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Abstract: A non-empty set D ⊆ V of a graph is a dominating set if every vertex in V − D is adjacent to some vertex in D. The
domination number γ(G) of G is the minimum cardinality taken over all the minimal dominating sets of G. A dominating

set D is called a complementary tree dominating set if the induced subgraph 〈V −D〉 is a tree. The complementary tree
domination number γctd(G) of G is the minimum cardinality taken over all minimal complementary tree dominating sets

of G. Let D be a minimum dominating set of G. If V − D contains a dominating set D′, then D′ is called the inverse

dominating set of G w.r.t to D. The inverse domination number γ′(G) is the minimum cardinality taken over all the
minimal inverse dominating sets of G. In this paper, inverse complementary tree domination in total graphs of Pn and

Cn are obtained.
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1. Introduction

Kulli V.R. et al. [1] introduced the concept of inverse domination in graphs. Let G(V,E) be a simple, finite, undirected,

connected graph with p vertices and q edges. A non-empty set D ⊆ V of a graph is a dominating set if every vertex in V −D

is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality taken over all the minimal

dominating sets of G. A dominating set D is called a complementary tree dominating set if the induced subgraph 〈V −D〉

is a tree. The complementary tree domination number γctd(G) of G is the minimum cardinality taken over all minimal

complementary tree dominating sets of G. Let D be a minimum dominating set of G. If V −D contains a dominating set

D′, then D′ is called the inverse dominating set of G w.r.t to D. The inverse domination number γ′(G) is the minimum

cardinality taken over all the minimal inverse dominating sets of G. The total graph of G denoted by T (G) is the graph

whose vertex set is V (G) ∪ E(G) and two vertices are adjacent if

(1). they are adjacent edges of G, or

(2). one is a vertex of G and the other is an edge incident with it (or)

(3). they are adjacent vertices of G.
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Let D ⊆ V be a minimum complementary tree dominating (ctd) set of G. If V − D contains a ctd set D′ of D, then D′

is called an inverse ctd set with respect to D. The inverse complementary tree domination number γ′ctd(G) of G is the

minimum number of vertices in an inverse ctd set of G. In this paper, inverse ctd number of total graphs of Pn and Cn are

obtained.

2. Inverse Complementary Tree Domination Number of Total Graphs
Pn and Cn

In the following, complementary tree domination number of total graph of Pn is found.

Theorem 2.1. Let Pn be a path on n vertices (n ≥ 4). Then,

γctd(T (Pn)) =


2
(
n−1
3

)
if n ≡ 1 (mod 3)

2
⌊
2n−1

3

⌋
if n ≡ 0, 2 (mod 3)

Proof. Let v1, v2, . . . , vn be the vertices of the path Pn and let x1x2 . . . xn−1 be the added vertices correspond-

ing to the edges e1e2 . . . en−1 of Pn to obtain T (Pn) where ei = (vi, vi+1) i = 1, 2, . . . , n − 2. Thus V (T (Pn)) =

{v1, v2, . . . , vn, x1, x2, . . . , xn−1} T (Pn) has 2n− 1 vertices and

E(T (Pn)) = n− 1 + n− 2 + 2(n− 1)

= 4n− 5

Let

D =


{v2, v5, . . . , v3j−1} ∪ {x3, x6, . . . , x3k}, 1 ≤ j ≤ n−1

3
, 1 ≤ k ≤ n−1

3
, if n ≡ 1 (mod 3);

{v2, v5, . . . , v3j−1} ∪ {x3, x6, . . . , x3k}, 1 ≤ j ≤ n
3
, 1 ≤ k ≤ n

3
, if n ≡ 0 (mod 3);

{v2, v5, . . . , v3j−1} ∪ {x3, x6, . . . , x3k}, 1 ≤ j ≤ n+1
3
, 1 ≤ k ≤ n−2

3
, if n ≡ 2 (mod 3).

If n ≡ 1 (mod 3), |D| = 2
(
n−1
3

)
if n ≡ 0, 2 (mod 3), |D| = 2

⌊
n−1
3

⌋
.

The above set D is a ctd-set of T (Pn), since each vertex in V (T (Pn)) is either in D or is adjacent to a vertex in D or is

adjacent to a vertex in D and 〈V (T (Pn)) − D〉 is a path. For any vi ∈ D, D − {vi} does not dominate itself if vi not a

support of Pn. If vi is a support, then D − {vi} does not dominate itself and the pendant vertex and the vertex in T (Pn)

correspond to the pendant edge in Pn. Similarly, if xj ∈ D, then F − {xj} does not dominate itself or the pendant vertex.

Therefore, D is a ctd-set of T (Pn).

Claim: D is a minimum ctd-set of T (Pn).

It is to be observed that any two adjacent vertices of T (Pn) (i.e., on a triangle and ∆(T (Pn)) = 4 Since D is a ctd-set of

G, 〈V (T (Pn))−D〉 is a tree. Let there exist a vertex say v of degree atleast three in 〈V −D〉. Then N(v) ⊃ {xi, xi+1} or

N(v) ⊃ {vj , vj+1} for i = 1, . . . , n− 2 and j = 1, 2, . . . , n− 1 and hence 〈V (Pn)−D〉 contains a triangle. Therefore, degree

of each vertex in 〈V (T (Pn)−D〉 is either 1 or 2. That is, 〈V (T (Pn)−D〉 is a path length of length atmost

4n− 4

3
if n ≡ 1 (mod 3)

4n− 3

3
if n ≡ 0 (mod 3)

4n− 5

3
if n ≡ 2 (mod 3)
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Hence, number of vertices in 〈V (T (Pn))−D〉 is atmost

4n− 1

3
if n ≡ 1 (mod 3)

4n

3
if n ≡ 0 (mod 3)

4n− 2

3
if n ≡ 2 (mod 3)

Therefore, number of vertices in D is atleast

2(n− 1)

3
if n ≡ 1 (mod 3)

2n− 3)

3
if n ≡ 0 (mod 3)

2n− 1

3
if n ≡ 2 (mod 3)

That is

|D| ≥ 2

(
n− 1

3

)
, if n ≡ 1 (mod 3)

and |D| =
⌊

2n− 1

3

⌋
, if n ≡ 0, 2 (mod 3)

Therefore

γctd(T (Pn)) = 2

(
n− 1

3

)
, if n ≡ 1 (mod 3)

=

⌊
2n− 1

3

⌋
, if n ≡ 0, 2 (mod 3)

Theorem 2.2. For n ≥ 4

γ′(T (Pn)) =
2(n− 1)

3
, if n ≡ 1 (mod 3)

=
2n

3
, if n ≡ 0 (mod 3)

=
2n− 1

3
, if n ≡ 2 (mod 3)

Proof. Let v1v2 . . . vn be the vertices of the path Pn, n ≥ 4 and let x1x2 . . . xn−1 be the added vertices corresponding to

the edges e1, e2, . . . , en−1 of Pn to obtain T (Pn). Thus V (T (Pn)) = {v1, v2, . . . , vn, x1, x2, . . . , xn−1} T (Pn) has (2n − 1)

vertices and 4n− 5 edges. From previous theorem, the set

D = {v2, v5, . . . , v3j−1} ∪ {x3, x6, . . . , x3k}

1 ≤ j ≤ n− 1

3
, 1 ≤ k ≤ n− 1

3
, if n ≡ 1 (mod 3)

{v2, v5, . . . , v3j−1} ∪ {x3, x6, . . . , x3k}

1 ≤ j ≤ n

3
, 1 ≤ k ≤ n− 1

3
, if n ≡ 0 (mod 3)

= {v2, v5, . . . , v3j−1} ∪ {x3, x6, . . . , x3k}

1 ≤ j ≤ n+ 1

3
, 1 ≤ k ≤ n− 2

3
, if n ≡ 2 (mod 3)
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is a minimum ctd-set of T (Pn). Let

D′ = {v3, v6, . . . , v3j} ∪ {x1, x4, . . . , x3k−2}

1 ≤ j ≤ n− 1

3
, 1 ≤ k ≤ n− 1

3
, if n ≡ 1 (mod 3)

{v3, v6, . . . , v3j} ∪ {x1, x4, . . . , x3k−2}

1 ≤ j ≤ n

3
, 1 ≤ k ≤ n

3
, if n ≡ 0 (mod 3)

= {v3, v6, . . . , v3j} ∪ {x1, x4, . . . , x3k−2}

1 ≤ j ≤ n− 2

3
, 1 ≤ k ≤ n+ 1

3
, if n ≡ 2 (mod 3)

If

n ≡ 1 (mod 3), |D′| = |D| = 2(n−1)
3

n ≡ 0 (mod 3), |D′| = |D|+ 1 = 2n
3

n ≡ 2 (mod 3), |D′| = |D| = 2n−1
3

 =

⌈
2n− 2

3

⌉

The set D′ is a inverse ctd-set of T (Pn), since each vertex in V −D′ is adjacent to atleast one vertex in D′ and 〈V (T (Pn)−D′〉

is a tree. Also D′ is a subset of V (T (Pn))−D; γ′ctd(T (Pn)) ≤
⌈
2n−2

3

⌉
, n ≥ 4.

To prove γ′ctd(T (Pn)) ≥
⌈
2n−2

3

⌉
, n ≥ 4.

Let D′ be a minimum inverse ctd-set of T (Pn). As in theorem, 〈V (T (Pn))−D′〉 is a path and is of length atmost

4n− 4

3
if n ≡ 1 (mod 3)

4n− 6

3
if n ≡ 0 (mod 3)

4n− 5

3
if n ≡ 2 (mod 3)

Hence, no. of vertices in 〈V (T (Pn)−D′〉 is atmost

4n− 1

3
if n ≡ 1 (mod 3)

4n− 3

3
if n ≡ 0 (mod 3)

4n− 5

3
if n ≡ 2 (mod 3)

No. of vertices is D′ is atleast

2(n− 1)

3
if n ≡ 1 (mod 3)

2n

3
if n ≡ 0 (mod 3)

2n− 1

3
if n ≡ 2 (mod 3)

|D′| ≥
⌈

2n− 2

3

⌉
|D′| =

⌈
2n− 2

3

⌉

if n ≥ 4, γctd(T (Pn)) =
⌈
2n−2

3

⌉
.

In the following, complementary tree domination of total graph of Cn is found.
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Theorem 2.3. Let Cn be a cycle on n vertices (n ≥ 3) then γctd(T (Cn)) = n.

Proof. Let v1v2 . . . vn be the vertices of cycle Cn and let x1x2 . . . xn be the added vertices corresponding to the edges

e1e2 . . . en of Cn to obtain T (Cn) where ei = (vi, vi+1), i = 1, 2, . . . , n− 1. Thus

V (T (Cn)) = {v1, v2, . . . , vn, x1, x2, . . . , xn}

T (Cn) has 2n vertices and E(T (Cn)) = n+ n+ 2n = 4n. Let D = {v1, v2, . . . , vn−1, x1} then D is a ctd-set of T (Cn), since

each vertex in V (T (Cn)) is either in D or is adjacent to a vertex in D and 〈V (T (Cn))−D〉 is a path. For any vi ∈ D then

D − vi forms a cycle which is a contradiction to 〈V −D〉 is a tree. Therefore, D is a ctd-set of T (Cn).

Claim: D is a minimum ctd-set of T (Cn).

It is observed that δ(T (Cn)) = ∆(T (Cn)) = 4. Since D is a ctd-set of G. 〈V (T (Cn)−D〉 is a tree. Let there exist a vertex

say v of degree 4 in < V −D >. Then N(v) ⊇ {xj , xj+1, vi, vi+1} for i = 1, . . . , n, j = 1, 2, . . . , n and hence 〈V (Cn) −D〉

contains a cycle. Therefore, degree of each vertex in 〈V (T (Cn)−D〉 is either 1 or 2. That is, 〈V (T (Cn)−D〉 is a path. i.e.,

〈V (T (Cn)−D〉 ∼= Pn. Therefore, number of vertices in D is n. γctd(T (Cn)) = n.

Theorem 2.4. For n ≥ 3, γ′ctd(T (Cn)) = n.

Proof. Let v1, v2, . . . , vn be the vertices of the cycle Cn and let x1x2 . . . xn be the added vertices corresponding

to the edges e1, e2, . . . , en of Cn to obtain T (Cn) where ei = (vi, vi+1); i = 1, 2, . . . , n − 1. Thus V (T (Cn)) =

{v1, v2, . . . , vn, x1, x2, . . . , xn}. T (Cn) has 2n vertices and |E(T (Cn)| = 4n vertices. From the Theorem 2.3 the set

D = {u1, u2, . . . , un−1, x1} is a ctd-set of T (Cn). Let D′ = {x2, x3, . . . , xn, vn} is a inverse ctd-set of T (Cn). Since

each vertex in V (T (Cn)) is either in D′ or is adjacent to a vertex in D′ and 〈V (T (Cn)−D′〉 is a path. Also D′ is a subset

of V (T (Cn)−D. γ′ctd(T (Cn)) = n, n ≥ 3.
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