International Journal of Mathematics Atud its Applications

Fuglede Putnam Theorem on Class $p-w A(s, t)$ Operator

D. Senthilkumar ${ }^{1, *}$ and A. Sakthivel ${ }^{1}$
1 Department of Mathematics, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, India.

Abstract

In this paper we charcterize Fuglede putnam theorem for class $p-w A(s, t)$ operator. MSC: $\quad 47 \mathrm{~B} 20,47 \mathrm{~A} 63$.

Keywords: Class A operator, class $p-w A(s, t)$ operator, polar decomposition, Fuglede-Putnam Theorem. (C) JS Publication.

1. Introduction

Let $\mathrm{B}(\mathrm{H})$ denote the algebra of all bounded linear operator on a complex Hilbert space H. Aluthge [1] found p-hyponormal T which is defined as $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}, 0<p \leq 1$. If $\mathrm{p}=1, T$ is called hyponormal. This is a generalization of hyponormal operator. This class of operator have many interesting properties, for example, Putnam's inequality, Fuglede-Putnam type theorem, Bishop's property (β), Weyl's theorem, polaroid. After this discovery, many authors are investigating new generalizations of hyponormal operator. We summarize several class of operators. Let $T=U|T|$ be the polar decomposition of T. Then the Aluthge transformation $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ was introduced by Aluthge [1]. An operator T is called w-hyponormal if $|\tilde{T}| \geq|T| \geq\left|\tilde{T}^{*}\right|$. The class of w-hyponormal operators was introduced and studied by Aluthge and Wang [2, 3]. It is well known that the class of w-hyponormal operators contains p-hyponormal operators. An operator T is called Class A if $\left|T^{2}\right| \geq|T|^{2}$. Class A operators has been Introduced and studied by Furuta [8]. An operator T is called $p-w$ hyponormal if $|\tilde{T}|^{p} \geq|T|^{p} \geq|\tilde{T} *|^{p}$. If $p=1$, then $p-w$ hyponormal operator is w-hyponormal. An operator T is called class $A(s, t)$ operator. If $\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t}{s+t}} \geq\left|T^{*}\right|^{2 t}$. An operator T is called class $w A(s, t)$ operator. If $\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t}{s+t}} \geq\left|T^{*}\right|^{2 t}$ and $|T|^{2 s} \leq\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s}{s+t}}$.

Definition 1.1. Let $T=U|T|$ be the polar decomposition of T and let $s, t \geq 0$ and $0 \geq p \geq 1$. T is called $p-w A(s, t)$ if
(1). $\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \geq\left|T^{*}\right|^{2 t p}$
(2). $|T|^{2 s p} \geq\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s p}{s+t}}$.

We remark that if $p=1, T$ is $w A(s, t)$ and Class $1-w A(1,1)$ is called class A. Now we define class $p-A$ and class $p-A(s, t)$ as generalizations of class A and class $A(s, t)$.

Proposition 1.2 (Fuglede-Putnam). Let $S \in B(H)$ and $T^{*} \in B(K)$ be normal operators and $S X=X T$ for some operator $X \in B(H, K)$. Then $S^{*} X=X T^{*},[\operatorname{ran} X]$ reduces $S, \operatorname{ker}(X)^{\perp}$ reduces T.

In this paper, we characterize fuglede-putnam theorem for class $p-w A(s, t)$ operator are proved.

[^0]
2. Fuglede Putnam Theorem on Class $p-w A(s, t)$ Operator

Theorem 2.1. Let T be a class $p-w$ class $A(s, t)$ operator for some $s, t \in(0,1]$ and M is an invariant subspace of T. Then the restriction $\left.T\right|_{M}$ also $p-w$ class $A(s, t)$ operator.
Proof. Let $T=\left(\begin{array}{cc}T_{1} & S \\ 0 & 0\end{array}\right)$ on $H=M \oplus M^{\perp}$ and P-be the orthogonal projection onto M. Let $T_{0}=T P=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right)$.

$$
T_{0}=T P \geq\left(P|T|^{2 s} P\right)
$$

By Hansens Inequality. Now, $\left|T^{*}\right|^{2}=T T^{*} \geq T P T^{*}=\left|T_{0}^{*}\right|^{2}$. Hence T is $p-w A(s, t)$ operator.

$$
\begin{aligned}
&\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \geq\left|T^{*}\right|^{2 t p} \\
&\left(\left|T_{0}^{*}\right|^{t}|T|^{2 s}\left|T_{0}^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \geq\left|T_{0}^{*}\right|^{2 t p} \\
&\left(\left|T_{0}^{*}\right|^{t}\left|T_{0}\right|^{2 s}\left|T_{0}^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \geq\left|T_{0}^{*}\right|^{2 t p}
\end{aligned}
$$

Since $\left|T_{0}^{*}\right|=\left|T_{0}\right|^{*} P=P\left|T_{0}^{*}\right|$. Similarly,

$$
\begin{aligned}
\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s p}{s+t}} & \leq|T|^{2 s p} \\
\left(|T|^{s}\left|T_{0}^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s p}{s+t}} & \leq|T|^{2 s p} \\
\left(\left|T_{0}\right|^{s}\left|T_{0}^{*}\right|^{2 t}\left|T_{0}\right|^{s}\right)^{\frac{s p}{s+t}} & \leq\left|T_{0}^{*}\right|^{2 s p}
\end{aligned}
$$

Hence $\left.T\right|_{M}$ is a class $p-w A(s, t)$ operator.
Theorem 2.2. Let $T \in B(H)$ be a class $p-w A(s, t)$ operator. Let M be an invariant subspace of T and $\left(\begin{array}{cc}T_{1} & S \\ 0 & T_{2}\end{array}\right)$ on $H=M \oplus M^{\perp}$. If $T_{1}=\left.T\right|_{M}$ is quasinormal, then $\operatorname{ranS} \subset \operatorname{ker} T^{*}$. Moreover, $\operatorname{ker} T \subset \operatorname{ker} T^{*} T_{1}=\left.T\right|_{M}$ is normal, then M reduces T.

Proof. We may assume that, $p=s=t=1$. Then T becomes class A operator. Let P be the orthogonal projection onto M. Then we have, $T=\left(\begin{array}{cc}T_{1} & S \\ 0 & T_{2}\end{array}\right)$ on $H=M \oplus M^{\perp}$.

$$
\begin{aligned}
\left(\begin{array}{cc}
T_{1} & S \\
0 & T_{2}
\end{array}\right) & =P T^{*} T P=P|T|^{2} P \\
& \leq\left(\begin{array}{cc}
\left(T_{1}^{* 2} T_{1}^{2}\right)^{\frac{1}{2}} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
T_{1}^{*} T_{1} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Since T_{1} is quasinormal. Let $\left|T^{2}\right|=\left(\begin{array}{cc}X & Y \\ Y^{*} & Z\end{array}\right)$. Then $X=T_{1}^{*} T_{1}$ by using above inequality. Since $\left|T^{2}\right|^{2}=\left(T^{*}\right)^{2}\left(T^{2}\right)$

$$
\left|T^{2}\right|^{2}=\left(\begin{array}{cc}
X & Y \\
Y^{*} & Z
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
Y^{*} & Z
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
X^{2}+Y Y^{*} & X Y^{*}+Y Z \\
Y^{*} X+Z Y & Y^{*} Y+Z^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
T_{1}^{* 2} T_{1}^{2} & T_{1}^{* 2}\left(T_{1} S+S T_{2}\right) \\
S^{*} T_{1}^{*}+T_{2}^{*} S^{*} & \left(S^{*} T_{1}^{*}+T_{2}^{*} S^{*}\left(T_{1} S+S T_{2}\right)+T_{2}^{* 2} T_{2}^{2}\right.
\end{array}\right) \\
X^{2}+Y Y^{*} & \left.=\left(T_{1}^{*}\right)^{2} T_{1}^{2}=\left(T_{1}^{*}\right) T_{1}\right)^{2} \\
X^{2}+Y Y^{*} & =X^{2}
\end{aligned}
$$

This implies that $Y=0$. Then

$$
\begin{aligned}
\left|T^{2}\right| & =\left(\begin{array}{cc}
T_{1}^{*} T_{1} & 0 \\
0 & Z
\end{array}\right) \\
& \geq|T|^{2} \\
& =T^{*} T \\
& =\left(\begin{array}{cc}
T_{1}^{*} T & T_{1}^{*} S \\
S^{*} T_{1} & S^{*} S+T_{2}^{*} T
\end{array}\right)
\end{aligned}
$$

and $T^{*} S=0$ This implies that, $\operatorname{ran} S \subset k e r T^{*}$. Moreover, assume T_{1} is normal. Then $S\left(M^{\perp}\right) \subset \operatorname{ker} T_{1}^{*}=\operatorname{ker} T_{1} \subset k e r T^{*}$

$$
\begin{aligned}
0 & =T^{*} S x \\
& =\left(\begin{array}{cc}
T_{1}^{*} & 0 \\
S^{*} & T_{2}^{*}
\end{array}\right)\binom{S x}{0} \\
& =\binom{T_{1}^{*} S x}{S^{*} S x}
\end{aligned}
$$

Thus $\operatorname{ran} T \subset \operatorname{ker} T^{*} T_{1}=\left.T\right|_{M}$ is normal, then M reduces T. Hence the proof.
Theorem 2.3. Let $T \in B(H)$ be a class $p-w A(s, t)$ operator with $s+t \leq 1$ and ker $T \subset$ ker T^{*}. If L is the self adjoint and $T L=L T^{*}$. Then $T^{*} L=L T^{*}$.

Proof. Given that $T \in B(H)$ be a class $p-w A(s, t)$ operator with $s+t \leq 1$ and $k e r T \subset k e r T^{*}$ Assume that L is the self adjoint and $T L=L T^{*}$. We may assume that $s+t=1$, since $\operatorname{ker} T \subset \operatorname{ker} T^{*}$ and $T L=L T^{*}$. $\operatorname{Ker} T$ reduces T and L. Hence $T=T_{1} \oplus 0, L=L_{1} \oplus L_{2}$ on $H=\left[r a n T^{*}\right] \oplus \operatorname{ker} T$. Then $T_{1} L_{1}=L_{1} T_{1}^{*}$ and $0=\operatorname{ker} T_{1} \subset \operatorname{ker} T_{1}^{*}$. Let [ranL$\left.L_{1}\right]$ is invariant under T_{1} and reduce $L_{1} . T_{1}=\left(\begin{array}{cc}T_{11} & S \\ 0 & T_{22}\end{array}\right)$ and $L_{1}=L_{11} \oplus 0$ on $r a n T^{*}=\left[\operatorname{ran} L_{1} \oplus \operatorname{ker} L_{1}\right] \operatorname{since} T_{11}$ is injective class $p-w A(s, t)$ operator. By Lemma 2.1 and also given that L is self adjoint operator(hence it has dense range) (ie) $L=L^{*}$ such that $T_{11} L_{11}=L_{11} T_{11}^{*}$. Let $T_{11}=V_{11}\left|T_{11}\right|$ be the polar decomposition of T_{11}.

$$
\begin{aligned}
T_{11}(s, t) & =\left|T_{11}\right|^{s} V_{11}\left|T_{11}\right|^{t} \\
W & =\left|T_{11}\right|^{s} L_{11}\left|T_{11}\right|^{t}
\end{aligned}
$$

Then,

$$
T_{11}(s, t) W=\left|T_{11}\right|^{s} V_{11}\left|T_{11}\right|^{t}\left|T_{11}\right|^{s} L_{11}\left|T_{11}\right|^{s}
$$

$$
\begin{aligned}
& =\left|T_{11}\right|^{s} L_{11}\left|T_{11}\right|^{*}\left|T_{11}\right|^{s} V_{11}^{*}\left|T_{11}\right|^{s} \\
& =W T_{11}(s, t)^{*}
\end{aligned}
$$

Since T_{11} is min $\{s, t\}$ hyponormal and ran W-is dense (because $k e r W=0$). T_{11} is normal by [4] and $T_{11}=T_{11}(s, t)$ by [6] Then $\operatorname{ran} T_{1}$ reduces T_{1} by Theorem 2.2, $T_{11}^{*} L_{11}=L_{11} T_{11}$. By Proposition 1.2

$$
\begin{aligned}
T & =T_{11} \oplus T_{11} \oplus 0 \\
L & =L_{11} \oplus 0 \oplus L_{22} \\
T^{*} L & =T_{11}^{*} L_{11} \oplus 0 \oplus 0 \\
T^{*} L & =L T
\end{aligned}
$$

Theorem 2.4. Let $T \in B(H)$ be a class $p-w A(s, t)$ operator with $s+t \leq 1$ and $\operatorname{ker} T \subset k e r T^{*}$. If $T X=X T^{*}$ for some operator $X \in B(H)$. Then $T^{*} X=X T$.

Proof. Let $X=L+i K$ be the cartesian decomposition of X. Then we have $T L=L T^{*}$ and $T J=J T^{*}$ by assumption. By Theorem 2.3 It follows that $T^{*} L=L T$ and $T^{*} J=J T$.

$$
\begin{gathered}
\Rightarrow T^{*}(L+i K)=(L+i K) T \\
T^{*} X=X T
\end{gathered}
$$

Theorem 2.5. Let $S \in B(K), T^{*} \in B(H)$ be a class $p-w A(s, t)$ operator with $s+t \leq 1$ and $\operatorname{ker} S \subset \operatorname{ker} S^{*}, k e r T^{*} \subset \operatorname{ker} T$. If $S X=X T$ for some operator $X \in B(K, H)$, then $S^{*} X=X T^{*}$.

Proof. Let $A=\left(\begin{array}{cc}T^{*} & 0 \\ 0 & S\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ X & 0\end{array}\right)$ on $H \oplus K$. Then A is the class $p-w A(s, t)$ operator, $\operatorname{ker} A \subset \operatorname{ker} A^{*}$ which satisfies $A B=B A^{*}$. Hence we have $A^{*} B=B A$ by Theorem 2.4, then $S^{*} X=X T^{*}$.

References

[1] A.Aluthge, On p-hyponormal operators for $0 \leq p \leq 1$, Integral Equations Operator Theory, 13(1990), 307-315.
[2] A.Aluthge and D.Wang, w-hyponormal operator, Integral Equations Operator Theory, 36(2000), 1-10.
[3] A.Aluthge and D.Wang, w-hyponormal operator II, Integral Equations Operator Theory, 37(3)(2000), 324-331.
[4] B.P Duggal, Tensor Product of operator-strong stability and p-hyponormality, Glasgow Math. J., 42(2000), 371-381.
[5] T.Prasad and K.Tanahasi, On class $p-w A(s, t)$ operator, Functional Analysis, Approximation and Computation, 6(2)(2014), 39-42.
[6] K.Tanahasi, T.Prasad and A.Uchiyama Quasinormality and subsclarity of class $p-w A(s, t)$ operators, Functional Analysis, Approximation and Computation, 9(1)(2017), 61-68.
[7] S.M.Patel, K.Tanahasi, A.Uchiyama and M.Yanagida Quasinormality and Fuglede-putnam for class $A(s, t)$ operators, Nihonkai Math. J., 17(42)(2006), 49-67.
[8] T.Furuta, M.Ito and T.Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related clases, Nihonkai Math., 1(1985), 389-403.

[^0]: * E-mail: senthilsenkumhari@gmail.com

