
Int. J. Math. And Appl., 6(1–C)(2018), 493–503

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

M ∗
I -closed Sets in Ideal Topological Spaces

P. Mariappan1,∗ and J. Antony Rex Rodrigo1

1 PG and Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamil Nadu, India.

Abstract: The concept of generalized closed sets was considered by Levine in 1970 [7]. In this way we introduce a new generalized
closed set via Iω-open set and study its some basic properties. Also, we investigate the relationship with other types of

closed sets.

MSC: 54A05.

Keywords: M∗
I -closed set, M∗

I -derived set, M∗
I -frontier.

c© JS Publication.

1. Introduction

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [6] and Vaidyanathaswamy [10].

Jankovic and Hamlett [5] investigated further properties of ideal spaces. An Ideal I on a topological space (X, τ) is a

nonempty collection of subsets of X which satisfies the following properties: (1). A ∈ I and B ⊂ A implies B ∈ I (2). A ∈ I

and B ∈ I implies A ∪ B ∈ I. An ideal topological space(or an ideal space) is a topological space (X, τ) with an ideal I

on X and is denoted by (X, τ, I). For a subset A ⊂ X, A∗(I, τ) = {x ∈ X : A ∩ U /∈ I for every U ∈ τ(x)} is called the

local function of A with respect to I and τ [6]. We simply write A∗ in case there is no chance for confusion. A Kuratowski

closure operator cl∗(.) for a topology τ∗(I, τ) called the ∗-topology, finer than τ is defined by cl∗(A) = A ∪A∗ [10].

2. Preliminaries

Definition 2.1 ([4]). A subset A of a topological space (X, τ) is called

(1). a pre-open set if A ⊆ int(cl(A)) and a pre-closed set if cl(int(A)) ⊆ A,

(2). a semi-open set A ⊆ cl(int(A)) and a semi-closed set if int(cl(A)) ⊆ A,

(3). an α-open set if A ⊆ int(cl(int(A))) and an α-closed set if cl(int(cl(A))) ⊆ A,

(4). a semi-preopen set(= β-open set[]) if A ⊆ cl(int(cl(A))) and a semi-preclosed set (= β-closed set) if int(cl(int(A))) ⊆ A.

Definition 2.2. A subset A of a topological space (X, τ) is called

(1). an ω-closed [9] (ĝ-closed) if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ),
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(2). an η̂∗-closed [1] if spcl(A) ⊆ U whenever A ⊆ U and U is ω-open in (X, τ).

(3). an η̂-closed [1] if pcl(A) ⊆ U whenever A ⊆ U and U is ω-open in (X, τ).

Definition 2.3 ([4]). Let S be a subset of (X, τ, I). Then S is said to be

(1). α− I−open if S ⊆ int(cl∗(int(A))),

(2). semi−I−open if S ⊆ cl∗(int(S)),

(3). pre−I−open if S ⊆ int(cl∗(S)),

(4). semipre−I−open if S ⊆ cl(int(cl∗(S))).

Definition 2.4. A subset A of a space (X, τ) is called:

(1). a generalized closed set [3] (briefly g-closed) if cl(A) ⊆ U whenever A ⊆ U and U is open,

(2). α-generalized closed [3] (briefly αg-closed) if αcl(A) ⊆ U whenever A ⊆ U and U is open,

(3). a generalized pre-closed set [8] (briefly gp-closed) if pcl(A) ⊆ U whenever A ⊆ U and U is open,

(4). a generalized semipre-closed set [3] (briefly gsp-closed) if spcl(A) ⊆ U whenever A ⊆ U and U is open.

Definition 2.5 ([2]). A subset A of an ideal topological space (X, τ, I) is called an Iω(or Iĝ)-closed set if A∗ ⊆ U whenever

A ⊆ U and U is semi-open in (X, τ).

Proposition 2.6 ([4]). For a subset of an ideal topological space the following holds:

(a). Every α− I−open set is α-open.

(b). Every semi−I−open set is semi-open.

(c). Every β − I−open set is β-open.

(d). Every pre−I−open set is pre-open.

Lemma 2.7 ([3]). Let A be a subset of a topological space X.

(a). Then spcl(A) = spcl(spcl(A)).

(b). Let F ⊂ A ⊂ X,where A is open in X.

Then spclA(F ) = spcl(F ) ∩A.

Theorem 2.8 ([2]). Let (X, τ, I) be an ideal space.Then every ĝ-closed set is an Iĝ-closed set but not conversely.

3. Comparison of MI
∗-closed Set with other Closed Sets and its Basic

Properties

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is called an MI-closed if pcl(A) ⊆ U whenever A ⊆ U and

U is Iω-open in (X, τ, I).
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Definition 3.2. A subset A of an ideal topological space (X, τ, I) is called an M∗
I -closed if spcl(A) ⊆ U whenever A ⊆ U

and U is Iω-open in (X, τ, I). The class of all M∗
I -closed sets in (X, τ, I) is denoted by M∗

I cl(τ, I). That is, M∗
I cl(τ, I) =

{A ⊂ X : A is M∗
I -closed in (X, τ, I)}.

Proposition 3.3. Every MI-closed set is M∗
I -closed but not conversely.

Proof. Let A be a MI -closed set and U be an Iω-open set such that A ⊆ U .Since A is MI -closed, then pcl(A) ⊆ U . But

spcl(A) ⊆ pcl(A) ⊆ U . Hence A is M∗
I -closed.

Example 3.4. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}} and I = {∅, {c}}. Here the set A = {a} is M∗
I -closed but not

MI-closed.

Proposition 3.5. Every closed (resp. α-closed, pre-closed, semi-closed, semi-preclosed) set is M∗
I -closed but not conversely.

Proof. Let A be a closed set and U be an Iω-open set such that A ⊆ U . Then cl(A) ⊆ U . But spcl(A) ⊆ cl(A) ⊆ U . Thus

A is M∗
I -closed. The proof follows from the facts that spcl(A) ⊆ scl(A) ⊆ U and spcl(A) ⊆ pcl(A) ⊆ αcl(A) ⊆ cl(A).

Example 3.6. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Here the set A = {b} is M∗
I -closed but not closed.

Example 3.7. Let X = {a, b, c}, τ = {∅, X, {a}, {a, c}} and I = {∅}.Here the set A = {a, b} is M∗
I -closed but not semi-closed

(resp. α-closed, pre-closed, semipre-closed).

Proposition 3.8. Every α−I−closed (resp. semi−I−closed, pre−I−closed, semipre−I−closed) set is M∗
I -closed but not

conversely.

Proof. The proof is follows from Proposition 3.5 and Proposition 2.6.

Example 3.9. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Here the set A = {a, b} is M∗
I -closed but not α−I−closed

(resp. semi−I−closed, pre−I−closed, semipre−I−closed).

Proposition 3.10. Every M∗
I -closed set is generalized semi-preclosed (briefly gsp-closed) but not conversely.

Proof. Let A be a M∗
I -closed set and U be an open set such that A ⊆ U. By Remark 2.21 [3], every open set is Iω-open

and since A is M∗
I -closed,we have spcl(A) ⊆ U and hence A is generalized semi-preclosed.

Example 3.11. Let X = {a, b, c, d}, τ = {∅, X, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅, {a}, {b}, {a, b}}. Here the set

A = {b, c} is gsp-closed but not M∗
I -closed.

Proposition 3.12. Every M∗
I -closed set is η̂∗-closed but not conversely.

Proof. Let A be a M∗
I -closed set and U be an ω-open set such that A ⊆ U. By Theorem 2.8, every ω-open set is Iω-open

and since A is M∗
I -closed, we have spcl(A) ⊆ U and hence A is η̂∗-closed.

Example 3.13. Let X = {a, b, c, d}, τ = {∅, X, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅, {a}, {b}, {a, b}}. Here the set

A = {b, c, d} is η̂∗-closed but not M∗
I -closed.

Remark 3.14. The concept of g-closedness (resp. gp-closedness) and M∗
I -closedness are independent concepts as we illus-

trate by means of the following example.

Example 3.15. Let X = {a, b, c, d}, τ = {∅, X, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅, {a}, {b}, {a, b}}. Here the set

A = {b, c} is g-closed (resp. gp-closed) but not M∗
I -closed and the set B = {d} is M∗

I -closed but not g-closed (resp. gp-closed).
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Remark 3.16. The concept of η̂-closedness and M∗
I -closedness are independent concepts as we illustrate by means of the

following example.

Example 3.17.

(a). Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Here the set {a} is η̂-closed but not M∗
I -closed.

(b). Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}} and I = {∅}. Here the set {a} is M∗
I -closed but not η̂-closed.

Remark 3.18. The union (intersection) of any two M∗
I -closed sets is not M∗

I -closed.

Example 3.19. Let X, τ and I be defined as in Example 3.15. Here the set {a, c} and {a, d} are M∗
I -closed but the union

{a, c} ∪ {a, d} = {a, c, d} is not M∗
I -closed.

Example 3.20. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Here the set {a, b} and {a, c} are M∗
I -closed but the

intersection {a, b} ∩ {a, c} = {a} is not M∗
I -closed.

Proposition 3.21. Let A be an M∗
I -closed set in (X, τ, I). Then spcl(A) − A does not contain any non-empty Iω-closed

set but not conversely.

Proof. Suppose that A is M∗
I -closed and let F be an Iω-closed set with F ⊂ spcl(A) − A. Then A ⊂ F c and so

spcl(A) ⊂ F c. Hence F ⊂ (spcl(A))c.Thus F ⊂ spcl(A) ∩ (spcl(A))c = ∅.

Example 3.22. Let X = {a, b, c, d}, τ = {∅, X, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅}. For the set A = {c}, spcl(A)−

A = {a, c} − {c} = {a} does not contain any non-empty Iω-closed set but A = {c} is not M∗
I -closed.

Proposition 3.23. Let A and B be any two subsets of an ideal topological space (X, τ, I). If A is M∗
I -closed such that

A ⊂ B ⊂ spcl(A), then B is M∗
I -closed.

Proof. Let U be an Iω-open set of (X, τ, I) such that B ⊂ U . Then A ⊂ U , A is M∗
I -closed, we get spcl(A) ⊂ U . Now

spcl(B) ⊂ spcl(spcl(A)) = spcl(A) ⊂ U . Thus B is M∗
I -closed.

Remark 3.24. The converse of the above Proposition 3.23 is not true in general.

Example 3.25. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Here the set A = {b} and B = {b, c} are M∗
I -closed

and A ⊂ B but B is not a subset of spcl(A).

Proposition 3.26. If A is Iω-open and M∗
I -closed, then A is semi-preclosed.

Proof. Since A ⊂ A and A is both Iω-open and M∗
I -closed, we get spcl(A) ⊂ A. Since always A ⊂ spcl(A). Thus A is

semi-preclosed.

Proposition 3.27. For each x ∈ X,either {x} is Iω-closed or {x}c is M∗
I -closed in (X, τ, I).

Proof. Suppose that {x} is not Iω-closed in (X, τ, I). Then {x}c is not Iω-open and the only Iω-open set containing {x}c

is the space X itself. Therefore spcl({x}c) ⊂ X and so {x}c is M∗
I -closed.

Proposition 3.28. If a subset A of (X, τ, I) is M∗
I -closed, then Iωcl({x}) ∩A 6= ∅ for each x ∈ spcl(A).

Proof. Suppose that x ∈ spcl(A) and Iωcl({x}) ∩ A = ∅. Then A ⊂ (Iωcl({x}))c and (Iωcl({x}))c is Iω-open. By

assumption, spcl(A) ⊂ (Iωcl({x}))c which is a contradiction to x ∈ spcl(A).
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4. M∗
I -closure

In this section, we define M∗
I -closure of a set and we prove that M∗

I -closure is a Kuratowski closure operator on X under

the certain condition.

Definition 4.1. For every set E ⊂ X, we define the M∗
I -closure of E to be the intersection of all M∗

I -closed sets containing

E. In symbols, M∗
I -cl(E) =

⋂
{A : E ⊂ A,A ∈M∗

I c(τ, I)}.

Lemma 4.2. For any E ⊂ X,E ⊂M∗
I cl(E) ⊂ cl(E).

Proof. Follows from Proposition 3.5.

Lemma 4.3. If A ⊂ B then M∗
I cl(A) ⊂M∗

I cl(B).

Proof. Clearly follows from Definition 4.1.

Remark 4.4. M∗
I -closure of a set need not be M∗

I -closed.

Example 4.5. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Consider the set A = {a},M∗
I cl(A) = {a} but A is not

M∗
I -closed.

Lemma 4.6. If E is M∗
I -closed, then M∗

I cl(E) = E but not conversely.

Proof. From Definition 4.1,the proof follows.

Example 4.7. In Example 4.5, M∗
I cl({a}) = {a} but {a} is not M∗

I -closed.

Theorem 4.8. If M∗
I c(τ, I) is closed under finite union, then M∗

I -closure is a Kuratowski closure operator on X.

Proof. Since ∅ and X are M∗
I -closed, by Lemma 4.6 we get

(1). M∗
I cl(∅) = ∅,M∗

I cl(X) = X.

(2). E ⊂M∗
I cl(E), by Lemma 4.2.

(3). Suppose E and F are two subsets of X, then by Lemma 4.3, we get M∗
I cl(E) ⊂ M∗

I cl(E ∪ F ) and M∗
I cl(F ) ⊂

M∗
I cl(E∪F ). Hence M∗

I cl(E)∪M∗
I cl(F ) ⊂M∗

I cl(E∪F ). If x /∈M∗
I cl(E)∪M∗

I cl(F ), then there exist A,B ∈M∗
I cl(τ, I)

such that E ⊂ A, x /∈ A,F ⊂ B and x /∈ B. Hence E ∪ F ⊂ A ∪ B and x /∈ A ∪ B. By hypothesis A ∪ B is M∗
I -

-closed. Thus x /∈ M∗
I cl(E ∪ F ). Hence M∗

I cl(E) ∪M∗
I cl(F ) ⊃ M∗

I cl(E ∪ F ). From the above discussions we have

M∗
I cl(E ∪ F ) = M∗

I cl(E) ∪M∗
I cl(F ).

(4). Let E be a subset of X and A be an M∗
I -closed set containing E. Then by Definition 4.1, M∗

I cl(E) ⊂ A and

M∗
I cl(M

∗
I cl(E)) ⊂ A. Since M∗

I cl(M
∗
I cl(E)) ⊂ A, we have M∗

I cl(M
∗
I cl(E)) ⊂

⋂
{A : E ⊂ A,A ∈ M∗

I c(τ, I)} =

M∗
I cl(E). By Lemma 4.2, M∗

I cl(E) ⊂ M∗
I cl(M

∗
I cl(E) and therefore M∗

I cl(E) = M∗
I cl(M

∗
I cl(E). Hence, M∗

I -closure is

a Kuratowski closure operator on X.

Definition 4.9. Let τM∗
I

be the topology on X generated by M∗
I -closure in the usual manner. That is, τM∗

I
= {U :

M∗
I cl(U

c) = Uc}.

Proposition 4.10. If M∗
I cl(τ, I) is closed under finite union,then τM∗

I
is a topology for X.

Proof. By Theorem 4.8,M∗
I -closure satisfies the Kuratowski closure axioms, τM∗

I
is a topology on X.
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5. M∗
I -open Set

Definition 5.1. A subset A in (X, τ, I) is called a M∗
I -open if Ac is M∗

I -closed set in (X, τ, I). We denote the family of all

M∗
I -open sets in (X, τ, I) by M∗

I o(τ, I).

The following five Propositions are analogue of Propositions 3.3, 3.5, 3.8, 3.10, 3.12.

Proposition 5.2. Every MI-open set is M∗
I -open.

Proposition 5.3. Every open (resp. α-open, pre-open, semi-open, semi-preopen) set is M∗
I -open.

Proposition 5.4. Every α− I−open (resp. semi−I−open, semipre−I−open) set is M∗
I -open.

Proposition 5.5. Every M∗
I -open set is generalized semipre-open(briefly gsp-open).

Proposition 5.6. Every M∗
I -open set is η̂∗-open.

Remark 5.7. The union (intersection) of any two M∗
I -open sets is not M∗

I -open.

Proposition 5.8. A subset A of an ideal topological space (X, τ, I) is M∗
I -open if and only if F ⊂ spint(A) whenever A ⊃ F

and F is Iω-closed in (X, τ, I).

Proof. Suppose that A is M∗
I -open in (X, τ, I) and A ⊃ F ,where F is Iω-closed in (X, τ, I). Then Ac ⊂ F c, where F c is

Iω-open in (X, τ, I). Hence, we get spcl(Ac) ⊂ F c implies (spint(A))c ⊂ F c. Thus we have spint(A) ⊃ F .

Conversely, suppose that Ac ⊂ U and U is Iω-open in (X, τ, I). Then A ⊃ Uc and Uc is Iω-closed and by hypothesis

sp(int(A) ⊃ Uc implies that (sp(int(A))c ⊂ U . Hence spcl(Ac) ⊂ U implies that Ac is M∗
I -closed.

Proposition 5.9. If spint(A) ⊂ B ⊂ A and if A is M∗
I -open, then B is M∗

I -open.

Proof. Suppose that spint(A) ⊂ B ⊂ A and A is M∗
I -open. Then Ac ⊂ Bc ⊂ spcl(Ac) and since Ac is M∗

I -closed. By

Proposition 3.23, Bc is M∗
I -closed. Hence, B is M∗

I -open.

Proposition 5.10. If a set A is M∗
I -open, then spcl(A)−A is M∗

I -closed but not conversely.

Proof. Suppose that A is M∗
I -open. Let U be an Iω-open set such that spcl(A) − A ⊂ U . Now spcl(spcl(A) − A) =

spcl(A)− spcl(A) = ∅ ⊂ U . Hence spcl(A)−A is M∗
I -closed.

Example 5.11. Let X = {a, b, c, d}, τ = {∅, X, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅}. Consider the set A =

{c}, spcl(A)−A = {a, c} − {c} = {a} is M∗
I -closed but not M∗

I -open.

Proposition 5.12. Let A be a subset of an ideal topological space (X, τ, I). For any x ∈ X,x ∈ M∗
I cl(A) if and only if

U ∩A 6= ∅ for every M∗
I -open set U containing x.

Proof. Necessity: Suppose that x ∈ M∗
I cl(A). Let U be an M∗

I -open set containing x such that U ∩ A = ∅ and so

A ⊂ Uc. But Uc is M∗
I -closed and hence M∗

I cl(A) ⊂ Uc. Since x /∈ Uc we obtain x /∈ M∗
I cl(A), which is contrary to the

hypothesis.

Sufficiency: Suppose that every M∗
I -open set of (X, τ, I) containing x meets A. If x /∈ M∗

I cl(A), then there exist an

M∗
I -closed F of (X, τ, I) such that A ⊂ F and x /∈ F . Therefore, x ∈ F c and F c is an M∗

I -open set containing x. But

F c ∩A = ∅. This is contrary to the hypothesis.

Definition 5.13. For any A ⊂ X, M∗
I int(A) is defined as the union of all M∗

I -open sets contained in A. That is,

M∗
I int(A) =

⋃
{U : U ⊂ A and U ∈M∗

I o(τ, I)}.
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Proposition 5.14. For any set A ⊂ X,int(A) ⊂M∗
I int(A).

Proof. The proof follows from Proposition 5.3.

Proposition 5.15. For any two subsets A1 and A2 of X,

(1). If A1 ⊂ A2, then M∗
I int(A1) ⊂M∗

I int(A2).

(2). M∗
I int(A1 ∪A2) ⊃M∗

I int(A1) ∪M∗
I int(A2).

Proposition 5.16. If A is M∗
I -open, then A = M∗

I int(A).

Proof. Clearly follows from Definition 5.13.

Remark 5.17. The converse of the Proposition 5.16 is not true as seen from the following example.

Example 5.18. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Here M∗
I o(τ, I) = P (X)−{b, c}. Now consider the set

A = {b, c}. Then M∗
I int(A) = {b} ∪ {c} = {b, c} = A but A is not M∗

I -open.

Proposition 5.19. Let A be a subset of an ideal space (X, τ, I),then the followings are true.

(1). (M∗
I int(A))c = M∗

I cl(A
c)

(2). M∗
I int(A) = (M∗

I (cl(Ac))c

(3). M∗
I clA) = (M∗

I int(A))c.

Proof.

(1). Let x ∈ (M∗
I int(A))c. Then x /∈ M∗

I int(A). That is, every M∗
I -open set U containing x is such that U * A. Thus

every M∗
I -open set U containing x is such that U ∩ A 6= ∅. By Proposition 5.12, x ∈ M∗

I cl(A
c) and therefore,

(M∗
I int(A))c ⊂M∗

I cl(A
c).

Conversely, let x ∈ M∗
I cl(A

c). Then by Proposition 5.12, every M∗
I -open set U containing x is such that U ∩ Ac 6= ∅.

By Definition 5.13, x /∈ M∗
I int(A), hence x ∈ (M∗

I int(A))c and so M∗
I cl(A

c) ⊂ (M∗
I int(A))c. Thus (M∗

I int(A))c =

M∗
I cl(A

c).

(2). Follows by taking complements in (1).

(3). Follows by replacing A by Ac in (1).

Proposition 5.20. For a subset A of an ideal topological space (X, τ, I), the following conditions are equivalent:

(1). M∗
I o(τ, I) is closed under any union,

(2). A is M∗
I -closed if and only if M∗

I cl(A) = A,

(3). A is M∗
I -open if and only if M∗

I int(A) = A.

Proof. (1)⇒(2): Let A be a M∗
I -closed set. Then by definition of M∗

I -closure, M∗
I cl(A) = A. Conversely, assume that

M∗
I cl(A) = A. For each x ∈ Ac, x /∈M∗

I cl(A). By Proposition 5.12, there exist a M∗
I -open set Gx such that Gx ∩A = ∅ and

hence x ∈ Gx ⊂ Ac. Therefore, we obtain Ac =
⋃
x ∈ Ac. By (1) Ac is M∗

I -open and hence A is M∗
I -closed.

(2)⇒(3): Follows by (2) and Proposition 5.19.

(3)⇒(1): Let {Uα/α ∈ ∧} be a family of M∗
I -open sets of X. Put for each x ∈ U , there exist α(x) ∈ ∧ such that

x ∈ Uα(x) ⊂ U . Since Uα(x) is M∗
I -open, x ∈ M∗

I int(U) and so U = M∗
I int(U). By (3), U is M∗

I -open. Thus M∗
I o(τ, I) is

closed under any union.
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Proposition 5.21. In an ideal topological space (X, τ, I), assume that M∗
I o(τ, I) is closed under any union. Then M∗

I cl(A)

is an M∗
I -closed set for every subset A of X.

Proof. Since M∗
I cl(A) = M∗

I cl(M
∗
I cl(A)) and by Proposition 5.20, we get M∗

I cl(A) is a M∗
I -closed set.

6. M∗
I -derived Set

Definition 6.1. Let A be a subset of a space X. A point x ∈ X is said to be an M∗
I limit point of A if for each M∗

I -open

set U containing x, U ∩ (A− {x}) 6= ∅. The set of all M∗
I limit points of A is called an M∗

I -derived set of A and is denoted

by DM∗
I

(A).

Theorem 6.2. For subsets A,B of a space X, the following statements hold:

(1). DM∗
I

(A) ⊂ D(A), where D(A) is the derived set of A.

(2). If A ⊂ B, then DM∗
I

(A) ⊂ DM∗
I

(B).

(3). DM∗
I

(A) ∪DM∗
I

(B) ⊂ DM∗
I

(A ∪B) and DM∗
I

(A ∩B) ⊂ DM∗
I

(A) ∩DM∗
I

(B).

(4). DM∗
I

(DM∗
I

(A))−A ⊂ DM∗
I

(A).

(5). DM∗
I

(A ∪DM∗
I

(A)) ⊂ A ∪DM∗
I

(A).

Proof.

(1). Since every open set is M∗
I -open,the proof follows.

(2). Follows by Definition 6.1.

(3). Follows by (2).

(4). If x ∈ DM∗
I

(DM∗
I

(A))−A and U is a M∗
I -open set containing x, then U ∩ (DM∗

I
(A)−{x}) 6= ∅. Let y ∈ U ∩ (DM∗

I
(A)−

{x}). Then since y ∈ DM∗
I
(A) and y ∈ U,U ∩ (DM∗

I
(A)− {y}) 6= ∅. Let z ∈ U ∩ (A− {y}). Then z 6= x for z ∈ A and

x /∈ A. Hence, U ∩ (A− {x}) 6= ∅. Therefore x ∈ DM∗
I

(A).

(5). Let x ∈ DM∗
I

(A∪DM∗
I

(A)). If x ∈ A, the result is obvious. So let x ∈ DM∗
I

(A∪DM∗
I

(A))−A, then for an M∗
I -open set

U containing x such that U ∩ ((A ∪DM∗
I

(A))− {x}) 6= ∅. Thus U ∩ (A− {x}) 6= ∅ or U ∩ (DM∗
I

(A)− {x}) 6= ∅. Now,

it follows similarly from (4) that U ∩ (A−{x}) 6= ∅. Hence, x ∈ DM∗
I

(A). Therefore, in any case DM∗
I

(A∪DM∗
I

(A)) ⊂

A ∪DM∗
I

(A).

Example 6.3. Let X = {a, b, c}, τ = {∅, X, {a, b}} and I = {∅, {c}}. Then M∗
I o(τ, I) = P (X) − {c}. Consider the set

A = {a, b}, we get DM∗
I

(A) = {c} and D(A) = X. Hence D(A) * DM∗
I

(A). Also consider the set A = {a} and B = {b}.

Then DM∗
I

(A) = {∅}, DM∗
I

(B) = {∅} and DM∗
I

(A ∪B) = {c}. Hence DM∗
I

(A ∪B) * DM∗
I

(A) ∪DM∗
I

(B). The converse of

the Proposition 6.2 is not true in general.

Theorem 6.4. For any subset A of a space X,M∗
I cl(A) = A ∪DM∗

I
(A).

Proof. Since DM∗
I

(A) ⊂M∗
I cl(A), A∪DM∗

I
(A) ⊂M∗

I cl(A). On the other hand, let x ∈M∗
I cl(A).If x ∈ A, then the proof

is complete. If x /∈ A, each M∗
I -open set U containing x intersects A at a point distinct from x, so x ∈ DM∗

I
(A). Thus

M∗
I cl(A) ⊂ A ∪DM∗

I
(A).
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Definition 6.5. bM∗
I

(A) = A−M∗
I int(A) is said to be the M∗

I -border of A.

Theorem 6.6. For a subset A of a space X, the following statements hold:

(1). bM∗
I

(A) ⊂ b(A), where b(A) denotes the border of A.

(2). A = M∗
I int(A) ∪ bM∗

I
(A).

(3). M∗
I int(A) ∩ bM∗

I
(A) = ∅.

(4). If A is M∗
I -open, then bM∗

I
(A) = ∅.

(5). M∗
I int(bM∗

I
(A)) = ∅.

(6). bM∗
I

(bM∗
I

(A)) = bM∗
I

(A).

(7). bM∗
I

(A) = A ∩M∗
I cl(A

c).

Proof. (1), (2) and (3) clearly follows.

(4) If A is M∗
I -open, then A = M∗

I int(A).

(5) Suppose x ∈M∗
I int(bM∗

I
(A)), then x ∈ bM∗

I
(A). On the other hand, since bM∗

I
(A) ⊂ A, x ∈M∗

I int(bM∗
I

(A)) ⊂M∗
I int(A).

Hence, x ∈M∗
I int(A) ∩ bM∗

I
(A), which contradicts (3). Thus M∗

I int(bM∗
I

(A)) = ∅.

(6) Follows by (5).

(7) bM∗
I

(A) = A−M∗
I int(A) = A− (M∗

I cl(A
c))c = A ∩M∗

I cl(A
c).

Example 6.7. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Here M∗
I o(τ, I) = {∅, X{a}, {b}, {c}, {a, b}, {a, c}}. If

A = {b}, then bM∗
I

(A) = {b}−{b} = ∅, b(A) = {b}−∅ = {b}. Hence, b(A) * bM∗
I

(A). Consider the set A = {b, c}, bM∗
I

(A) =

{b, c} − {b, c} = ∅, but A is not M∗
I -open, thus in general the converse of the Theorem 6.6 may not be true.

Definition 6.8. FrM∗
I

(A) = M∗
I cl(A)−M∗

I int(A) is said to be the M∗
I -frontier of A.

Theorem 6.9. For a subset A of a space X, the following statements are hold:

(1). FrM∗
I

(A) ⊂ Fr(A), where Fr(A) denotes the frontier of A.

(2). M∗
I cl(A) = M∗

I int(A) ∪ FrM∗
I

(A).

(3). M∗
I int(A) ∩ FrM∗

I
(A) = ∅.

(4). bM∗
I

(A) ⊂ FrM∗
I

(A).

(5). FrM∗
I

(A) = bM∗
I

(A) ∪DM∗
I

(A).

(6). If A is M∗
I -open, then FrM∗

I
(A) = DM∗

I
(A).

(7). FrM∗
I

(A) = M∗
I cl(A) ∩M∗

I cl(A
c).

(8). FrM∗
I

(A) = FrM∗
I

(Ac).

(9). FrM∗
I

(M∗
I int(A)) ⊂ FrM∗

I
(A).

(10). FrM∗
I

(M∗
I cl(A)) ⊂ FrM∗

I
(A).

Proof.
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(1). Since every open set is M∗
I -open,we get the proof.

(2). M∗
I int(A) ∪ FrM∗

I
(A) = M∗

I int(A) ∪ (M∗
I cl(A)−M∗

I int(A)) = M∗
I cl(A).

(3). M∗
I int(A) ∩ FrM∗

I
(A) = M∗

I int(A) ∩ (M∗
I cl(A)−M∗

I int(A)) = ∅.

(4). Clearly follows from Definitions.

(5). Since M∗
I int(A) ∪ FrM∗

I
(A) = M∗

I int(A) ∪ bM∗
I

(A) ∪DM∗
I

(A), we get FrM∗
I

(A) = bM∗
I

(A) ∪DM∗
I

(A).

(6). If A is M∗
I -open, then bM∗

I
(A) = ∅, then by (5), FrM∗

I
(A) = DM∗

I
(A).

(7). FrM∗
I

(A) = M∗
I cl(A)−M∗

I int(A) = M∗
I cl(A)− (M∗

I cl(A
c))c = M∗

I cl(A) ∩M∗
I cl(A

c).

(8). Follows by (7).

(9). Clearly follows.

(10). FrM∗
I

(M∗
I cl(A)) = M∗

I cl(M
∗
I cl(A))−M∗

I int(M
∗
I cl(A)) ⊂M∗

I cl(A)−M∗
I int(A) = FrM∗

I
(A).

Example 6.10. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Thus M∗
I o(τ, I) = P (X) − {b, c}. Consider the set

A = {b}, then FrM∗
I

(A) = ∅, F r(A) = {b, c}. Hence, Fr(A) * FrM∗
I

(A). In general, the converse of Theorem 6.9 need not

be true.

Definition 6.11. M∗
IExt(A) = M∗

I int(A
c) is said to be the M∗

I -exterior of A.

Theorem 6.12. For a subset A of a space X, the following statements are hold:

(1). Ext(A) ⊂M∗
IExt(A), where Ext(A) denotes the exterior of A.

(2). M∗
IExt(A) = M∗

I int(A
c) = (M∗

I cl(A))c.

(3). M∗
IExt(M

∗
IExt(A)) = M∗

I int(M
∗
I cl(A)).

(4). If A ⊂ B, then M∗
IExt(A) ⊃M∗

IExt(B).

(5). M∗
IExt(A ∪B) ⊂M∗

IExt(A) ∪M∗
IExt(B).

(6). M∗
IExt(A ∩B) ⊃M∗

IExt(A) ∩M∗
IExt(B).

(7). M∗
IExt(A) = ∅.

(8). M∗
IExt(∅) = X.

(9). M∗
I int(A) ⊂M∗

IExt(M
∗
IExt(A)).

Proof. (1) and (2) clearly follows from Definition 6.11.

(3) M∗
IExt(M

∗
IExt(A)) = M∗

IExt(M
∗
I int(A

c)) = M∗
IExt(M

∗
I cl(A))c = M∗

I int(M
∗
I cl(A)).

(4) If A ⊂ B, then Ac ⊃ Bc. Hence M∗
I int(A

c) ⊃M∗
I int(B

c) and so M∗
IExt(A) ⊃M∗

IExt(B).

(5) and (6) follows from (4).

(7) and (8) follows from Definition 6.11.

(9) M∗
I int(A) ⊂M∗

I int(M
∗
I cl(A)) = M∗

I int(M
∗
I int(A

c))c = M∗
I int(M

∗
IExt(A))c = M∗

IExt(M
∗
IExt(A)).
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Example 6.13. Let X = {a, b, c}, τ = {∅, X, {a}} and I = {∅, {a}}. Then M∗
I o(τ, I) = P (X) − {b, c}. Consider the set,

A = {a}, B = {c}, M∗
IExt(A) = X,M∗

IExt(B) = {a, b} and M∗
IExt(A∪B) = {b}. Hence, M∗

IExt(A∪B) 6= M∗
IExt(A)∪

M∗
IExt(B). Also consider the set A = {a}, B = {a, b}, M∗

IExt(A) = X, M∗
IExt(B) = {c} and M∗

IExt(A ∩ B) = X.

Hence, M∗
IExt(A ∩B) 6= M∗

IExt(A) ∩M∗
IExt(B).
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