^{2}+\frac{y}{2}\right\}}{t}} \\
& =\left[e^{\left.\frac{-\max \left\{\left(\frac{x}{2}-\frac{u}{3}\right)^{2}+\frac{x}{2},\left(\frac{y}{2}-\frac{v}{3}\right)^{2}+\frac{y}{2}\right\}}{t}\right]^{\frac{1}{16}}}\right. \\
& =\left[\min \left\{e^{-\left\{\frac{\left(\frac{x}{2}-\frac{u}{3}\right)^{2}+\frac{x}{2}}{t}\right\}}, e^{-\left\{\frac{\left(\frac{y}{2}-\frac{v}{3}\right)^{2}+\frac{y}{2}}{t}\right\}}\right\}\right]^{\frac{1}{16}} \\
& =[\min \{M(S x, T u, t), M(S y, T v, t)\}]^{\frac{1}{16}} \\
& =\phi(\min \{M(S x, T u, t), M(S y, T v, t)\})
\end{aligned}
$$

Thus (2.1.1) is satisfied. Similarly we can easily verify (2.1.2), (2.1.3), (2.1.4) and (2.1.5). Clearly (0, 0) is the unique common coupled fixed point of F, G, S and T. Now replacing the completeness of X, continuities of F, G, S and T and commutativity of pairs (F, S) and (G, T) by w-compatible pairs (F, S) and (G, T) and completeness of $S(X)$ or $T(X)$, we prove a unique common coupled fixed point.Infact we prove the following theorem.

Theorem 2.3. Let $(X, M, *)$ be a complete dislocated quasi fuzzy b-metric space, $F, G: X \times X \rightarrow X$ and $S, T: X \rightarrow X$ be mappings satisfying
(2.3.1) $M(F(x, y), G(u, v), t) \geq \phi\left(\min \left\{M\left(S x, T u, 2 b^{2} t\right), M\left(S y, T v, 2 b^{2} t\right)\right\}\right)$ for all $x, y, u, v \in X$ and $\phi \in \Phi$
(2.3.2) $M(G(x, y), F(u, v), t) \geq \phi\left(\min \left\{M\left(T x, S u, 2 b^{2} t\right), M\left(T y, S v, 2 b^{2} t\right)\right\}\right)$ for all $x, y, u, v \in X$ and $\phi \in \Phi$
(2.3.3) $F(X \times X) \subseteq T(X)$ and $G(X \times X) \subseteq S(X)$,
(2.3.4) one of $S(X)$ and $T(X)$ is a complete subspace of X,
(2.3.5) (F, S) and (G, T) are w-compatible.

Then F, G, S and T have a unique common coupled fixed point in $X \times X$.

Proof. As in proof of Theorem 2.1, the sequences $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are Cauchy, where $z_{2 n}=F\left(x_{2 n}, y_{2 n}\right)=T x_{2 n+1}$, $w_{2 n}=F\left(y_{2 n}, x_{2 n}\right)=T y_{2 n+1}, z_{2 n+1}=G\left(x_{2 n+1}, y_{2 n+1}\right)=S x_{2 n+2}$ and $w_{2 n+1}=G\left(y_{2 n+1}, x_{2 n+1}\right)=S y_{2 n+2}$. Without loss of generality assume that $S(X)$ is a complete subspace of X. Since $z_{2 n+1}=S x_{2 n+2} \in S(X)$ and $w_{2 n+1}=S y_{2 n+2} \in S(X)$, there exist z, w, u and v in X such that $z_{2 n+1} \rightarrow z=S u, w_{2 n+1} \rightarrow w=S v$. By Proposition (1.9), (2.3.1), (ϕ_{1}) and $\left(\phi_{2}\right)$, we have

$$
\begin{aligned}
M(F(u, v), z, b t) & \geq \lim _{n \rightarrow \infty} \sup M\left(F(u, v), G\left(x_{2 n+1}, y_{2 n+1}\right), t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \phi\left(\min \left\{M\left(S u, z_{2 n}, 2 b^{2} t\right), M\left(S v, w_{2 n}, 2 b^{2} t\right)\right\}\right) \\
& \geq \phi\left(\min \left\{M\left(z, z_{2 n}, 2 b^{2} t\right), M\left(w, w_{2 n}, 2 b^{2} t\right)\right\}\right) \\
& =\phi(1)=1 .
\end{aligned}
$$

$$
\begin{aligned}
M(z, F(u, v), b t) & \geq \lim _{n \rightarrow \infty} \sup M\left(G\left(x_{2 n+1}, y_{2 n+1}\right), F(u, v), t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \phi\left(\min \left\{M\left(z_{2 n}, S u, 2 b^{2} t\right), M\left(w_{2 n}, S v, 2 b^{2} t\right)\right\}\right) \\
& \geq \phi\left(\min \left\{M\left(z_{2 n}, z, 2 b^{2} t\right), M\left(w_{2 n}, w, 2 b^{2} t\right)\right\}\right) \\
& =\phi(1)=1
\end{aligned}
$$

Thus $M(F(u, v), z, b t)=M(z, F(u, v), b t)=1$ for all $t>0, b \geq 1$. From (M1), we have $F(u, v)=z$ so that $S u=z=F(u, v)$. Similarly we can show that $S v=w=F(v, u)$. Since the pair (F, S) is w-compatible, we have $S z=S(S u)=S(F(u, v))=$ $F(S u, S v)=F(z, w)$ and $S w=S(S v)=S(F(v, u))=F(S v, S u)=F(w, z)$. By Proposition 1.9, (2.3.1), $\left(\phi_{1}\right)$ and $\left(\phi_{2}\right)$, we have

$$
\begin{aligned}
M(S z, z, b t) & =M(F(z, w), z, b t) \\
& \geq \lim _{n \rightarrow \infty} \sup M\left(F(z, w), G\left(x_{2 n+1}, y_{2 n+1}\right), t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \phi\left(\min \left\{M\left(S z, z_{2 n}, 2 b^{2} t\right), M\left(S w, w_{2 n}, 2 b^{2} t\right)\right\}\right) \\
& \geq \phi(\min \{M(S z, z, b t), M(S w, w, b t)\}) .
\end{aligned}
$$

Similarly we can show that

$$
\begin{aligned}
M(z, S z, b t) & \geq \phi(\min \{M(z, S z, b t), M(w, S w, b t)\}), \\
M(S w, w, b t) & \geq \phi(\min \{M(S w, w, b t), M(S z, z, b t)\}) \\
M(w, S w, b t) & \geq \phi(\min \{M(w, S w, b t), M(z, S z, b t)\}) .
\end{aligned}
$$

From (ϕ_{2}), we have

$$
\min \left\{\begin{array}{l}
M(S z, z, b t), M(z, S z, b t), \\
M(S w, w, b t), M(w, S w, b t)
\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{l}
M(S z, z, b t), M(z, S z, b t), \\
M(S w, w, b t), M(w, S w, b t)
\end{array}\right\}\right)
$$

which in turn yields from $\left(\phi_{3}\right)$ and $(M 1)$ that $z=S z$ and $w=S w$. Thus

$$
\begin{equation*}
z=S z=F(z, w) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
w=S w=F(w, z) \tag{14}
\end{equation*}
$$

Since $F(X \times X)=T(X)$, there exist α, β in X such that $T \alpha=F(z, w)=S z=z$ and $T \beta=F(w, z)=S w=w$. Now using (2.3.1) and (ϕ_{2}), we have

$$
\begin{aligned}
M(T \alpha, G(\alpha, \beta), t) & =M(F(z, w), G(\alpha, \beta), t) \\
& \geq \phi\left(\operatorname { m i n } \left\{\begin{array}{l}
\left.\left.M\left(S z, T \alpha, 2 b^{2} t\right), M\left(S w, T \beta, 2 b^{2} t\right)\right\}\right) \\
\\
\end{array} \quad \geq \phi\left(\min \left\{\begin{array}{l}
M(T \alpha, G(\alpha, \beta), t b) * M(G(\alpha, \beta), T \alpha, t b), \\
M(T \beta, G(\beta, \alpha), t b) * M(G(\beta, \alpha), T \beta, t b)
\end{array}\right\}\right)\right.\right. \\
& \geq \phi\left(\min \left\{\begin{array}{l}
M(T \alpha, G(\alpha, \beta), t) * M(G(\alpha, \beta), T \alpha, t), \\
M(T \beta, G(\beta, \alpha), t) * M(G(\beta, \alpha), T \beta, t)
\end{array}\right\}\right) .
\end{aligned}
$$

Similarly we can show that

$$
M(G(\alpha, \beta), T \alpha, t) \geq \phi\left(\min \left\{\begin{array}{l}
M(G(\alpha, \beta),, T \alpha, t) * M(T \alpha, G(\alpha, \beta), t) \\
M(G(\beta, \alpha), T \beta, t) * M(T \beta, G(\beta, \alpha), t)
\end{array}\right\}\right)
$$

$$
\begin{aligned}
& M(T \beta, G(\beta, \alpha), t) \geq \phi\left(\min \left\{\begin{array}{l}
M(T \beta, G(\beta, \alpha), t) * M(G(\beta, \alpha), T \beta, t) \\
M(T \alpha, G(\alpha, \beta), t) * M(G(\alpha, \beta), T \alpha, t),
\end{array}\right\}\right) \\
& M(G(\beta, \alpha), T \beta, t) \geq \phi\left(\min \left\{\begin{array}{l}
M(G(\beta, \alpha), T \beta, t) * M(T \beta, G(\beta, \alpha), t) \\
M(T \alpha, G(\alpha, \beta), t) * M(G(\alpha, \beta), T \alpha, t),
\end{array}\right\}\right) .
\end{aligned}
$$

Hence

$$
\min \left\{\begin{array}{c}
M(T \alpha, G(\alpha, \beta), t), M(G(\alpha, \beta), T \alpha, t), \\
M(T \beta, G(\beta, \alpha), t), M(G(\beta, \alpha), T \beta, t)
\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{c}
M(T \alpha, G(\alpha, \beta), t) * M(G(\alpha, \beta), T \alpha, t), \\
M(T \beta, G(\beta, \alpha), t) * M(G(\beta, \alpha), T \beta, t)
\end{array}\right\}\right)
$$

which in turn yields from $\left(\phi_{3}\right)$ and (M1) that $T \alpha=G(\alpha, \beta)$ and $T \beta=G(\beta, \alpha)$. Since the pair (G, T) is w-compatible, we have

$$
\begin{gather*}
T z=T(T \alpha)=T(G(\alpha, \beta))=G(T \alpha, T \beta)=G(z, w) \tag{15}\\
T w=T(T \beta)=T(G(\beta, \alpha))=G(T \beta, T \alpha)=G(w, z) \tag{16}
\end{gather*}
$$

Now we have

$$
\begin{aligned}
M(z, G(z, w), t) & =M(F(z, w), G(z, w), t) \\
& \geq \phi\left(\min \left\{M\left(S z, T z, 2 b^{2} t\right), M\left(S w, T w, 2 b^{2} t\right)\right\}\right) \\
& =\phi\left(\min \left\{\begin{array}{c}
M\left(z, G(z, w), 2 b^{2} t\right), \\
M\left(w, G(w, z), 2 b^{2} t\right)
\end{array}\right\}\right), \text { from }(13),(14),(15) \text { and (16) } \\
& =\phi\left(\operatorname { m i n } \left\{\begin{array}{l}
M(z, G(z, w), t), M(w, G(w, z), t)\}) .
\end{array}\right.\right.
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& M(G(z, w), z, t) \geq \phi(\min \{M(G(z, w), z, t), M(G(w, z), w, t)\}) \\
& M(w, G(w, z), t) \geq \phi(\min \{M(w, G(w, z), t), M(z, G(z, w), t)\}) \\
& M(G(w, z), w, t) \geq \phi(\min \{M(G(w, z), w, t), M(G(z, w), z, t)\})
\end{aligned}
$$

Thus from $\left(\phi_{2}\right)$, we have

$$
\min \left\{\begin{array}{l}
M(z, G(z, w), t), M(G(z, w), z, t), \\
M(w, G(w, z), t), M(G(w, z), w, t),
\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{l}
M(z, G(z, w), t), M(w, G(w, z), t) \\
M(G(w, z), w, t), M(G(z, w), z, t)
\end{array}\right\}\right)
$$

which in turn yields from $\left(\phi_{3}\right)$ and (M1) that $z=G(z, w)$ and $w=G(w, z)$. Thus

$$
\begin{equation*}
z=G(z, w)=T z \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
w=G(w, z)=T w \tag{18}
\end{equation*}
$$

From (13), (14), (17) and (18), it follows that (z, w) is a common coupled fixed point of F, G, S and T. Uniqueness of common coupled fixed point of F, G, S and T follows easily from (2.3.1) and (2.3.2).

Now we give an example to support Theorem 2.3.
Example 2.4. Let $X=[0,1]$ and $a * c=$ ac for all $a, c \in[0,1]$ and M be a fuzzy set on $X \times X \times(0, \infty)$ defined by $M(x, y, t)=$ $e^{-\frac{\left.\| x-\left.y\right|^{2}+|x|\right]}{t}}$. Let $F, G: X \times X \rightarrow X$ and $S, T: X \rightarrow X$ be defined by $F(x, y)=\frac{x^{2}+y^{2}}{128}, G(x, y)=\frac{x^{2}+y^{2}}{256}, S x=\frac{x^{2}}{2}$ and $T x=\frac{x^{2}}{4}$ and Let $\phi:[0,1] \rightarrow[0,1]$ be defined by $\phi(t)=t^{\frac{1}{4}}$, for all $t \in[0,1]$. As in Example 2.2, M is a dislocated quasi fuzzy b-metric space with $b=2$. Consider

$$
\begin{aligned}
\left|\frac{x^{2}+y^{2}}{128}-\frac{u^{2}+v^{2}}{256}\right|^{2}+\frac{x^{2}+y^{2}}{128} & =\left|\frac{\left(2 x^{2}-u^{2}\right)+\left(2 y^{2}-v^{2}\right)}{256}\right|^{2}+\frac{x^{2}+y^{2}}{128} \\
& =\left|\frac{\left(\frac{x^{2}}{2}-\frac{u^{2}}{4}\right)+\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)}{64}\right|^{2}+\frac{x^{2}+y^{2}}{128} \\
& \leq \frac{2}{64 \times 64}\left[\left(\frac{x^{2}}{2}-\frac{u^{2}}{4}\right)^{2}+\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)^{2}\right]+\frac{x^{2}+y^{2}}{128} \\
& =\frac{1}{64}\left[\frac{1}{32}\left(\frac{x^{2}}{2}-\frac{u^{2}}{4}\right)^{2}+\frac{x^{2}}{2}+\frac{1}{32}\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)^{2}+\frac{y^{2}}{2}\right] \\
& \left.\left.\leq \frac{1}{64}\left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{4}\right)^{2}+\frac{x^{2}}{2}\right\}+\left\{\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)^{2}+\frac{y^{2}}{2}\right\}\right]\right] \\
& \leq \frac{2}{64}\left[\max \left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{4}\right)^{2}+\frac{x^{2}}{2},\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)^{2}+\frac{y^{2}}{2}\right\}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
M(F(x, y), G(u, v), t) & =e^{\frac{-\left\{\left|\frac{x^{2}+y^{2}}{128}-\frac{u^{2}+v^{2}}{256}\right|^{2}+\frac{x^{2}+y^{2}}{128}\right\}}{t}} \\
& \geq e^{-\frac{-\frac{1}{32} \max \left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{4}\right)^{2}+\frac{x^{2}}{2},\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)^{2}+\frac{y^{2}}{2}\right\}}{t}} \\
& =\left[e^{\frac{-\max \left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{4}\right)^{2}+\frac{x^{2}}{2},\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)^{2}+\frac{y^{2}}{2}\right\}}{8 t}}\right]^{\frac{1}{4}} \\
& =\left[\min \left\{e^{-\left\{\frac{\left(\frac{x^{2}-u^{2}}{2}-\frac{u^{2}}{4}\right)^{2}+\frac{x^{2}}{2}}{8 t}\right\}}, e^{-\left\{\frac{\left(\frac{y^{2}}{2}-\frac{v^{2}}{4}\right)^{2}+\frac{y^{2}}{2}}{8 t}\right\}}\right\}\right]^{\frac{1}{4}} \\
& =\left[\min \left\{M\left(S x, T u, 2 b^{2} t\right), M\left(S y, T v, 2 b^{2} t\right)\right\}\right]^{\frac{1}{4}} \\
& =\phi\left(\min \left\{M\left(S x, T u, 2 b^{2} t\right), M\left(S y, T v, 2 b^{2} t\right)\right\}\right) .
\end{aligned}
$$

Since $\phi(t)=t^{\frac{1}{4}}$.
Thus (2.3.1) is satisfied. Similarly we can easily verify (2.3.2), (2.3.3), (2.3.4) and (2.3.5). Clearly $(0,0)$ is the unique common coupled fixed point of F, G, S and T. Wadhwa introduced the following definitions.

Definition 2.5 ([9]). Let f and g be two self -maps of a fuzzy metric space ($X, M, *$). We say that f and g satisfy E.A. Like property if there exists a sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$ for some $z \in f(X)$ or $z \in g(X)$, i.e., $z \in f(X) \cup g(X)$.

Definition 2.6 ([9]). Let A, B, S and T be self maps of a fuzzy metric space ($X, M, *$), then the pairs (A, S) and (B, T) said to satisfy common E.A. Like property if there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=$ $\lim _{n \rightarrow \infty} T y_{n}=\lim _{n \rightarrow \infty} B y_{n}=z$
where $z \in S(X) \cup T(X)$ or $z \in A(X) \cup B(X)$.
Now we extend this definition to dislocated quasi fuzzy b-metric spaces as follows.
Definition 2.7. Let $(X, M, *)$ be a dislocated quasi fuzzy b-metric space with $b \geq 1$ and $F, G: X \times X \rightarrow X$ and $S, T: X \rightarrow X$ be mappings. The pairs (F, S) and (G, T) are said to satisfy common E.A. like property if there exist sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} G\left(z_{n}, w_{n}\right)=\lim _{n \rightarrow \infty} T z_{n}=\alpha$ and $\lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}\right)=$ $\lim _{n \rightarrow \infty} S y_{n}=\lim _{n \rightarrow \infty} G\left(w_{n}, z_{n}\right)=\lim _{n \rightarrow \infty} T w_{n}=\alpha^{1}$ for some $\alpha, \alpha^{1} \in S(X) \cap T(X)$ or $F(X \times X) \cap G(X \times X)$.

Theorem 2.8. Let $(X, M, *)$ be a dislocated quasi fuzzy b-metric space, $F, G: X \times X \rightarrow X$ and $S, T: X \rightarrow X$ be mappings satisfying
(2.8.1) $M(F(x, y), G(u, v), t) \geq \phi\left(\min \left\{M\left(S x, T u, b^{2} t\right), M\left(S y, T v, b^{2} t\right)\right\}\right)$ for all $x, y, u, v \in X$ and $\phi \in \Phi$
(2.8.2) $M(G(x, y), F(u, v), t) \geq \phi\left(\min \left\{M\left(T x, S u, b^{2} t\right), M\left(T y, S v, b^{2} t\right)\right\}\right)$ for all $x, y, u, v \in X$ and $\phi \in \Phi$
(2.8.3) the pairs (F, S) and (G, T) satisfy common E.A. like property,
(2.8.4) the pairs (F, S) and (G, T) are w-compatible.

Then F, G, S and T have a unique common coupled fixed point in $X \times X$.

Proof. Since (F, S) and (G, T) satisfy common E.A. like property, there exist sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} G\left(z_{n}, w_{n}\right)=\lim _{n \rightarrow \infty} T z_{n}=\alpha$ and $\lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} S y_{n}=$ $\lim _{n \rightarrow \infty} G\left(w_{n}, z_{n}\right)=\lim _{n \rightarrow \infty} T w_{n}=\alpha^{1}$ for some $\alpha, \alpha^{1} \in S(X) \cap T(X)$ or $F(X \times X) \cap G(X \times X)$. Without loss of generality assume that $\alpha, \alpha^{1} \in S(X) \cap T(X)$. Since $\lim _{n \rightarrow \infty} S x_{n}=\alpha \in S(X)$ and $\lim _{n \rightarrow \infty} S y_{n}=\alpha^{1} \in S(X)$, there exist $u, v \in X$ such that $\alpha=S u$ and $\alpha^{1}=S v$. From Proposition 1.9, (2.8.1) and $\left(\phi_{1}\right)$, we have

$$
\begin{aligned}
M(F(u, v), \alpha, b t) & \geq \lim _{n \rightarrow \infty} \sup M\left(F(u, v), G\left(z_{n}, w_{n}\right), t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \phi\left(\min \left\{M\left(\alpha, T z_{n}, b^{2} t\right), M\left(\alpha^{1}, T w_{n}, b^{2} t\right)\right\}\right) \\
& =\phi(1)=1 .
\end{aligned}
$$

Hence $M(F(u, v), \alpha, b t)=1$ for all $t>0$ and $b \geq 1$. Similarly from (2.8.2), we can show that $M(\alpha, F(u, v), b t)=1$. Hence from (M1), $F(u, v)=\alpha$. Similarly we can prove that $F(v, u)=\alpha^{1}$. Thus $S u=\alpha=F(u, v)$ and $S v=\alpha^{1}=F(v, u)$. Since the pair (F, S) is w-compatible, we have $S \alpha=S(F(u, v))=F(S u, S v)=F\left(\alpha, \alpha^{1}\right)$ and $S \alpha^{1}=S(F(v, u))=F(S v, S u)=$ $F\left(\alpha^{1}, \alpha\right)$. From Proposition 1.9, (2.8.1) and (ϕ_{1}), we have

$$
\begin{aligned}
M(S \alpha, \alpha, b t) & =M\left(F\left(\alpha, \alpha^{1}\right), \alpha, b t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup M\left(F\left(\alpha, \alpha^{1}\right), G\left(z_{n}, w_{n}\right), t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \phi\left(\min \left\{M\left(S \alpha, T z_{n}, b^{2} t\right), M\left(S \alpha^{1}, T w_{n}, b^{2} t\right)\right\}\right) \\
& \geq \phi\left(\min \left\{M\left(S \alpha, \alpha, b^{2} t\right), M\left(S \alpha^{1}, \alpha^{1}, b^{2} t\right)\right\}\right), \\
& \geq \phi\left(\min \left\{M(S \alpha, \alpha, b t), M\left(S \alpha^{1}, \alpha^{1}, b t\right)\right\}\right), \\
M(\alpha, S \alpha, b t) & =M\left(\alpha, F\left(\alpha, \alpha^{1}\right), b t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup M\left(G\left(z_{n}, w_{n}\right), F\left(\alpha, \alpha^{1}\right), t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \phi\left(\min \left\{M\left(T z_{n}, S \alpha, b^{2} t\right), M\left(T w_{n}, S \alpha^{1}, b^{2} t\right)\right\}\right) \\
& \geq \phi\left(\min \left\{M\left(\alpha, S \alpha, b^{2} t\right), M\left(\alpha^{1}, S \alpha^{1}, b^{2} t\right)\right\}\right), \\
& \geq \phi\left(\min \left\{M(\alpha, S \alpha, b t), M\left(\alpha^{1}, S \alpha^{1}, b t\right)\right\}\right),
\end{aligned}
$$

Similarly we can prove that $M\left(S \alpha^{1}, \alpha^{1}, b t\right) \geq \phi\left(\min \left\{M\left(S \alpha^{1}, \alpha^{1}, b t\right), M(S \alpha, \alpha, b t)\right\}\right)$ and $M\left(\alpha^{1}, S \alpha^{1}, b t\right) \geq$ $\phi\left(\min \left\{M\left(\alpha^{1}, S \alpha^{1}, b t\right), M(\alpha, S \alpha, b t)\right\}\right)$. From (ϕ_{2}), we have

$$
\min \left\{\begin{array}{l}
M(S \alpha, \alpha, b t), M(\alpha, S \alpha, b t), \\
M\left(S \alpha^{1}, \alpha^{1}, b t\right), M\left(\alpha^{1}, S \alpha^{1}, b t\right)
\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{l}
M(S \alpha, \alpha, b t), M(\alpha, S \alpha, b t), \\
M\left(S \alpha^{1}, \alpha^{1}, b t\right), M\left(\alpha^{1}, S \alpha^{1}, b t\right)
\end{array}\right\}\right)
$$

which in turn yields from (ϕ_{3}) and (M1) that $S \alpha=\alpha$ and $S \alpha^{1}=\alpha^{1}$. Thus

$$
\begin{equation*}
S \alpha=\alpha=F\left(\alpha, \alpha^{1}\right) \text { and } S \alpha^{1}=\alpha^{1}=F\left(\alpha^{1}, \alpha\right) \tag{19}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} T z_{n}=\alpha \in T(X)$ and $\lim _{n \rightarrow \infty} T w_{n}=\alpha^{1} \in T(X)$, there exist β, β^{1} such that $\alpha=T \beta$ and $\alpha^{1}=T \beta^{1}$. Consider

$$
\begin{aligned}
M\left(\alpha, G\left(\beta, \beta^{1}\right), b t\right) & \geq \lim _{n \rightarrow \infty} \sup M\left(F\left(x_{n}, y_{n}\right), G\left(\beta, \beta^{1}\right), t\right) \\
& \geq \lim _{n \rightarrow \infty} \sup \phi\left(\min \left\{M\left(S x_{n}, \alpha, b^{2} t\right), M\left(S y_{n}, \alpha^{1}, b^{2} t\right)\right\}\right) \\
& =\phi(1)=1
\end{aligned}
$$

Hence $M\left(\alpha, G\left(\beta, \beta^{1}\right), b t\right)=1$ for all $t>0$. Similarly from (2.8.2) we can show that $M\left(G\left(\beta, \beta^{1}\right), \alpha, b t\right)=1$. Hence from (M1), $G\left(\beta, \beta^{1}\right)=\alpha$. Similarly we can prove that $G\left(\beta^{1}, \beta\right)=\alpha^{1}$. Thus $\alpha=T \beta=G\left(\beta, \beta^{1}\right)$ and $\alpha^{1}=T \beta^{1}=G\left(\beta^{1}, \beta\right)$. Since the pair (G, T) is w-compatible, we have $T \alpha=T\left(G\left(\beta, \beta^{1}\right)\right)=G\left(T \beta, T \beta^{1}\right)=G\left(\alpha, \alpha^{1}\right)$ and $T \alpha^{1}=T\left(G\left(\beta^{1}, \beta\right)\right)=$ $G\left(T \beta^{1}, T \beta\right)=G\left(\alpha^{1}, \alpha\right)$. Now from Proposition 1.9, (2.8.1) and (ϕ_{2}), we have

$$
\begin{aligned}
M(\alpha, T \alpha, t) & =M\left(F\left(\alpha, \alpha^{1}\right), G\left(\alpha, \alpha^{1}\right), t\right) \\
& \geq \phi\left(\min \left\{M\left(S \alpha, T \alpha, b^{2} t\right), M\left(S \alpha^{1}, T \alpha^{1}, b^{2} t\right)\right\}\right) \\
& \geq \phi\left(\min \left\{M(\alpha, T \alpha, t), M\left(\alpha^{1}, T \alpha^{1}, t\right)\right\}\right)
\end{aligned}
$$

Similarly we can show that

$$
\begin{aligned}
M(T \alpha, \alpha, t) & \geq \phi\left(\min \left\{M(T \alpha, \alpha, t), M\left(T \alpha^{1}, \alpha^{1}, t\right)\right\}\right), \\
M\left(\alpha^{1}, T \alpha^{1}, t\right) & \geq \phi\left(\min \left\{M\left(\alpha^{1}, T \alpha^{1}, t\right), M(\alpha, T \alpha, t)\right\}\right) \\
M\left(T \alpha^{1}, \alpha^{1}, t\right) & \geq \phi\left(\min \left\{M\left(T \alpha^{1}, \alpha^{1}, t\right), M(T \alpha, \alpha, t)\right\}\right) .
\end{aligned}
$$

From (ϕ_{2}), we have
$\min \left\{\begin{array}{l}M(\alpha, T \alpha, t), M(T \alpha, \alpha, t), \\ M\left(\alpha^{1}, T \alpha^{1}, t\right), M\left(T \alpha^{1}, \alpha^{1}, t\right)\end{array}\right\} \geq \phi\left(\min \left\{\begin{array}{l}M(\alpha, T \alpha, t), M(T \alpha, \alpha, t), \\ M\left(\alpha^{1}, T \alpha^{1}, t\right), M\left(T \alpha^{1}, \alpha^{1}, t\right)\end{array}\right\}\right)$
which in turn yields from $\left(\phi_{3}\right)$ and $(M 1)$ that $T \alpha=\alpha$ and $T \alpha^{1}=\alpha^{1}$. Thus

$$
\begin{equation*}
\alpha=T \alpha=G\left(\alpha, \alpha^{1}\right) \text { and } \alpha^{1}=T \alpha^{1}=G\left(\alpha^{1}, \alpha\right) \tag{20}
\end{equation*}
$$

From (19) and (20), we have $F\left(\alpha, \alpha^{1}\right)=S \alpha=\alpha=T \alpha=G\left(\alpha, \alpha^{1}\right)$ and $F\left(\alpha^{1}, \alpha\right)=S \alpha^{1}=\alpha^{1}=T \alpha^{1}=G\left(\alpha^{1}, \alpha\right)$. Thus $\left(\alpha, \alpha^{1}\right)$ is a common coupled fixed point of F, G, S and T.

Now we give an example to support Theorem 2.8.
Example 2.9. Let $X=[0,1]$ and $a * c=$ ac for all $a, c \in[0,1]$ and M be a fuzzy set on $X \times X \times(0, \infty)$ defined by $M(x, y, t)=$ $e^{-\frac{\left[|x-y|^{2}+|x|\right]}{t}}$. Let $F, G: X \times X \rightarrow X$ and $S, T: X \rightarrow X$ be defined by $F(x, y)=\frac{x^{2}+y^{2}}{32}, G(x, y)=\frac{x^{2}+y^{2}}{48}, S x=\frac{x^{2}}{2}$ and $T x=\frac{x^{2}}{3}$ and Let $\phi:[0,1] \rightarrow[0,1]$ be defined by $\phi(t)=t^{\frac{1}{2}}$, for all $t \in[0,1]$. As in Example 2.2, M is a dislocated quasi fuzzy b-metric space with $b=2$. Consider

$$
\begin{aligned}
\left|\frac{x^{2}+y^{2}}{32}-\frac{u^{2}+v^{2}}{48}\right|^{2}+\frac{x^{2}+y^{2}}{32} & =\frac{1}{256}\left|\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)+\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)\right|^{2}+\frac{x^{2}+y^{2}}{32} \\
& \leq \frac{1}{128}\left[\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)^{2}+\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)^{2}\right]+\frac{x^{2}+y^{2}}{32} \\
& =\frac{1}{16}\left[\frac{1}{8}\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)^{2}+\frac{1}{8}\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)^{2}+\frac{x^{2}}{2}+\frac{y^{2}}{2}\right] \\
& \leq \frac{1}{16}\left[\left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)^{2}+\frac{x^{2}}{2}\right\}+\left\{\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)^{2}++\frac{y^{2}}{2}\right\}\right] \\
& \leq \frac{1}{8}\left[\max \left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)^{2}+\frac{x^{2}}{2},\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)^{2}+\frac{y^{2}}{2}\right\}\right]
\end{aligned}
$$

Hence

$$
\left.\left.\begin{array}{rl}
M(F(x, y), G(u, v), t) & =e^{\frac{-\left\{\frac{x^{2}+y^{2}}{32}-\left.\frac{x^{2}+v^{2}}{48}\right|^{2}+\frac{x^{2}+y^{2}}{32}\right\}}{t}} \\
& \geq e^{\frac{-\frac{1}{8} \max \left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)^{2}+\frac{x^{2}}{2},\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)^{2}+\frac{y^{2}}{2}\right\}}{t}} \\
& =\left[e^{\frac{-\max \left\{\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)^{2}+\frac{x^{2}}{2},\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)^{2}+\frac{y^{2}}{2}\right\}}{4 t}}\right]^{\frac{1}{2}} \\
& =\left[\operatorname { m i n } \left\{e-\left\{\frac{\left(\frac{x^{2}}{2}-\frac{u^{2}}{3}\right)^{2}+\frac{x^{2}}{2}}{4 t}\right\}-\left\{\frac{\left(\frac{y^{2}}{2}-\frac{v^{2}}{3}\right)^{2}+\frac{y^{2}}{2}}{4 t}\right\}\right.\right.
\end{array}\right\}\right]^{\frac{1}{2}} .
$$

Since $\phi(t)=t^{\frac{1}{2}}$.
Thus (2.8.1) is satisfied. Similarly we can easily verify that (2.8.2).One can easily show that the pairs (F, S) and (G, T) satisfy common E.A. like property with $x_{n}=\frac{1}{n}, y_{n}=\frac{1}{n+1}, z_{n}=\frac{1}{2^{n}}$ and $w_{n}=\frac{1}{2^{n+1}}$ for $n=1,2,3, \ldots \ldots$ Clearly the pairs (F, S) and (G, T) are w-compatible and $(0,0)$ is the unique common coupled fixed point of F, G, S and T.

References

[1] M.Abbas, M.Ali khan and S.Radenovic, Common coupled fixed point theorems on cone metric spaces for w-compatible mappings, Applied Mathematics and Computation, 217(1)(2010), 195-202.
[2] T.G.Bhaskar and V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, 65(2006), 1379-1393.
[3] M.S.El Naschine, On the uncertainity of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals, 9(3)(1998), 517-529.
[4] M.S.El Naschine, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals, 19(1)(2004), 209-236.
[5] M.S.El Naschine, On a fuzzy Kahler-like Manifold which is consistent with slit experiment, Int. J. of Nonlinear Science and Numerical Simulation, 6(2005), 95-98.
[6] M.S.El Naschine, The idealized quantum two slit gedanken experiment revisited -Criticism and reinterpretation, Chaos, Solitons and Fractals, 27(1)(2006), 9-13.
[7] V.George and A.Sapena, On fixed point theorem in fuzzy metric space, Fuzzy Sets and Systems, 64(1994), 395-399.
[8] O.Hadzic and E.Pap, Fixed Point Theoery in Probabilistic Metric Spaces. Theoery in Probabilistic Metric Spaces, Dordrecht: Kluwer Academic Publishers, (2001).
[9] Kamal Wadhwa, Hariom Dubey and Reena Jain, Impact of E.A. Like Property on common fixed point Theorems in fuzzy metric spaces, Journal of Advanced studies in topology, 3(1)(2012), 52-59.
[10] I.Kramosil and J.Michalek, Fuzzy metric and stastical metric spaces, Kybernetica, 11(1975), 326-334.
[11] V.Lakshmikantham and B.LJ.Ciric, Coupled fixed point theorems for nonlinear contractions in patially ordered metric spaces, Nonlinear Analysis, 70(2009), 4341-4349.
[12] D.Michet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy sets and systems, 144(2004), 431-439.
[13] S.Moradi, M.Omid, A fixed point theorem for integral type inequality depending on another function, Int. j. Math. Analysis, 4(30)(2010), 1491-1499.
[14] G.Rano and T.Bag, A fixed point theoerem in dislocated fuzzy quasi metric sapces, International Journal of Mathematics and Scientific Computing, 3(1)(2013).
[15] B.Schweizer, H.Sherwood and R.M.Tardiff, Contractions on PM-space examples and counter examples, Stochastica, 1(1998), 5-17.
[16] S.Sedghi and N.Shobe, Common fixed point theorem in b-fuzzy metric space, Nonlinear Functional Analysis and Applications, 17(3) (2012), 349-359.
[17] L.A.Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.

[^0]: * E-mail: kprrao2004@yahoo.com

