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1. Introduction

In 1922, Polish mathematician Banach [1] proved a very important result regarding a contraction mapping, known as the

Banach contraction principle. It is one of the fundamental results in fixed point theory. Due to its importance and simplicity,

several authors have obtained many interesting extensions and generalizations of the Banach contraction principle (see [2–6]

and references therein).

In 1984, the notion of an altering distance function was introduced and studied by Khan et al. [7], applying it to define weak

contractions. They also proved the existence and uniqueness of a fixed point for mappings satisfying such a contraction

condition. Afterward, some fixed point results for generalized weak contraction mappings were proved by Choudhury et al.

[8] by using some control function along with the notion of an altering distance function. Moreover, the notion of weak

contraction mappings was extended in many different directions (see [9, 10] and references therein). On the other hand, the

notion of a w-distance on a metric space was introduced and investigated by Kada et al. [11]. Using this concept, they also

improved many famous theorems. Afterward, Du [12] proved the existence of a fixed point for some nonlinear mappings by

using a specific w-distance, called a w0-distance. From this trend, several mathematicians extended fixed point results for

weak contraction mappings and generalized weak contraction mappings with respect to w-distances on metric spaces (see

[13, 14] and references therein).

Wongyat and Sintunavarat[16], by introducing the concept called w-generalized weak contraction mappings and proved new

fixed point theorems for w-generalized weak contraction mappings with respect to w-distances in complete metric spaces by

using the concept of an altering distance function.

In this paper, we introduce the concept called weakly generalized w-contraction mappings which generalize the definition

of w-generalized weak contraction mappings and obtain new fixed point theorems for weakly generalized w-contraction
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mappings in the setting of w-distance in complete metric spaces which generalize results of Wongyat and Sintunavarat [16].

Also we obtain existence and uniqueness of the solution for nonlinear Fredholm integral equations and Volterra integral

equations.

1.1. Preliminaries

Definition 1.1 ([11]). Let (X, d) be a metric space. A function q : X×X → [0,∞) is called a w-distance on X if it satisfies

the following three conditions for all x, y, z ∈ X:

(W1) q(x, y) ≤ q(x, z) + q(z, y);

(W2) q(x, ·) : X → [0,∞) is lower semicontinuous;

(W3) for each ε > 0, there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ imply d(y, z) ≤ ε.

Definition 1.2 ([12]). Let (X, d) be a metric space. A function q : X ×X → [0,∞) is called a w0-distance on X if it is a

w-distance on X with q(x, x) = 0 for all x ∈ X.

Next, we give the definition of an altering distance function.

Definition 1.3 ([7]). A function φ : [0,∞) → [0,∞) is said to be an altering distance function if it satisfies the following

conditions:

(a). ψ is continuous and nondecreasing;

(b). ψ(t) = 0 if and only if t = 0.

Definition 1.4 ([16]). A w-distance q on a metric space (X, d) is said to be a ceiling distance of d if and only if

q(x, y) ≥ d(x, y) (1)

for all x, y ∈ X.

Now we give some examples of a ceiling distance of itself.

Example 1.5. Each metric on a nonempty set X is a ceiling distance of itself.

Example 1.6. Let X = R with the metric d : X × X → R defined by d(x, y) = |x − y| for all x, y ∈ X, and let a, b ≥ 1.

Define the w-distance q : X ×X → [0,∞) by

q(x, y) = max{a(y − x), b(x− y)}

for all x, y ∈ X. For all x, y ∈ X, we get

d(x, y) = |x− y|

=


x− y, x ≥ y,

y − x, x ≤ y,

≤ max{a(y − x), b(x− y)}

= q(x, y).

Thus q is a ceiling distance of d.
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2. Main Section

In this section, we introduce the new concept called weakly generalized w-contraction mapping along with w-distance in

metric spaces. Furthermore, we investigate the sufficient condition for the existence and uniqueness of a fixed point for a

self-mapping on a metric space satisfying the weakly generalized contractive condition.

Definition 2.1. Let q be a w-distance on a metric space (X, d). A mapping T : X → X is said to be a weakly generalized

w-contraction mappings if

ψ(q(Tx, Ty)) ≤ ψ(MT (x, y))− φ(q(x, y)) (2)

for all x, y ∈ X, where

MT (x, y) : = max

{
q(x, y),

q(x, Tx) + q(y, Ty)

2
,
q(x, Ty) + q(Tx, y)

2

}

ψ : [0,∞) → [0,∞) is an altering distance function, and φ : [0,∞) → [0,∞) is a continuous function with φ(t) = 0 if and

only if t = 0.

Note that if T is w-generalized weak contraction, then

ψ(q(Tx, Ty)) ≤ ψ

(
max

{
q(x, y),

q(x, Ty) + q(y, Tx)

2

})
− φ(q(x, y))

≤ ψ

(
max

{
q(x, y),

q(x, Tx) + q(y, Ty)

2
,
q(x, Ty) + q(Tx, y)

2

})
− φ(q(x, y)).

Hence T is weakly generalized w-contraction mapping. First, we prove the following lemma.

Lemma 2.2. Let (X, d) be a metric space and, q : X ×X → [0,∞) be a w0-distance on X and suppose that T : X → X

is a continuous weakly generalized w-contraction mappings. If {xn} is a sequence in X defined by xn+1 = T (xn) and if

d(xn, xn+1) is decreasing and

lim
n→∞

q(xn, xn+1) = 0 and lim
n→∞

q(xn+1, xn) = 0. (3)

Then {xn} is a Cauchy sequence.

Proof. Assume that {xn} is not a Cauchy sequence. So there exist ε > 0, and subsequence {xmk} and {xnk} of {xn} with

nk > mk > k such that

q(xmk , xnk ) ≥ ε for all k ∈ N. (4)

Let nk be the smallest integer such that nk > mk and q(xmk , xnk ) ≥ ε. Then

q(xmk , xnk−1) < ε. (5)

From (4), (5), and (W1) we obtain

ε ≤ q(xmk , xnk ) ≤ q(xmk , xnk−1) + q(xnk−1, xnk ) < ε+ q(xnk−1, xnk ).

Taking the limit as k →∞ in this inequality and using (3), we have

lim
n→∞

q(xmk , xnk ) = ε. (6)
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By using (W1), we have

q(xmk , xnk ) ≤ q(xmk , xmk+1) + q(xmk+1, xnk+1) + q(xnk+1, xnk )

and

q(xmk+1, xnk+1) ≤ q(xmk+1, xmk ) + q(xmk , xnk ) + q(xnk , xnk+1).

Taking the limit as k →∞ in the last two inequalities and using (3) and (6) we have

lim
n→∞

q(xmk+1, xnk+1) = ε. (7)

Again, by using (W1) we obtain

q(xmk , xnk ) ≤ q(xmk , xnk+1) + q(xnk+1, xnk )

≤ q(xmk , xnk ) + q(xnk , xnk+1) + q(xnk+1, xnk )

and

q(xmk , xnk ) ≤ q(xmk , xmk+1) + q(xmk+1, xnk )

≤ q(xmk , xmk+1) + q(xmk+1, xmk ) + q(xmk , xnk )

Taking the limit as k →∞ in the last two inequalities and using (3) and (6) we have

lim
n→∞

q(xmk , xnk+1) = ε, lim
n→∞

q(xmk+1, xnk ) = ε. (8)

Now

ψ(q(xmk+1, xnk+1)) = ψ(q(Txmk , Txnk ))

≤ ψ(max{q(xmk , xnk ),
q(xmk , xmk+1) + q(xnk , xnk+1)

2
+

q(xmk , xnk+1) + q(xmk+1, xnk )

2
)− φ(q(xmk , xnk ) (9)

Taking the limit as k →∞ in (9) and using (8), we get

ψ(ε) ≤ ψ(ε)− φ(ε).

Hence φ(ε) = 0 which is a contradiction. Hence {xn} is a Cauchy sequence.

Theorem 2.3. Let (X, d) be a complete metric space, and q : X×X → [0,∞) be a w0-distance on X and a ceiling distance

of d. Suppose that T : X → X is a continuous weakly generalized w-contraction mappings. Then T has a unique fixed point

in X. Moreover, for each x ∈ X, the Picard iteration {xn} defined by xn = Tnx for all n ∈ N converges to a unique fixed

point of T.

474



M. Menaka and M. Marudai

Proof. Suppose that ψ, φ : [0,∞) → [0,∞) are two functions contractive condition (2). Starting from a fixed arbitrary

point x ∈ X, we put xn+1 = Txn for all n ∈ N ∪ {0}. If xn∗ = xn∗+1 for some n ∈ N ∪ {0}, then xn is a fixed point of T.

Thus we will assume that xn 6= xn+1 for all n ∈ N ∪ {0}, that is, d(xn, xn+1) > 0, for all n ∈ N ∪ {0}. Since q is a ceiling

distance of d, we obtain q(xn, xn+1) > 0 for all n ∈ N∪ {0}. From the contractive condition (2), for all n ∈ N∪ {0}, we have

ψ(q(xn+1, xn+2)) = ψ(q(Txn, Txn+1))

≤ ψ(MT (xn, xn+1))− φ(q(xn, xn+1))

= ψ

(
max

{
q(xn, xn+1),

q(xn, Txn) + q(xn+1, Txn+1)

2
,
q(xn, Txn+1) + q(Txn, xn+1)

2

}
−

φ(q(xn, xn+1))

= ψ

(
max

{
q(xn, xn+1),

q(xn, xn+1) + q(xn+1, xn+2)

2
,
q(xn, xn+2) + q(xn+1, xn+1)

2

}
−

φ(q(xn, xn+1))

= ψ
(

max

{
q(xn, xn+1),

q(xn, xn+1) + q(xn+1, xn+2)

2

}
− φ(q(xn, xn+1)). (10)

Suppose that q(xn, xn+1) ≤ q(xn+1, xn+2) for some n ∈ N ∪ {0}. From (10) we have

ψ(q(xn+1, xn+2)) ≤ ψ(q(xn+1, xn+2)− φ(q(xn, xn+1)),

which yields that φ(q(xn, xn+1)) = 0, and so, q(xn, xn+1) = 0, which is a contradiction. Therefore q(xn+1, xn+2) <

q(xn, xn+1) for all n ∈ N ∪ {0}, and hence q(xn, xn+1) is decreasing and bounded below. Therefore, there exists L ≥ 0 such

that

lim
n→∞

q(xn, xn+1) = L. (11)

We claim that L = 0. We have

lim
n→∞

MT (xn, xn+1) = L. (12)

Recall that, for all n ∈ N ∪ {0},

ψ(q(xn+1, xn+2)) ≤ ψ(MT (xn, xn+1))− φ(q(xn, xn+1)).

Taking the limit as n→∞ in this inequality and using the continuity of φ and ψ, we have

ψ(L) ≤ ψ(L)− φ(L),

which is a contradiction unless L = 0. Hence

lim
n→∞

q(xn, xn+1) = 0.

Similarly, we can prove that

lim
n→∞

q(xn+1, xn) = 0.

Then by Lemma 2.2, {xn} is a Cauchy sequence. Since (X, d) is a complete metric space, there exists p ∈ X such that

xn → p as n → ∞. Since T is continuous and since xn+1 = Txn, we get p = Tp. Thus, T has fixed point. Finally, we will

show that the fixed point is unique. Suppose that p and p∗ are two distinct points fixed points of T. Then

ψ(q(p, p∗)) = ψ(q(Tp, Tp∗)) ≤ ψ

(
max

{
q(p, p∗),

q(p, Tp) + q(p∗, Tp∗)

2
,
q(p, Tp∗) + q(Tp, p∗)

2

})
− φ(q(p, p∗))
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≤ ψ(q(p, p∗))− φ(q(p, p∗)),

which is a contradiction by the property φ. Therefore, p = p∗, and hence the fixed point is unique. This complete the

proof.

Corollary 2.4. Let (X, d) be a complete metric space, and q : X ×X → [0,∞) be a w-distance on X and a ceiling distance

of d. Suppose that T : X → X is a continuous w-generalized weak contraction mapping. Then T has a unique fixed point in

X. Moreover, for each x0 ∈ X, the Picard iteration xn defined by xn = Tnx0 for all n ∈ N converges to a unique fixed point

of T.

Proof. The proof of the corollary follows by the fact that every w-generalized weak contraction mapping is weakly gener-

alized w-contraction mappings.

We can extend the condition of w0-distance in Theorem 2.3 to w-distances if we replace the contractive condition (2) by

some stronger condition. Here we give the results.

Corollary 2.5. Let (X, d) be a complete metric space, and q : X ×X → [0,∞) be a w-distance on X and ceiling distance

of d. Suppose that T : X → X is a continuous mapping such that, for all x, y ∈ X,

ψ(q(Tx, Ty)) ≤ ψ(q(x, y))− φ(q(x, y)), (13)

where ψ : [0,∞)→ [0,∞) is an altering distance function, and φ : [0,∞)→ [0,∞) is a continuous function with φ(t) = 0 if

and only if t = 0. Then T has a unique fixed point in X. Moreover, for each x0 ∈ X, the Picard iteration {xn} defined by

xn = Tnx0 for all n ∈ N converges to a unique fixed point of T.

Proof. The proof of the corollary follows by the fact that

ψ(q(x, y)) ≤ ψ
(

max

{
q(x, y),

q(x, Tx) + q(y, Ty)

2
,
q(x, Ty) + q(Tx, y)

2

})
.

3. Existence of a Solution for Nonlinear Integral Equations

The aim of this section is to present as application of our theoretical results in the previous section for guaranteeing the

existence and uniqueness of a solution for various problems regarded by the following equations.

• nonlinear Fredholm integral equations;

• nonlinear Volterra integral equations.

3.1. Nonlinear Fredholm Integral Equations

In this subsection, we prove the existence and uniqueness of a solution for nonlinear Fredholm integral and nonlinear Volterra

integral equations by using Theorem

Theorem 3.1. Consider the nonlinear Fredholm integral equation

x(t) = φ(t) +

∫ b

a

K(t, s, x(s))ds, (14)

where a, b ∈ R with a < b, and φ : [a, b] → R and K : [a, b]2 × R → R are given continuous mappings. Suppose that the

following conditions hold:
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(i). Let (C[a, b], ‖·‖∞) be a complete metric space and the mapping T : C[a, b]→ C[a, b] defined by

(Tx)(t) = φ(t) +

∫ b

a

K(t, s, x(s))ds for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;

(ii). there are two functions ψ, φ : [0,∞) → [0,∞) with ψ is an altering distance function and φ is continuous function

such that ψ(t) < t, for all t > 0, φ(t) = 0 if and only if t = 0, and for all x, y ∈ C[a, b], we have

sup
t∈[a,b]

|K(t, s, y(t)|≤
ψ(supt∈[a,b]|y(t)|)− φ(supt∈[a,b]|y(t)|)− ‖φ‖

b− a

for all t, s ∈ [a, b].

Then the nonlinear integral equation (14) has a unique solution. Moreover, for each x0 ∈ C[a, b], the Picard iteration {xn}

defined by

(xn)(t) = φ(t) +

∫ b

a

K(t, s, xn−1(s))ds

for all n ∈ N converges to a unique solution of the nonlinear integral equation (14).

Proof. Let X = C[a, b]. Clearly, X with the metric d : X ×X → [0,∞) given by

d(x, y) = sup
t∈[a,b]

|x(t)− y(t)|

for all x, y ∈ X is a complete metric space. Next, we define the function q : X ×X → [0,∞) by

q(x, y) = ‖y‖∞= sup
t∈[a,b]

|y(t)|

for all x, y ∈ X. Clearly, q is a w-distance on X and a ceiling distance of d. Here, we will show that T satisfies the contractive

condition (2). Assume that x, y ∈ X and t ∈ [a, b]. Then we get

|(Ty)(t)| = sup
t∈[a,b]

|φ(t) +

∫ b

a

K(t, s, y(t))ds|

≤ ‖φ‖+ sup
t∈[a,b]

∫ b

a

|K(t, s, y(t))|ds

≤ ‖φ‖+
∫ b

a

(
ψ(supt∈[a,b]|y(t)|)− φ(supt∈[a,b]|y(t)|)− ‖φ‖

b− a

)
ds

= ‖φ‖+ 1

b− a

∫ b

a

(ψ(q(x, y))− φ(q(x, y))− ‖φ‖)ds

= ψ(q(x, y))− φ(q(x, y).

This implies that

sup
t∈[a,b]

|(Ty)(t)|≤ ψ(q(x, y))− φ(q(x, y)

and so

q(Tx, Ty) ≤ ψ(q(x, y))− φ(q(x, y)

for all x, y ∈ X. Hence we have

ψ(q(Tx, Ty)) ≤ q(Tx, Ty) ≤ ψ(q(x, y))− φ(q(x, y)

for all x, y ∈ X. It follows that T satisfies condition (13). Therefore, all conditions of Corollary 2.5 are satisfied, and thus T

had a unique fixed point. This implies that there exists a unique solution of the nonlinear Fredholm integral equation (14).

This completes the proof.
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Theorem 3.2. Consider the nonlinear Fredholm integral equation

x(t) = φ(t) +

∫ b

a

K(t, s, x(s))ds, (15)

where a, b ∈ R with a < b, and φ : [a, b] → R and K : [a, b]2 × R → R are given continuous mappings. Suppose that the

following conditions hold:

(i). the mapping T : C[a, b]→ C[a, b] defined by

(Tx)(t) = φ(t) +

∫ b

a

K(t, s, x(s))ds for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;

(ii). there are two functions ψ, φ : [0,∞) → [0,∞) with ψ is an altering distance function and φ is continuous function

such that ψ(t) < t, for all t > 0, φ(t) = 0 if and only if t = 0, and for all x, y ∈ C[a, b], if and only if t = 0, and for

all x, y ∈ C[a, b], where a1, b1 > 1 we have

supt∈[a,b] max{a1|K(t, s, x(s)−K(t, s, y(s))|,

b1|K(t, s, y(s)−K(t, s, x(s))|} ≤ 1

b− a

(
ψ(supt∈[a,b]{max{a1(x(t)− y(t)),

b1(y(t)− x(t))}})− φ(supt∈[a,b]{max{a1(x(t)− y(t)), b1(y(t)− x(t))}})
)

for all t, s ∈ [a, b].

Then the nonlinear integral equation (15) has a unique solution. Moreover, for each x0 ∈ C[a, b], the Picard iteration {xn}

defined by

(xn)(t) = φ(t) +

∫ b

a

K(t, s, xn−1(s))ds

for all n ∈ N converges to a unique solution of the nonlinear integral equation (15).

Proof. Let X = C[a, b]. Clearly, X with the metric d : X ×X → [0,∞) given by

d(x, y) = sup
t∈[a,b]

|x(t)− y(t)|

for all x, y ∈ X is a complete metric space. Next, we define the function q : X ×X → [0,∞) by

q(x, y) = sup
t∈[a,b]

{max{a1(x(t)− y(t)), b1(y(t)− x(t))}}

for all x, y ∈ X. Clearly, q is a w-distance on X and a ceiling distance of d. Here, we will show that T satisfies the contractive

condition (2). Assume that x, y ∈ X and t ∈ [a, b]. Then we get

q(Tx, Ty) = sup
t∈[a,b]

{max{
∫ b

a

a1[K(t, s, x(s)−K(t, s, y(s)]ds,

∫ b

a

b1[K(t, s, y(s)−K(t, s, x(s)]ds}}

≤
∫ b

a

sup
t∈[a,b]

{max{a1[K(t, s, x(s)−K(t, s, y(s)]ds,

∫ b

a

b1[K(t, s, y(s)−K(t, s, x(s)]ds}}

=

∫ b

a

(
sup

t∈[a,b]
{max a1[K(t, s, x(s)−K(t, s, y(s)], b1[K(t, s, y(s)−K(t, s, x(s)]}}

)
ds

≤ 1

b− a

∫ b

a

(
ψ( sup

t∈[a,b]
{{max{a1(x(t)− y(t)), b1(y(t)− x(t))}})−
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φ( sup
t∈[a,b]

{{max{a1(x(t)− y(t)), b1(y(t)− x(t))}})
)
ds

=
1

b− a

∫ b

a

(
ψ(q(x, y))− φ(q(x, y))

)
ds

= ψ(q(x, y))− φ(q(x, y),

and so

q(Tx, Ty) ≤ ψ(q(x, y))− φ(q(x, y)

for all x, y ∈ X. Hence we have

ψ(q(Tx, Ty)) ≤ q(Tx, Ty) ≤ ψ(q(x, y))− φ(q(x, y),

for all x, y ∈ X. It follows that T satisfies condition (13). Therefore, all conditions of Corollary 2.5 are satisfied, and thus T

had a unique fixed point. This implies that there exists a unique solution of the nonlinear Fredholm integral equation (15).

This completes the proof.

3.2. Nonlinear Volterra Integral Equations

By using the identical method in the proof of Theorem 3.1 and Theorem 3.2, we get the following results.

Theorem 3.3. Consider the nonlinear Volterra integral equation

x(t) = φ(t) +

∫ t

a

K(t, s, x(s))ds, (16)

where a, b ∈ R with a < b, and φ : [a, b] → R and K : [a, b]2 × R → R are given continuous mappings. Suppose that the

following conditions hold:

(i). Let (C[a, b], ‖·‖∞) be a complete metric space and the mapping T : C[a, b]→ C[a, b] defined by

(Tx)(t) = φ(t) +

∫ t

a

K(t, s, x(s))ds for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;

(ii). there are two functions ψ, φ : [0,∞) → [0,∞) with ψ is an altering distance function and φ is continuous function

such that ψ(t) < t, for all t > 0, φ(t) = 0 if and only if t = 0, and for all x, y ∈ C[a, b], if and only if t = 0, and for

all x, y ∈ C[a, b], we have

sup
t∈[a,b]

|K(t, s, y(t)|≤
ψ(supt∈[a,b]|y(t)|)− φ(supt∈[a,b]|y(t)|)− ‖φ‖

b− a

for all t, s ∈ [a, b].

Then the nonlinear integral equation (16) has a unique solution. Moreover, for each x0 ∈ C[a, b], the Picard iteration {xn}

defined by

(xn)(t) = φ(t) +

∫ t

a

K(t, s, xn−1(s))ds

for all n ∈ N converges to a unique solution of the nonlinear integral equation (16).
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Theorem 3.4. Consider the nonlinear Volterra integral equation

x(t) = φ(t) +

∫ t

a

K(t, s, x(s))ds, (17)

where a, b ∈ R with a < b, and φ : [a, b] → R and K : [a, b]2 × R → R are given continuous mappings. Suppose that the

following conditions hold:

(i). the mapping T : C[a, b]→ C[a, b] defined by

(Tx)(t) = φ(t) +

∫ t

a

K(t, s, x(s))ds for all x ∈ C[a, b] and t ∈ [a, b]

is a continuous mapping;

(ii). there are two functions ψ, φ : [0,∞) → [0,∞) with ψ is an altering distance function and φ is continuous function

such that ψ(t) < t, for all t > 0, φ(t) = 0 if and only if t = 0, and for all x, y ∈ C[a, b], if and only if t = 0, and for

all x, y ∈ C[a, b], where a1, b1 > 1 we have

supt∈[a,b] max{a1|K(t, s, x(s)−K(t, s, y(s))|,

b1|K(t, s, y(s)−K(t, s, x(s))|} ≤ 1

b− a

(
ψ(supt∈[a,b]{max{a1(x(t)− y(t)),

b1(y(t)− x(t))}})− φ(supt∈[a,b]{max{a1(x(t)− y(t)), b1(y(t)− x(t)))}}
)

for all t, s ∈ [a, b].

Then the nonlinear integral equation (17) has a unique solution. Moreover, for each x0 ∈ C[a, b], the Picard iteration {xn}

defined by

(xn)(t) = φ(t) +

∫ t

a

K(t, s, xn−1(s))ds

for all n ∈ N converges to a unique solution of the nonlinear integral equation (17).
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