

International Journal of Mathematics And its Applications

Inverse Complementary Tree Domination Number of Total Graphs of P_n and C_n

S. Muthammai¹ and P. Vidhya^{2,*}

1 Principal, Alagappa Government Arts College, Karaikudi, Tamil Nadu, India.

2 Department of Mathematics, E.M.G. Yadava Women's College, Madurai, Tamil Nadu, India.

Abstract: A non-empty set $D \subseteq V$ of a graph is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all the minimal dominating sets of G. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V - D \rangle$ is a tree. The complementary tree domination number $\gamma_{ctd}(G)$ of G is the minimum cardinality taken over all minimal complementary tree dominating sets of G. Let D be a minimum dominating set of G. If V - D contains a dominating set D', then D' is called the inverse dominating set of G w.r.t to D. The inverse domination number $\gamma'(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of G. In this paper, inverse complementary tree domination in total graphs of P_n and C_n are obtained.

MSC: 05C69.

Keywords: Dominating set, complementary tree dominating set, inverse complementary dominating set. © JS Publication.

1. Introduction

Kulli V.R. et al. [1] introduced the concept of inverse domination in graphs. Let G(V, E) be a simple, finite, undirected, connected graph with p vertices and q edges. A non-empty set $D \subseteq V$ of a graph is a dominating set if every vertex in V - Dis adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all the minimal dominating sets of G. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V - D \rangle$ is a tree. The complementary tree domination number $\gamma_{ctd}(G)$ of G is the minimum cardinality taken over all minimal complementary tree dominating sets of G. Let D be a minimum dominating set of G. If V - D contains a dominating set D', then D' is called the inverse dominating set of G w.r.t to D. The inverse domination number $\gamma'(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of G. The total graph of G denoted by T(G) is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent if

- (1). they are adjacent edges of G, or
- (2). one is a vertex of G and the other is an edge incident with it (or)
- (3). they are adjacent vertices of G.

^{*} E-mail: vidhyaramman@gmail.com

Let $D \subseteq V$ be a minimum complementary tree dominating (ctd) set of G. If V - D contains a ctd set D' of D, then D'is called an inverse ctd set with respect to D. The inverse complementary tree domination number $\gamma'_{ctd}(G)$ of G is the minimum number of vertices in an inverse ctd set of G. In this paper, inverse ctd number of total graphs of P_n and C_n are obtained.

2. Inverse Complementary Tree Domination Number of Total Graphs P_n and C_n

In the following, complementary tree domination number of total graph of P_n is found.

Theorem 2.1. Let P_n be a path on n vertices $(n \ge 4)$. Then,

$$\gamma_{ctd}(T(P_n)) = \begin{cases} 2\left(\frac{n-1}{3}\right) & \text{if } n \equiv 1 \pmod{3} \\ 2\left\lfloor\frac{2n-1}{3}\right\rfloor & \text{if } n \equiv 0,2 \pmod{3} \end{cases}$$

Proof. Let v_1, v_2, \ldots, v_n be the vertices of the path P_n and let $x_1 x_2 \ldots x_{n-1}$ be the added vertices corresponding to the edges $e_1 e_2 \ldots e_{n-1}$ of P_n to obtain $T(P_n)$ where $e_i = (v_i, v_{i+1})$ $i = 1, 2, \ldots, n-2$. Thus $V(T(P_n)) = \{v_1, v_2, \ldots, v_n, x_1, x_2, \ldots, x_{n-1}\}$ $T(P_n)$ has 2n-1 vertices and

$$E(T(P_n)) = n - 1 + n - 2 + 2(n - 1)$$

= 4n - 5

Let

$$D = \begin{cases} \{v_2, v_5, \dots, v_{3j-1}\} \cup \{x_3, x_6, \dots, x_{3k}\}, \ 1 \le j \le \frac{n-1}{3}, \ 1 \le k \le \frac{n-1}{3}, \ \text{if } n \equiv 1 \pmod{3}; \\ \{v_2, v_5, \dots, v_{3j-1}\} \cup \{x_3, x_6, \dots, x_{3k}\}, \ 1 \le j \le \frac{n}{3}, \ 1 \le k \le \frac{n}{3}, \\ \{v_2, v_5, \dots, v_{3j-1}\} \cup \{x_3, x_6, \dots, x_{3k}\}, \ 1 \le j \le \frac{n+1}{3}, \ 1 \le k \le \frac{n-2}{3}, \ \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

If $n \equiv 1 \pmod{3}$, $|D| = 2\left(\frac{n-1}{3}\right)$ if $n \equiv 0, 2 \pmod{3}$, $|D| = 2\left\lfloor\frac{n-1}{3}\right\rfloor$.

The above set D is a ctd-set of $T(P_n)$, since each vertex in $V(T(P_n))$ is either in D or is adjacent to a vertex in D or is adjacent to a vertex in D and $\langle V(T(P_n)) - D \rangle$ is a path. For any $v_i \in D$, $D - \{v_i\}$ does not dominate itself if v_i not a support of P_n . If v_i is a support, then $D - \{v_i\}$ does not dominate itself and the pendant vertex and the vertex in $T(P_n)$ correspond to the pendant edge in P_n . Similarly, if $x_j \in D$, then $F - \{x_j\}$ does not dominate itself or the pendant vertex. Therefore, D is a ctd-set of $T(P_n)$.

Claim: D is a minimum ctd-set of $T(P_n)$.

1

It is to be observed that any two adjacent vertices of $T(P_n)$ (i.e., on a triangle and $\Delta(T(P_n)) = 4$ Since D is a ctd-set of G, $\langle V(T(P_n)) - D \rangle$ is a tree. Let there exist a vertex say v of degree atleast three in $\langle V - D \rangle$. Then $N(v) \supset \{x_i, x_{i+1}\}$ or $N(v) \supset \{v_j, v_{j+1}\}$ for i = 1, ..., n - 2 and j = 1, 2, ..., n - 1 and hence $\langle V(P_n) - D \rangle$ contains a triangle. Therefore, degree of each vertex in $\langle V(T(P_n) - D \rangle$ is either 1 or 2. That is, $\langle V(T(P_n) - D \rangle$ is a path length of length atmost

$$\begin{array}{ll} \displaystyle \frac{4n-4}{3} & if \ n\equiv 1 \pmod{3} \\ \\ \displaystyle \frac{4n-3}{3} & if \ n\equiv 0 \pmod{3} \\ \\ \displaystyle \frac{4n-5}{3} & if \ n\equiv 2 \pmod{3} \end{array}$$

Hence, number of vertices in $\langle V(T(P_n)) - D \rangle$ is at most

$$\begin{array}{l} \displaystyle \frac{4n-1}{3} \quad if \ n \equiv 1 \pmod{3} \\ \\ \displaystyle \frac{4n}{3} \quad if \ n \equiv 0 \pmod{3} \\ \\ \displaystyle \frac{4n-2}{3} \quad if \ n \equiv 2 \pmod{3} \end{array}$$

Therefore, number of vertices in ${\cal D}$ is at least

$$\frac{2(n-1)}{3} \quad if \quad n \equiv 1 \pmod{3}$$
$$\frac{2n-3)}{3} \quad if \quad n \equiv 0 \pmod{3}$$
$$\frac{2n-1}{3} \quad if \quad n \equiv 2 \pmod{3}$$

That is

$$|D| \ge 2\left(\frac{n-1}{3}\right), \text{ if } n \equiv 1 \pmod{3}$$

and $|D| = \left\lfloor \frac{2n-1}{3} \right\rfloor, \text{ if } n \equiv 0, 2 \pmod{3}$

Therefore

$$\begin{split} \gamma_{ctd}(T(P_n)) &= 2\left(\frac{n-1}{3}\right), \ \text{ if } n \equiv 1 \pmod{3} \\ &= \left\lfloor \frac{2n-1}{3} \right\rfloor, \ \text{ if } n \equiv 0,2 \pmod{3} \end{split}$$

-	_

Theorem 2.2. For $n \ge 4$

$$\gamma'(T(P_n)) = \frac{2(n-1)}{3}, \quad \text{if } n \equiv 1 \pmod{3} \\ = \frac{2n}{3}, \quad \text{if } n \equiv 0 \pmod{3} \\ = \frac{2n-1}{3}, \quad \text{if } n \equiv 2 \pmod{3}$$

Proof. Let $v_1v_2...v_n$ be the vertices of the path P_n , $n \ge 4$ and let $x_1x_2...x_{n-1}$ be the added vertices corresponding to the edges $e_1, e_2, ..., e_{n-1}$ of P_n to obtain $T(P_n)$. Thus $V(T(P_n)) = \{v_1, v_2, ..., v_n, x_1, x_2, ..., x_{n-1}\}$ $T(P_n)$ has (2n-1) vertices and 4n-5 edges. From previous theorem, the set

$$D = \{v_2, v_5, \dots, v_{3j-1}\} \cup \{x_3, x_6, \dots, x_{3k}\}$$

$$1 \le j \le \frac{n-1}{3}, 1 \le k \le \frac{n-1}{3}, \text{ if } n \equiv 1 \pmod{3}$$

$$\{v_2, v_5, \dots, v_{3j-1}\} \cup \{x_3, x_6, \dots, x_{3k}\}$$

$$1 \le j \le \frac{n}{3}, 1 \le k \le \frac{n-1}{3}, \text{ if } n \equiv 0 \pmod{3}$$

$$= \{v_2, v_5, \dots, v_{3j-1}\} \cup \{x_3, x_6, \dots, x_{3k}\}$$

$$1 \le j \le \frac{n+1}{3}, 1 \le k \le \frac{n-2}{3}, \text{ if } n \equiv 2 \pmod{3}$$

511

is a minimum ctd-set of $T(P_n)$. Let

$$D' = \{v_3, v_6, \dots, v_{3j}\} \cup \{x_1, x_4, \dots, x_{3k-2}\}$$

$$1 \le j \le \frac{n-1}{3}, 1 \le k \le \frac{n-1}{3}, \text{ if } n \equiv 1 \pmod{3}$$

$$\{v_3, v_6, \dots, v_{3j}\} \cup \{x_1, x_4, \dots, x_{3k-2}\}$$

$$1 \le j \le \frac{n}{3}, 1 \le k \le \frac{n}{3}, \text{ if } n \equiv 0 \pmod{3}$$

$$= \{v_3, v_6, \dots, v_{3j}\} \cup \{x_1, x_4, \dots, x_{3k-2}\}$$

$$1 \le j \le \frac{n-2}{3}, 1 \le k \le \frac{n+1}{3}, \text{ if } n \equiv 2 \pmod{3}$$

If

$$n \equiv 1 \pmod{3}, |D'| = |D| = \frac{2(n-1)}{3}$$

$$n \equiv 0 \pmod{3}, |D'| = |D| + 1 = \frac{2n}{3}$$

$$n \equiv 2 \pmod{3}, |D'| = |D| = \frac{2n-1}{3}$$

The set D' is a inverse ctd-set of $T(P_n)$, since each vertex in V - D' is adjacent to atleast one vertex in D' and $\langle V(T(P_n) - D' \rangle$ is a tree. Also D' is a subset of $V(T(P_n)) - D$; $\gamma'_{ctd}(T(P_n)) \leq \left\lceil \frac{2n-2}{3} \right\rceil$, $n \geq 4$. To prove $\gamma'_{ctd}(T(P_n)) \geq \left\lceil \frac{2n-2}{3} \right\rceil$, $n \geq 4$.

Let D' be a minimum inverse ctd-set of $T(P_n)$. As in theorem, $\langle V(T(P_n)) - D' \rangle$ is a path and is of length at most

$$\begin{array}{ll} \displaystyle \frac{4n-4}{3} & if \ n\equiv 1 \pmod{3} \\ \\ \displaystyle \frac{4n-6}{3} & if \ n\equiv 0 \pmod{3} \\ \\ \displaystyle \frac{4n-5}{3} & if \ n\equiv 2 \pmod{3} \end{array}$$

Hence, no. of vertices in $\langle V(T(P_n) - D') \rangle$ is at most

$$\frac{4n-1}{3} \quad if \quad n \equiv 1 \pmod{3}$$
$$\frac{4n-3}{3} \quad if \quad n \equiv 0 \pmod{3}$$
$$\frac{4n-5}{3} \quad if \quad n \equiv 2 \pmod{3}$$

No. of vertices is D' is at least

$$\frac{2(n-1)}{3} \quad if \quad n \equiv 1 \pmod{3}$$
$$\frac{2n}{3} \quad if \quad n \equiv 0 \pmod{3}$$
$$\frac{2n-1}{3} \quad if \quad n \equiv 2 \pmod{3}$$
$$|D'| \ge \left\lceil \frac{2n-2}{3} \right\rceil$$
$$|D'| = \left\lceil \frac{2n-2}{3} \right\rceil$$

if $n \ge 4$, $\gamma_{ctd}(T(P_n)) = \left\lceil \frac{2n-2}{3} \right\rceil$.

In the following, complementary tree domination of total graph of C_n is found.

Theorem 2.3. Let C_n be a cycle on n vertices $(n \ge 3)$ then $\gamma_{ctd}(T(C_n)) = n$.

Proof. Let $v_1v_2...v_n$ be the vertices of cycle C_n and let $x_1x_2...x_n$ be the added vertices corresponding to the edges $e_1e_2...e_n$ of C_n to obtain $T(C_n)$ where $e_i = (v_i, v_{i+1}), i = 1, 2, ..., n - 1$. Thus

$$V(T(C_n)) = \{v_1, v_2, \dots, v_n, x_1, x_2, \dots, x_n\}$$

 $T(C_n)$ has 2n vertices and $E(T(C_n)) = n + n + 2n = 4n$. Let $D = \{v_1, v_2, \dots, v_{n-1}, x_1\}$ then D is a ctd-set of $T(C_n)$, since each vertex in $V(T(C_n))$ is either in D or is adjacent to a vertex in D and $\langle V(T(C_n)) - D \rangle$ is a path. For any $v_i \in D$ then $D - v_i$ forms a cycle which is a contradiction to $\langle V - D \rangle$ is a tree. Therefore, D is a ctd-set of $T(C_n)$.

Claim: D is a minimum ctd-set of $T(C_n)$.

It is observed that $\delta(T(C_n)) = \Delta(T(C_n)) = 4$. Since D is a ctd-set of G. $\langle V(T(C_n) - D \rangle$ is a tree. Let there exist a vertex say v of degree 4 in $\langle V - D \rangle$. Then $N(v) \supseteq \{x_j, x_{j+1}, v_i, v_{i+1}\}$ for i = 1, ..., n, j = 1, 2, ..., n and hence $\langle V(C_n) - D \rangle$ contains a cycle. Therefore, degree of each vertex in $\langle V(T(C_n) - D \rangle$ is either 1 or 2. That is, $\langle V(T(C_n) - D \rangle$ is a path. i.e., $\langle V(T(C_n) - D \rangle \cong P_n$. Therefore, number of vertices in D is n. $\gamma_{ctd}(T(C_n)) = n$.

Theorem 2.4. For $n \ge 3$, $\gamma'_{ctd}(T(C_n)) = n$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n and let $x_1x_2 \ldots x_n$ be the added vertices corresponding to the edges e_1, e_2, \ldots, e_n of C_n to obtain $T(C_n)$ where $e_i = (v_i, v_{i+1})$; $i = 1, 2, \ldots, n-1$. Thus $V(T(C_n)) =$ $\{v_1, v_2, \ldots, v_n, x_1, x_2, \ldots, x_n\}$. $T(C_n)$ has 2n vertices and $|E(T(C_n)| = 4n$ vertices. From the Theorem 2.3 the set $D = \{u_1, u_2, \ldots, u_{n-1}, x_1\}$ is a ctd-set of $T(C_n)$. Let $D' = \{x_2, x_3, \ldots, x_n, v_n\}$ is a inverse ctd-set of $T(C_n)$. Since each vertex in $V(T(C_n))$ is either in D' or is adjacent to a vertex in D' and $\langle V(T(C_n) - D' \rangle$ is a path. Also D' is a subset of $V(T(C_n) - D, \gamma'_{ctd}(T(C_n)) = n, n \ge 3$.

References

- [2] F.Harary, Graph Theory, Narosa Publishing House.
- [3] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination of a graph, International Mathematical Forum, 6(2011), 25-28.
- [4] O.Ore, Theory of Graphs, Amer. Math Soc. Colloq. Publ., 38(1962).

^[1] V.R.Kulli and S.C.Sigarkanti, Inverse domination in graphs, Nat. Acad. Sc. Lett., 14(1991), 473-475.

^[5] Teresa W.Haynes, Stephen T.Hedetniemi and Peter J.Slater, Fundamental of Domination in Graphs, Marcel Dekker, (1998).