ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

M_I^* -closed Sets in Ideal Topological Spaces

P. Mariappan^{1,*} and J. Antony Rex Rodrigo¹

1 PG and Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamil Nadu, India.

Abstract: The concept of generalized closed sets was considered by Levine in 1970 [7]. In this way we introduce a new generalized

closed set via I_{ω} -open set and study its some basic properties. Also, we investigate the relationship with other types of

closed sets.

MSC: 54A05.

Keywords: M_I^* -closed set, M_I^* -derived set, M_I^* -frontier.

© JS Publication.

1. Introduction

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [6] and Vaidyanathaswamy [10]. Jankovic and Hamlett [5] investigated further properties of ideal spaces. An Ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following properties: (1). $A \in I$ and $B \subset A$ implies $B \in I$ (2). $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space(or an ideal space) is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(x)\}$ is called the local function of A with respect to I and τ [6]. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*$ [10].

2. Preliminaries

Definition 2.1 ([4]). A subset A of a topological space (X, τ) is called

- (1). a pre-open set if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$,
- (2). a semi-open set $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$,
- (3). an α -open set if $A \subseteq int(cl(int(A)))$ and an α -closed set if $cl(int(cl(A))) \subseteq A$,
- (4). a semi-preopen set(= β -open set([)) if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set (= β -closed set) if $int(cl(int(A))) \subseteq A$.

Definition 2.2. A subset A of a topological space (X, τ) is called

(1). an ω -closed [9] (\hat{g} -closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) ,

 $^{^*}$ E-mail: israelmaths@gmail.com

- (2). an $\hat{\eta}^*$ -closed [1] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in (X, τ) .
- (3). an $\hat{\eta}$ -closed [1] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in (X, τ) .

Definition 2.3 ([4]). Let S be a subset of (X, τ, I) . Then S is said to be

- (1). αI -open if $S \subseteq int(cl^*(int(A)))$,
- (2). $semi-I-open \ if \ S \subseteq cl^*(int(S)),$
- (3). $pre-I-open \ if \ S \subseteq int(cl^*(S)),$
- (4). $semipre-I-open if S \subseteq cl(int(cl^*(S))).$

Definition 2.4. A subset A of a space (X, τ) is called:

- (1). a generalized closed set [3] (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- (2). α -generalized closed [3] (briefly α g-closed) if α cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is open,
- (3). a generalized pre-closed set [8] (briefly gp-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- (4). a generalized semipre-closed set [3] (briefly gsp-closed) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.5 ([2]). A subset A of an ideal topological space (X, τ, I) is called an I_{ω} (or $I_{\hat{g}}$)-closed set if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

Proposition 2.6 ([4]). For a subset of an ideal topological space the following holds:

- (a). Every αI -open set is α -open.
- (b). Every semi-I-open set is semi-open.
- (c). Every βI -open set is β -open.
- (d). Every pre-I-open set is pre-open.

Lemma 2.7 ([3]). Let A be a subset of a topological space X.

- (a). Then spcl(A) = spcl(spcl(A)).
- (b). Let $F \subset A \subset X$, where A is open in X.

Then $spcl_A(F) = spcl(F) \cap A$.

Theorem 2.8 ([2]). Let (X, τ, I) be an ideal space. Then every \hat{g} -closed set is an $I_{\hat{g}}$ -closed set but not conversely.

3. Comparison of ${M_I}^*$ -closed Set with other Closed Sets and its Basic Properties

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is called an M_I -closed if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is I_{ω} -open in (X, τ, I) .

Definition 3.2. A subset A of an ideal topological space (X, τ, I) is called an M_I^* -closed if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is I_{ω} -open in (X, τ, I) . The class of all M_I^* -closed sets in (X, τ, I) is denoted by $M_I^*cl(\tau, I)$. That is, $M_I^*cl(\tau, I) = \{A \subset X : A \text{ is } M_I^*\text{-closed in } (X, \tau, I)\}.$

Proposition 3.3. Every M_I -closed set is M_I^* -closed but not conversely.

Proof. Let A be a M_I -closed set and U be an I_{ω} -open set such that $A \subseteq U$. Since A is M_I -closed, then $pcl(A) \subseteq U$. But $spcl(A) \subseteq pcl(A) \subseteq U$. Hence A is M_I^* -closed.

Example 3.4. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{c\}\}$. Here the set $A = \{a\}$ is M_I^* -closed but not M_I -closed.

Proposition 3.5. Every closed (resp. α -closed, pre-closed, semi-closed, semi-preclosed) set is M_I^* -closed but not conversely.

Proof. Let A be a closed set and U be an I_{ω} -open set such that $A \subseteq U$. Then $cl(A) \subseteq U$. But $spcl(A) \subseteq cl(A) \subseteq U$. Thus A is M_I^* -closed. The proof follows from the facts that $spcl(A) \subseteq scl(A) \subseteq U$ and $spcl(A) \subseteq pcl(A) \subseteq acl(A) \subseteq cl(A)$.

Example 3.6. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Here the set $A = \{b\}$ is M_I^* -closed but not closed.

Example 3.7. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $I = \{\emptyset\}$. Here the set $A = \{a, b\}$ is M_I^* -closed but not semi-closed (resp. α -closed, pre-closed, semipre-closed).

Proposition 3.8. Every $\alpha - I - closed$ (resp. semi-I - closed, pre-I - closed, semipre-I - closed) set is M_I^* -closed but not conversely.

Proof. The proof is follows from Proposition 3.5 and Proposition 2.6.

Example 3.9. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Here the set $A = \{a, b\}$ is M_I^* -closed but not $\alpha - I$ -closed (resp. semi-I-closed, pre-I-closed, semipre-I-closed).

Proposition 3.10. Every M_I^* -closed set is generalized semi-preclosed (briefly gsp-closed) but not conversely.

Proof. Let A be a M_I^* -closed set and U be an open set such that $A \subseteq U$. By Remark 2.21 [3], every open set is I_{ω} -open and since A is M_I^* -closed, we have $spcl(A) \subseteq U$ and hence A is generalized semi-preclosed.

Example 3.11. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$. Here the set $A = \{b, c\}$ is gsp-closed but not M_I^* -closed.

Proposition 3.12. Every M_I^* -closed set is $\hat{\eta}^*$ -closed but not conversely.

Proof. Let A be a M_I^* -closed set and U be an ω -open set such that $A \subseteq U$. By Theorem 2.8, every ω -open set is I_{ω} -open and since A is M_I^* -closed, we have $spcl(A) \subseteq U$ and hence A is $\hat{\eta}^*$ -closed.

Example 3.13. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\} \text{ and } I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$ Here the set $A = \{b, c, d\}$ is $\hat{\eta}^*$ -closed but not M_I^* -closed.

Remark 3.14. The concept of g-closedness (resp. gp-closedness) and M_I^* -closedness are independent concepts as we illustrate by means of the following example.

Example 3.15. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Here the set $A = \{b, c\}$ is g-closed (resp. gp-closed) but not M_I^* -closed and the set $B = \{d\}$ is M_I^* -closed but not g-closed (resp. gp-closed).

Remark 3.16. The concept of $\hat{\eta}$ -closedness and M_I^* -closedness are independent concepts as we illustrate by means of the following example.

Example 3.17.

(a). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Here the set $\{a\}$ is $\hat{\eta}$ -closed but not M_I^* -closed.

(b). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset\}$. Here the set $\{a\}$ is M_I^* -closed but not $\hat{\eta}$ -closed.

Remark 3.18. The union (intersection) of any two M_I^* -closed sets is not M_I^* -closed.

Example 3.19. Let X, τ and I be defined as in Example 3.15. Here the set $\{a, c\}$ and $\{a, d\}$ are M_I^* -closed but the union $\{a, c\} \cup \{a, d\} = \{a, c, d\}$ is not M_I^* -closed.

Example 3.20. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Here the set $\{a, b\}$ and $\{a, c\}$ are M_I^* -closed but the intersection $\{a, b\} \cap \{a, c\} = \{a\}$ is not M_I^* -closed.

Proposition 3.21. Let A be an M_I^* -closed set in (X, τ, I) . Then spcl(A) - A does not contain any non-empty I_{ω} -closed set but not conversely.

Proof. Suppose that A is M_I^* -closed and let F be an I_{ω} -closed set with $F \subset spcl(A) - A$. Then $A \subset F^c$ and so $spcl(A) \subset F^c$. Hence $F \subset (spcl(A))^c$. Thus $F \subset spcl(A) \cap (spcl(A))^c = \emptyset$.

Example 3.22. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\} \text{ and } I = \{\emptyset\}.$ For the set $A = \{c\}$, $spcl(A) - A = \{a, c\} - \{c\} = \{a\}$ does not contain any non-empty I_{ω} -closed set but $A = \{c\}$ is not M_I^* -closed.

Proposition 3.23. Let A and B be any two subsets of an ideal topological space (X, τ, I) . If A is M_I^* -closed such that $A \subset B \subset spcl(A)$, then B is M_I^* -closed.

Proof. Let U be an I_{ω} -open set of (X, τ, I) such that $B \subset U$. Then $A \subset U$, A is M_I^* -closed, we get $spcl(A) \subset U$. Now $spcl(B) \subset spcl(spcl(A)) = spcl(A) \subset U$. Thus B is M_I^* -closed.

Remark 3.24. The converse of the above Proposition 3.23 is not true in general.

Example 3.25. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Here the set $A = \{b\}$ and $B = \{b, c\}$ are M_I^* -closed and $A \subset B$ but B is not a subset of spcl(A).

Proposition 3.26. If A is I_{ω} -open and M_I^* -closed, then A is semi-preclosed.

Proof. Since $A \subset A$ and A is both I_{ω} -open and M_I^* -closed, we get $spcl(A) \subset A$. Since always $A \subset spcl(A)$. Thus A is semi-preclosed.

Proposition 3.27. For each $x \in X$, either $\{x\}$ is I_{ω} -closed or $\{x\}^c$ is M_I^* -closed in (X, τ, I) .

Proof. Suppose that $\{x\}$ is not I_{ω} -closed in (X, τ, I) . Then $\{x\}^c$ is not I_{ω} -open and the only I_{ω} -open set containing $\{x\}^c$ is the space X itself. Therefore $spcl(\{x\}^c) \subset X$ and so $\{x\}^c$ is M_I^* -closed.

Proposition 3.28. If a subset A of (X, τ, I) is M_I^* -closed, then $I_{\omega}cl(\{x\}) \cap A \neq \emptyset$ for each $x \in spcl(A)$.

Proof. Suppose that $x \in spcl(A)$ and $I_{\omega}cl(\{x\}) \cap A = \emptyset$. Then $A \subset (I_{\omega}cl(\{x\}))^c$ and $(I_{\omega}cl(\{x\}))^c$ is I_{ω} -open. By assumption, $spcl(A) \subset (I_{\omega}cl(\{x\}))^c$ which is a contradiction to $x \in spcl(A)$.

4. M_I^* -closure

In this section, we define M_I^* -closure of a set and we prove that M_I^* -closure is a Kuratowski closure operator on X under the certain condition.

Definition 4.1. For every set $E \subset X$, we define the M_I^* -closure of E to be the intersection of all M_I^* -closed sets containing E. In symbols, M_I^* -cl(E) = $\bigcap \{A : E \subset A, A \in M_I^* c(\tau, I)\}$.

Lemma 4.2. For any $E \subset X$, $E \subset M_I^* cl(E) \subset cl(E)$.

Proof. Follows from Proposition 3.5.

Lemma 4.3. If $A \subset B$ then $M_I^* cl(A) \subset M_I^* cl(B)$.

Proof. Clearly follows from Definition 4.1.

Remark 4.4. M_I^* -closure of a set need not be M_I^* -closed.

Example 4.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Consider the set $A = \{a\}, M_I^* cl(A) = \{a\}$ but A is not M_I^* -closed.

Lemma 4.6. If E is M_I^* -closed, then $M_I^*cl(E) = E$ but not conversely.

Proof. From Definition 4.1, the proof follows.

Example 4.7. In Example 4.5, $M_I^*cl(\{a\}) = \{a\}$ but $\{a\}$ is not M_I^* -closed.

Theorem 4.8. If $M_I^*c(\tau,I)$ is closed under finite union, then M_I^* -closure is a Kuratowski closure operator on X.

Proof. Since \emptyset and X are M_I^* -closed, by Lemma 4.6 we get

- (1). $M_I^* cl(\emptyset) = \emptyset, M_I^* cl(X) = X.$
- (2). $E \subset M_I^* cl(E)$, by Lemma 4.2.
- (3). Suppose E and F are two subsets of X, then by Lemma 4.3, we get $M_I^*cl(E) \subset M_I^*cl(E \cup F)$ and $M_I^*cl(F) \subset M_I^*cl(E \cup F)$. Hence $M_I^*cl(E) \cup M_I^*cl(E) \cup M_I^*cl(E) \cup M_I^*cl(E) \cup M_I^*cl(F)$, then there exist $A, B \in M_I^*cl(\tau, I)$ such that $E \subset A, x \notin A, F \subset B$ and $x \notin B$. Hence $E \cup F \subset A \cup B$ and $x \notin A \cup B$. By hypothesis $A \cup B$ is M_I^* -closed. Thus $x \notin M_I^*cl(E \cup F)$. Hence $M_I^*cl(E) \cup M_I^*cl(F) \supset M_I^*cl(E \cup F)$. From the above discussions we have $M_I^*cl(E \cup F) = M_I^*cl(E) \cup M_I^*cl(F)$.
- (4). Let E be a subset of X and A be an M_I^* -closed set containing E. Then by Definition 4.1, $M_I^*cl(E) \subset A$ and $M_I^*cl(M_I^*cl(E)) \subset A$. Since $M_I^*cl(M_I^*cl(E)) \subset A$, we have $M_I^*cl(M_I^*cl(E)) \subset \bigcap \{A: E \subset A, A \in M_I^*c(\tau, I)\} = M_I^*cl(E)$. By Lemma 4.2, $M_I^*cl(E) \subset M_I^*cl(M_I^*cl(E))$ and therefore $M_I^*cl(E) = M_I^*cl(M_I^*cl(E))$. Hence, M_I^* -closure is a Kuratowski closure operator on X.

Definition 4.9. Let $\tau_{M_I^*}$ be the topology on X generated by M_I^* -closure in the usual manner. That is, $\tau_{M_I^*} = \{U : M_I^* cl(U^c) = U^c\}$.

Proposition 4.10. If $M_I^* cl(\tau, I)$ is closed under finite union, then $\tau_{M_I^*}$ is a topology for X.

Proof. By Theorem 4.8, M_I^* -closure satisfies the Kuratowski closure axioms, $\tau_{M_I^*}$ is a topology on X.

5. M_I^* -open Set

Definition 5.1. A subset A in (X, τ, I) is called a M_I^* -open if A^c is M_I^* -closed set in (X, τ, I) . We denote the family of all M_I^* -open sets in (X, τ, I) by M_I^* or (T, I).

The following five Propositions are analogue of Propositions 3.3, 3.5, 3.8, 3.10, 3.12.

Proposition 5.2. Every M_I -open set is M_I^* -open.

Proposition 5.3. Every open (resp. α -open, pre-open, semi-open, semi-preopen) set is M_1^* -open.

Proposition 5.4. Every $\alpha - I$ -open (resp. semi-I-open, semipre-I-open) set is M_I^* -open.

Proposition 5.5. Every M_I^* -open set is generalized semipre-open (briefly gsp-open).

Proposition 5.6. Every M_I^* -open set is $\hat{\eta}^*$ -open.

Remark 5.7. The union (intersection) of any two M_I^* -open sets is not M_I^* -open.

Proposition 5.8. A subset A of an ideal topological space (X, τ, I) is M_I^* -open if and only if $F \subset spint(A)$ whenever $A \supset F$ and F is I_{ω} -closed in (X, τ, I) .

Proof. Suppose that A is M_I^* -open in (X, τ, I) and $A \supset F$, where F is I_{ω} -closed in (X, τ, I) . Then $A^c \subset F^c$, where F^c is I_{ω} -open in (X, τ, I) . Hence, we get $spcl(A^c) \subset F^c$ implies $(spint(A))^c \subset F^c$. Thus we have $spint(A) \supset F$.

Conversely, suppose that $A^c \subset U$ and U is I_{ω} -open in (X, τ, I) . Then $A \supset U^c$ and U^c is I_{ω} -closed and by hypothesis $sp(int(A) \supset U^c$ implies that $(sp(int(A))^c \subset U$. Hence $spcl(A^c) \subset U$ implies that A^c is M_I^* -closed.

Proposition 5.9. If $spint(A) \subset B \subset A$ and if A is M_I^* -open, then B is M_I^* -open.

Proof. Suppose that $spint(A) \subset B \subset A$ and A is M_I^* -open. Then $A^c \subset B^c \subset spcl(A^c)$ and since A^c is M_I^* -closed. By Proposition 3.23, B^c is M_I^* -closed. Hence, B is M_I^* -open.

Proposition 5.10. If a set A is M_1^* -open, then spcl(A) - A is M_1^* -closed but not conversely.

Proof. Suppose that A is M_I^* -open. Let U be an I_{ω} -open set such that $spcl(A) - A \subset U$. Now $spcl(spcl(A) - A) = spcl(A) - spcl(A) = \emptyset \subset U$. Hence spcl(A) - A is M_I^* -closed.

Example 5.11. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset\}$. Consider the set $A = \{c\}, spcl(A) - A = \{a, c\} - \{c\} = \{a\}$ is M_I^* -closed but not M_I^* -open.

Proposition 5.12. Let A be a subset of an ideal topological space (X, τ, I) . For any $x \in X, x \in M_I^* cl(A)$ if and only if $U \cap A \neq \emptyset$ for every M_I^* -open set U containing x.

Proof. Necessity: Suppose that $x \in M_I^* cl(A)$. Let U be an M_I^* -open set containing x such that $U \cap A = \emptyset$ and so $A \subset U^c$. But U^c is M_I^* -closed and hence $M_I^* cl(A) \subset U^c$. Since $x \notin U^c$ we obtain $x \notin M_I^* cl(A)$, which is contrary to the hypothesis.

Sufficiency: Suppose that every M_I^* -open set of (X, τ, I) containing x meets A. If $x \notin M_I^* cl(A)$, then there exist an M_I^* -closed F of (X, τ, I) such that $A \subset F$ and $x \notin F$. Therefore, $x \in F^c$ and F^c is an M_I^* -open set containing x. But $F^c \cap A = \emptyset$. This is contrary to the hypothesis.

Definition 5.13. For any $A \subset X$, $M_I^*int(A)$ is defined as the union of all M_I^* -open sets contained in A. That is, $M_I^*int(A) = \bigcup \{U : U \subset A \text{ and } U \in M_I^*o(\tau, I)\}.$

Proposition 5.14. For any set $A \subset X$, $int(A) \subset M_I^* int(A)$.

Proof. The proof follows from Proposition 5.3.

Proposition 5.15. For any two subsets A_1 and A_2 of X,

- (1). If $A_1 \subset A_2$, then $M_I^* int(A_1) \subset M_I^* int(A_2)$.
- (2). $M_I^* int(A_1 \cup A_2) \supset M_I^* int(A_1) \cup M_I^* int(A_2)$.

Proposition 5.16. If A is M_I^* -open, then $A = M_I^* int(A)$.

Proof. Clearly follows from Definition 5.13.

Remark 5.17. The converse of the Proposition 5.16 is not true as seen from the following example.

Example 5.18. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Here $M_I^* o(\tau, I) = P(X) - \{b, c\}$. Now consider the set $A = \{b, c\}$. Then $M_I^* int(A) = \{b\} \cup \{c\} = \{b, c\} = A$ but A is not M_I^* -open.

Proposition 5.19. Let A be a subset of an ideal space (X, τ, I) , then the followings are true.

- (1). $(M_I^*int(A))^c = M_I^*cl(A^c)$
- (2). $M_I^*int(A) = (M_I^*(cl(A^c))^c)$
- (3). $M_I^* clA) = (M_I^* int(A))^c$.

Proof.

(1). Let $x \in (M_I^*int(A))^c$. Then $x \notin M_I^*int(A)$. That is, every M_I^* -open set U containing x is such that $U \nsubseteq A$. Thus every M_I^* -open set U containing x is such that $U \cap A \neq \emptyset$. By Proposition 5.12, $x \in M_I^*cl(A^c)$ and therefore, $(M_I^*int(A))^c \subset M_I^*cl(A^c)$.

Conversely, let $x \in M_I^* cl(A^c)$. Then by Proposition 5.12, every M_I^* -open set U containing x is such that $U \cap A^c \neq \emptyset$. By Definition 5.13, $x \notin M_I^* int(A)$, hence $x \in (M_I^* int(A))^c$ and so $M_I^* cl(A^c) \subset (M_I^* int(A))^c$. Thus $(M_I^* int(A))^c = M_I^* cl(A^c)$.

- (2). Follows by taking complements in (1).
- (3). Follows by replacing A by A^c in (1).

Proposition 5.20. For a subset A of an ideal topological space (X, τ, I) , the following conditions are equivalent:

- (1). $M_I^*o(\tau, I)$ is closed under any union,
- (2). A is M_I^* -closed if and only if $M_I^*cl(A) = A$,
- (3). A is M_I^* -open if and only if M_I^* int(A) = A.

Proof. (1) \Rightarrow (2): Let A be a M_I^* -closed set. Then by definition of M_I^* -closure, $M_I^*cl(A) = A$. Conversely, assume that $M_I^*cl(A) = A$. For each $x \in A^c$, $x \notin M_I^*cl(A)$. By Proposition 5.12, there exist a M_I^* -open set G_x such that $G_x \cap A = \emptyset$ and hence $x \in G_x \subset A^c$. Therefore, we obtain $A^c = \bigcup x \in A^c$. By (1) A^c is M_I^* -open and hence A is M_I^* -closed.

- $(2)\Rightarrow(3)$: Follows by (2) and Proposition 5.19.
- (3) \Rightarrow (1): Let $\{U_{\alpha}/\alpha \in \wedge\}$ be a family of M_I^* -open sets of X. Put for each $x \in U$, there exist $\alpha(x) \in \wedge$ such that $x \in U_{\alpha}(x) \subset U$. Since $U_{\alpha}(x)$ is M_I^* -open, $x \in M_I^*$ int(U) and so $U = M_I^*$ int(U). By (3), U is M_I^* -open. Thus M_I^* o(τ , I) is closed under any union.

Proposition 5.21. In an ideal topological space (X, τ, I) , assume that $M_I^* o(\tau, I)$ is closed under any union. Then $M_I^* cl(A)$ is an M_I^* -closed set for every subset A of X.

Proof. Since $M_I^* cl(A) = M_I^* cl(M_I^* cl(A))$ and by Proposition 5.20, we get $M_I^* cl(A)$ is a M_I^* -closed set.

6. M_I^* -derived Set

Definition 6.1. Let A be a subset of a space X. A point $x \in X$ is said to be an M_I^* limit point of A if for each M_I^* -open set U containing $x, U \cap (A - \{x\}) \neq \emptyset$. The set of all M_I^* limit points of A is called an M_I^* -derived set of A and is denoted by $D_{M_I^*}(A)$.

Theorem 6.2. For subsets A, B of a space X, the following statements hold:

- (1). $D_{M_I^*}(A) \subset D(A)$, where D(A) is the derived set of A.
- (2). If $A \subset B$, then $D_{M_I^*}(A) \subset D_{M_I^*}(B)$.
- (3). $D_{M_{t}^{*}}(A) \cup D_{M_{t}^{*}}(B) \subset D_{M_{t}^{*}}(A \cup B)$ and $D_{M_{t}^{*}}(A \cap B) \subset D_{M_{t}^{*}}(A) \cap D_{M_{t}^{*}}(B)$.
- (4). $D_{M_I^*}(D_{M_I^*}(A)) A \subset D_{M_I^*}(A)$.
- (5). $D_{M_{\tau}^*}(A \cup D_{M_{\tau}^*}(A)) \subset A \cup D_{M_{\tau}^*}(A)$.

Proof.

- (1). Since every open set is M_I^* -open, the proof follows.
- (2). Follows by Definition 6.1.
- (3). Follows by (2).
- (4). If $x \in D_{M_I^*}(D_{M_I^*}(A)) A$ and U is a M_I^* -open set containing x, then $U \cap (D_{M_I^*}(A) \{x\}) \neq \emptyset$. Let $y \in U \cap (D_{M_I^*}(A) \{x\})$. Then since $y \in D_{M_I^*(A)}$ and $y \in U, U \cap (D_{M_I^*}(A) \{y\}) \neq \emptyset$. Let $z \in U \cap (A \{y\})$. Then $z \neq x$ for $z \in A$ and $x \notin A$. Hence, $U \cap (A \{x\}) \neq \emptyset$. Therefore $x \in D_{M_I^*}(A)$.
- (5). Let $x \in D_{M_I^*}(A \cup D_{M_I^*}(A))$. If $x \in A$, the result is obvious. So let $x \in D_{M_I^*}(A \cup D_{M_I^*}(A)) A$, then for an M_I^* -open set U containing x such that $U \cap ((A \cup D_{M_I^*}(A)) \{x\}) \neq \emptyset$. Thus $U \cap (A \{x\}) \neq \emptyset$ or $U \cap (D_{M_I^*}(A) \{x\}) \neq \emptyset$. Now, it follows similarly from (4) that $U \cap (A \{x\}) \neq \emptyset$. Hence, $x \in D_{M_I^*}(A)$. Therefore, in any case $D_{M_I^*}(A \cup D_{M_I^*}(A)) \subset A \cup D_{M_I^*}(A)$.

Example 6.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}\}$ and $I = \{\emptyset, \{c\}\}$. Then $M_I^*o(\tau, I) = P(X) - \{c\}$. Consider the set $A = \{a, b\}$, we get $D_{M_I^*}(A) = \{c\}$ and D(A) = X. Hence $D(A) \nsubseteq D_{M_I^*}(A)$. Also consider the set $A = \{a\}$ and $B = \{b\}$. Then $D_{M_I^*}(A) = \{\emptyset\}, D_{M_I^*}(B) = \{\emptyset\}$ and $D_{M_I^*}(A \cup B) = \{c\}$. Hence $D_{M_I^*}(A \cup B) \nsubseteq D_{M_I^*}(A) \cup D_{M_I^*}(B)$. The converse of the Proposition 6.2 is not true in general.

Theorem 6.4. For any subset A of a space $X, M_I^* cl(A) = A \cup D_{M_I^*}(A)$.

Proof. Since $D_{M_I^*}(A) \subset M_I^* cl(A)$, $A \cup D_{M_I^*}(A) \subset M_I^* cl(A)$. On the other hand, let $x \in M_I^* cl(A)$. If $x \in A$, then the proof is complete. If $x \notin A$, each M_I^* -open set U containing x intersects A at a point distinct from x, so $x \in D_{M_I^*}(A)$. Thus $M_I^* cl(A) \subset A \cup D_{M_I^*}(A)$.

Definition 6.5. $b_{M_I^*}(A) = A - M_I^* int(A)$ is said to be the M_I^* -border of A.

Theorem 6.6. For a subset A of a space X, the following statements hold:

- (1). $b_{M_{\tau}^*}(A) \subset b(A)$, where b(A) denotes the border of A.
- (2). $A = M_I^* int(A) \cup b_{M_I^*}(A)$.
- (3). $M_I^*int(A) \cap b_{M_I^*}(A) = \emptyset$.
- (4). If A is M_I^* -open, then $b_{M_I^*}(A) = \emptyset$.
- (5). $M_I^* int(b_{M_I^*}(A)) = \emptyset$.
- (6). $b_{M_I^*}(b_{M_I^*}(A)) = b_{M_I^*}(A)$.
- (7). $b_{M_{\tau}^*}(A) = A \cap M_I^* cl(A^c)$.

Proof. (1), (2) and (3) clearly follows.

- (4) If A is M_I^* -open, then $A = M_I^* int(A)$.
- (5) Suppose $x \in M_I^* int(b_{M_I^*}(A))$, then $x \in b_{M_I^*}(A)$. On the other hand, since $b_{M_I^*}(A) \subset A$, $x \in M_I^* int(b_{M_I^*}(A)) \subset M_I^* int(A)$. Hence, $x \in M_I^* int(A) \cap b_{M_I^*}(A)$, which contradicts (3). Thus $M_I^* int(b_{M_I^*}(A)) = \emptyset$.
- (6) Follows by (5).

(7)
$$b_{M_I^*}(A) = A - M_I^* int(A) = A - (M_I^* cl(A^c))^c = A \cap M_I^* cl(A^c).$$

Example 6.7. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Here $M_I^*o(\tau, I) = \{\emptyset, X\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. If $A = \{b\}$, then $b_{M_I^*}(A) = \{b\} - \{b\} = \emptyset$, $b(A) = \{b\} - \emptyset = \{b\}$. Hence, $b(A) \nsubseteq b_{M_I^*}(A)$. Consider the set $A = \{b, c\}, b_{M_I^*}(A) = \{b, c\} - \{b, c\} = \emptyset$, but A is not M_I^* -open, thus in general the converse of the Theorem 6.6 may not be true.

Definition 6.8. $Fr_{M_I^*}(A) = M_I^* cl(A) - M_I^* int(A)$ is said to be the M_I^* -frontier of A.

Theorem 6.9. For a subset A of a space X, the following statements are hold:

- (1). $Fr_{M_I^*}(A) \subset Fr(A)$, where Fr(A) denotes the frontier of A.
- (2). $M_I^* cl(A) = M_I^* int(A) \cup Fr_{M_I^*}(A)$.
- (3). $M_I^*int(A) \cap Fr_{M_I^*}(A) = \emptyset$.
- (4). $b_{M_{\tau}^*}(A) \subset Fr_{M_{\tau}^*}(A)$.
- (5). $Fr_{M_I^*}(A) = b_{M_I^*}(A) \cup D_{M_I^*}(A)$.
- (6). If A is M_I^* -open, then $Fr_{M_I^*}(A) = D_{M_I^*}(A)$.
- (7). $Fr_{M_I^*}(A) = M_I^* cl(A) \cap M_I^* cl(A^c)$.
- (8). $Fr_{M_{\tau}^*}(A) = Fr_{M_{\tau}^*}(A^c)$.
- (9). $Fr_{M_{\tau}^*}(M_I^*int(A)) \subset Fr_{M_{\tau}^*}(A)$.
- (10). $Fr_{M_{\tau}^*}(M_I^*cl(A)) \subset Fr_{M_{\tau}^*}(A)$.

Proof.

- (1). Since every open set is M_I^* -open, we get the proof.
- (2). $M_I^* int(A) \cup Fr_{M_I^*}(A) = M_I^* int(A) \cup (M_I^* cl(A) M_I^* int(A)) = M_I^* cl(A)$.
- (3). $M_I^* int(A) \cap Fr_{M_I^*}(A) = M_I^* int(A) \cap (M_I^* cl(A) M_I^* int(A)) = \emptyset.$
- (4). Clearly follows from Definitions.
- (5). Since $M_I^*int(A) \cup Fr_{M_I^*}(A) = M_I^*int(A) \cup b_{M_I^*}(A) \cup D_{M_I^*}(A)$, we get $Fr_{M_I^*}(A) = b_{M_I^*}(A) \cup D_{M_I^*}(A)$.
- (6). If A is M_I^* -open, then $b_{M_I^*}(A) = \emptyset$, then by (5), $Fr_{M_I^*}(A) = D_{M_I^*}(A)$.
- (7). $Fr_{M_I^*}(A) = M_I^* cl(A) M_I^* int(A) = M_I^* cl(A) (M_I^* cl(A^c))^c = M_I^* cl(A) \cap M_I^* cl(A^c).$
- (8). Follows by (7).
- (9). Clearly follows.

$$(10). \ Fr_{M_I^*}(M_I^*cl(A)) = M_I^*cl(M_I^*cl(A)) - M_I^*int(M_I^*cl(A)) \subset M_I^*cl(A) - M_I^*int(A) = Fr_{M_I^*}(A).$$

Example 6.10. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Thus $M_I^* o(\tau, I) = P(X) - \{b, c\}$. Consider the set $A = \{b\}$, then $Fr_{M_I^*}(A) = \emptyset$, $Fr(A) = \{b, c\}$. Hence, $Fr(A) \nsubseteq Fr_{M_I^*}(A)$. In general, the converse of Theorem 6.9 need not be true.

Definition 6.11. $M_I^*Ext(A) = M_I^*int(A^c)$ is said to be the M_I^* -exterior of A.

Theorem 6.12. For a subset A of a space X, the following statements are hold:

- (1). $Ext(A) \subset M_I^*Ext(A)$, where Ext(A) denotes the exterior of A.
- (2). $M_I^* Ext(A) = M_I^* int(A^c) = (M_I^* cl(A))^c$.
- (3). $M_I^* Ext(M_I^* Ext(A)) = M_I^* int(M_I^* cl(A)).$
- (4). If $A \subset B$, then $M_I^* Ext(A) \supset M_I^* Ext(B)$.
- (5). $M_I^* Ext(A \cup B) \subset M_I^* Ext(A) \cup M_I^* Ext(B)$.
- (6). $M_I^*Ext(A \cap B) \supset M_I^*Ext(A) \cap M_I^*Ext(B)$.
- (7). $M_I^* Ext(A) = \emptyset$.
- (8). $M_I^* Ext(\emptyset) = X$.
- (9). $M_I^*int(A) \subset M_I^*Ext(M_I^*Ext(A))$.

Proof. (1) and (2) clearly follows from Definition 6.11.

- $(3)\ M_I^*Ext(M_I^*Ext(A)) = M_I^*Ext(M_I^*int(A^c)) = M_I^*Ext(M_I^*cl(A))^c = M_I^*int(M_I^*cl(A)).$
- (4) If $A \subset B$, then $A^c \supset B^c$. Hence $M_I^* int(A^c) \supset M_I^* int(B^c)$ and so $M_I^* Ext(A) \supset M_I^* Ext(B)$.
- (5) and (6) follows from (4).
- (7) and (8) follows from Definition 6.11.
- (9) $M_I^* int(A) \subset M_I^* int(M_I^* cl(A)) = M_I^* int(M_I^* int(A^c))^c = M_I^* int(M_I^* Ext(A))^c = M_I^* Ext(M_I^* Ext(A)).$

Example 6.13. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $I = \{\emptyset, \{a\}\}$. Then $M_I^*o(\tau, I) = P(X) - \{b, c\}$. Consider the set, $A = \{a\}, B = \{c\}, M_I^*Ext(A) = X, M_I^*Ext(B) = \{a, b\}$ and $M_I^*Ext(A \cup B) = \{b\}$. Hence, $M_I^*Ext(A \cup B) \neq M_I^*Ext(A) \cup M_I^*Ext(B)$. Also consider the set $A = \{a\}, B = \{a, b\}, M_I^*Ext(A) = X, M_I^*Ext(B) = \{c\}$ and $M_I^*Ext(A \cap B) = X$. Hence, $M_I^*Ext(A \cap B) \neq M_I^*Ext(A) \cap M_I^*Ext(B)$.

References

- [1] J.Antony Rex Rodrigo and N.Palaniappan, On $\hat{\eta}^*$ -closed set in topological spaces, International Journal of General Topology, I(2007).
- [2] J.Antony Rex Rodrigo, O.Ravi and A.Naliniramalatha, ĝ-closed sets in ideal topological spaces, Methods of Functional Analysis and Topology, 17(3)(2011), 274-280.
- [3] J.Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., 16(1995), 35-48.
- [4] E.Hatir and T.Noiri, On decomposition of continuity via idealization, Acta. Math. Hungar., 96(4)(2002), 341-349.
- [5] D.Jankovic and T.R.Hamlett, New Topologies from Old via Ideals, The American Mathematical Monthly, 97(4)(1990), 295-310.
- [6] K.Kuratowski, Topology Vol. I, Academic Press, New York, (1966).
- [7] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [8] H.Maki, J.Umehara and T.Noiri, Every Topological space is $pre-T_{1/2}$, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., 17(1996), 33-42.
- [9] P.Sundaram and M.Sheik John, On ω -closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [10] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1960).