Inverse Complementary Tree Domination Number of Total Graphs of P_{n} and C_{n}

S. Muthammai ${ }^{1}$ and P. Vidhya ${ }^{2, *}$
1 Principal, Alagappa Government Arts College, Karaikudi, Tamil Nadu, India.
2 Department of Mathematics, E.M.G. Yadava Women's College, Madurai, Tamil Nadu, India.

Abstract

A non-empty set $D \subseteq V$ of a graph is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all the minimal dominating sets of G. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V-D\rangle$ is a tree. The complementary tree domination number $\gamma_{c t d}(G)$ of G is the minimum cardinality taken over all minimal complementary tree dominating sets of G. Let D be a minimum dominating set of G. If $V-D$ contains a dominating set D^{\prime}, then D^{\prime} is called the inverse dominating set of G w.r.t to D. The inverse domination number $\gamma^{\prime}(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of G. In this paper, inverse complementary tree domination in total graphs of P_{n} and C_{n} are obtained.

MSC: 05C69.
Keywords: Dominating set, complementary tree dominating set, inverse complementary dominating set.
(c) JS Publication.

1. Introduction

Kulli V.R. et al. [1] introduced the concept of inverse domination in graphs. Let $G(V, E)$ be a simple, finite, undirected, connected graph with p vertices and q edges. A non-empty set $D \subseteq V$ of a graph is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all the minimal dominating sets of G. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V-D\rangle$ is a tree. The complementary tree domination number $\gamma_{c t d}(G)$ of G is the minimum cardinality taken over all minimal complementary tree dominating sets of G. Let D be a minimum dominating set of G. If $V-D$ contains a dominating set D^{\prime}, then D^{\prime} is called the inverse dominating set of G w.r.t to D. The inverse domination number $\gamma^{\prime}(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of G. The total graph of G denoted by $T(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent if
(1). they are adjacent edges of G, or
(2). one is a vertex of G and the other is an edge incident with it (or)
(3). they are adjacent vertices of G.

[^0]Let $D \subseteq V$ be a minimum complementary tree dominating (ctd) set of G. If $V-D$ contains a ctd set D^{\prime} of D, then D^{\prime} is called an inverse ctd set with respect to D. The inverse complementary tree domination number $\gamma_{c t d}^{\prime}(G)$ of G is the minimum number of vertices in an inverse ctd set of G. In this paper, inverse ctd number of total graphs of P_{n} and C_{n} are obtained.

2. Inverse Complementary Tree Domination Number of Total Graphs P_{n} and C_{n}

In the following, complementary tree domination number of total graph of P_{n} is found.

Theorem 2.1. Let P_{n} be a path on n vertices $(n \geq 4)$. Then,

$$
\gamma_{c t d}\left(T\left(P_{n}\right)\right)= \begin{cases}2\left(\frac{n-1}{3}\right) & \text { if } n \equiv 1(\bmod 3) \\ 2\left\lfloor\frac{2 n-1}{3}\right\rfloor & \text { if } n \equiv 0,2(\bmod 3)\end{cases}
$$

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} and let $x_{1} x_{2} \ldots x_{n-1}$ be the added vertices corresponding to the edges $e_{1} e_{2} \ldots e_{n-1}$ of P_{n} to obtain $T\left(P_{n}\right)$ where $e_{i}=\left(v_{i}, v_{i+1}\right) i=1,2, \ldots, n-2$. Thus $V\left(T\left(P_{n}\right)\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right\} T\left(P_{n}\right)$ has $2 n-1$ vertices and

$$
\begin{aligned}
E\left(T\left(P_{n}\right)\right) & =n-1+n-2+2(n-1) \\
& =4 n-5
\end{aligned}
$$

Let

$$
D= \begin{cases}\left\{v_{2}, v_{5}, \ldots, v_{3 j-1}\right\} \cup\left\{x_{3}, x_{6}, \ldots, x_{3 k}\right\}, 1 \leq j \leq \frac{n-1}{3}, 1 \leq k \leq \frac{n-1}{3}, & \text { if } n \equiv 1(\bmod 3) \\ \left\{v_{2}, v_{5}, \ldots, v_{3 j-1}\right\} \cup\left\{x_{3}, x_{6}, \ldots, x_{3 k}\right\}, 1 \leq j \leq \frac{n}{3}, 1 \leq k \leq \frac{n}{3}, & \text { if } n \equiv 0(\bmod 3) \\ \left\{v_{2}, v_{5}, \ldots, v_{3 j-1}\right\} \cup\left\{x_{3}, x_{6}, \ldots, x_{3 k}\right\}, 1 \leq j \leq \frac{n+1}{3}, 1 \leq k \leq \frac{n-2}{3}, & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

If $n \equiv 1(\bmod 3),|D|=2\left(\frac{n-1}{3}\right)$ if $n \equiv 0,2(\bmod 3),|D|=2\left\lfloor\frac{n-1}{3}\right\rfloor$.
The above set D is a ctd-set of $T\left(P_{n}\right)$, since each vertex in $\left.V\left(T P_{n}\right)\right)$ is either in D or is adjacent to a vertex in D or is adjacent to a vertex in D and $\left\langle V\left(T\left(P_{n}\right)\right)-D\right\rangle$ is a path. For any $v_{i} \in D, D-\left\{v_{i}\right\}$ does not dominate itself if v_{i} not a support of P_{n}. If v_{i} is a support, then $D-\left\{v_{i}\right\}$ does not dominate itself and the pendant vertex and the vertex in $T\left(P_{n}\right)$ correspond to the pendant edge in P_{n}. Similarly, if $x_{j} \in D$, then $F-\left\{x_{j}\right\}$ does not dominate itself or the pendant vertex. Therefore, D is a ctd-set of $T\left(P_{n}\right)$.

Claim: D is a minimum ctd-set of $T\left(P_{n}\right)$.
It is to be observed that any two adjacent vertices of $T\left(P_{n}\right)$ (i.e., on a triangle and $\Delta\left(T\left(P_{n}\right)\right)=4$ Since D is a ctd-set of $G,\left\langle V\left(T\left(P_{n}\right)\right)-D\right\rangle$ is a tree. Let there exist a vertex say v of degree atleast three in $\langle V-D\rangle$. Then $N(v) \supset\left\{x_{i}, x_{i+1}\right\}$ or $N(v) \supset\left\{v_{j}, v_{j+1}\right\}$ for $i=1, \ldots, n-2$ and $j=1,2, \ldots, n-1$ and hence $\left\langle V\left(P_{n}\right)-D\right\rangle$ contains a triangle. Therefore, degree of each vertex in $\left\langle V\left(T\left(P_{n}\right)-D\right\rangle\right.$ is either 1 or 2 . That is, $\left\langle V\left(T\left(P_{n}\right)-D\right\rangle\right.$ is a path length of length atmost

$$
\begin{aligned}
& \frac{4 n-4}{3} \text { if } n \equiv 1(\bmod 3) \\
& \frac{4 n-3}{3} \text { if } n \equiv 0(\bmod 3) \\
& \frac{4 n-5}{3} \text { if } n \equiv 2(\bmod 3)
\end{aligned}
$$

Hence, number of vertices in $\left\langle V\left(T\left(P_{n}\right)\right)-D\right\rangle$ is atmost

$$
\begin{aligned}
\frac{4 n-1}{3} \text { if } n & \equiv 1(\bmod 3) \\
\frac{4 n}{3} \text { if } n & \equiv 0(\bmod 3) \\
\frac{4 n-2}{3} \text { if } n & \equiv 2(\bmod 3)
\end{aligned}
$$

Therefore, number of vertices in D is atleast

$$
\begin{aligned}
& \frac{2(n-1)}{3} \text { if } n \equiv 1(\bmod 3) \\
& \frac{2 n-3)}{3} \text { if } n \equiv 0(\bmod 3) \\
& \frac{2 n-1}{3} \text { if } n \equiv 2(\bmod 3)
\end{aligned}
$$

That is

$$
\begin{aligned}
|D| & \geq 2\left(\frac{n-1}{3}\right), \quad \text { if } n \equiv 1(\bmod 3) \\
\text { and }|D| & =\left\lfloor\frac{2 n-1}{3}\right\rfloor, \quad \text { if } n \equiv 0,2(\bmod 3)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\gamma_{c t d}\left(T\left(P_{n}\right)\right) & =2\left(\frac{n-1}{3}\right), \quad \text { if } n \equiv 1(\bmod 3) \\
& =\left\lfloor\frac{2 n-1}{3}\right\rfloor, \quad \text { if } n \equiv 0,2(\bmod 3)
\end{aligned}
$$

Theorem 2.2. For $n \geq 4$

$$
\begin{aligned}
\gamma^{\prime}\left(T\left(P_{n}\right)\right) & =\frac{2(n-1)}{3}, \quad \text { if } n \equiv 1(\bmod 3) \\
& =\frac{2 n}{3}, \quad \text { if } n \equiv 0(\bmod 3) \\
& =\frac{2 n-1}{3}, \quad \text { if } n \equiv 2(\bmod 3)
\end{aligned}
$$

Proof. Let $v_{1} v_{2} \ldots v_{n}$ be the vertices of the path $P_{n}, n \geq 4$ and let $x_{1} x_{2} \ldots x_{n-1}$ be the added vertices corresponding to the edges $e_{1}, e_{2}, \ldots, e_{n-1}$ of P_{n} to obtain $T\left(P_{n}\right)$. Thus $V\left(T\left(P_{n}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right\} T\left(P_{n}\right)$ has $(2 n-1)$ vertices and $4 n-5$ edges. From previous theorem, the set

$$
\begin{aligned}
& D=\left\{v_{2}, v_{5}, \ldots, v_{3 j-1}\right\} \cup\left\{x_{3}, x_{6}, \ldots, x_{3 k}\right\} \\
& \quad 1 \leq j \leq \frac{n-1}{3}, 1 \leq k \leq \frac{n-1}{3}, \text { if } n \equiv 1(\bmod 3) \\
& \left\{v_{2}, v_{5}, \ldots, v_{3 j-1}\right\} \cup\left\{x_{3}, x_{6}, \ldots, x_{3 k}\right\} \\
& \quad 1 \leq j \leq \frac{n}{3}, 1 \leq k \leq \frac{n-1}{3}, \text { if } n \equiv 0(\bmod 3) \\
& =\left\{v_{2}, v_{5}, \ldots, v_{3 j-1}\right\} \cup\left\{x_{3}, x_{6}, \ldots, x_{3 k}\right\} \\
& \quad 1 \leq j \leq \frac{n+1}{3}, 1 \leq k \leq \frac{n-2}{3}, \text { if } n \equiv 2(\bmod 3)
\end{aligned}
$$

is a minimum ctd-set of $T\left(P_{n}\right)$. Let

$$
\begin{aligned}
& D^{\prime}=\left\{v_{3}, v_{6}, \ldots, v_{3 j}\right\} \cup\left\{x_{1}, x_{4}, \ldots, x_{3 k-2}\right\} \\
& \quad 1 \leq j \leq \frac{n-1}{3}, 1 \leq k \leq \frac{n-1}{3}, \text { if } n \equiv 1(\bmod 3) \\
& \\
& \left\{v_{3}, v_{6}, \ldots, v_{3 j}\right\} \cup\left\{x_{1}, x_{4}, \ldots, x_{3 k-2}\right\} \\
& \quad 1 \leq j \leq \frac{n}{3}, 1 \leq k \leq \frac{n}{3}, \text { if } n \equiv 0(\bmod 3) \\
& = \\
& \quad\left\{v_{3}, v_{6}, \ldots, v_{3 j}\right\} \cup\left\{x_{1}, x_{4}, \ldots, x_{3 k-2}\right\} \\
& \quad 1 \leq j \leq \frac{n-2}{3}, 1 \leq k \leq \frac{n+1}{3}, \text { if } n \equiv 2(\bmod 3)
\end{aligned}
$$

If

$$
\left.\begin{array}{l}
n \equiv 1(\bmod 3),\left|D^{\prime}\right|=|D|=\frac{2(n-1)}{3} \\
n \equiv 0(\bmod 3),\left|D^{\prime}\right|=|D|+1=\frac{2 n}{3} \\
n \equiv 2(\bmod 3),\left|D^{\prime}\right|=|D|=\frac{2 n-1}{3}
\end{array}\right\}=\left[\frac{2 n-2}{3}\right\rceil
$$

The set D^{\prime} is a inverse ctd-set of $T\left(P_{n}\right)$, since each vertex in $V-D^{\prime}$ is adjacent to atleast one vertex in D^{\prime} and $\left\langle V\left(T\left(P_{n}\right)-D^{\prime}\right\rangle\right.$ is a tree. Also D^{\prime} is a subset of $V\left(T\left(P_{n}\right)\right)-D ; \gamma_{c t d}^{\prime}\left(T\left(P_{n}\right)\right) \leq\left\lceil\frac{2 n-2}{3}\right\rceil, n \geq 4$.

To prove $\gamma_{c t d}^{\prime}\left(T\left(P_{n}\right)\right) \geq\left\lceil\frac{2 n-2}{3}\right\rceil, n \geq 4$.
Let D^{\prime} be a minimum inverse ctd-set of $T\left(P_{n}\right)$. As in theorem, $\left\langle V\left(T\left(P_{n}\right)\right)-D^{\prime}\right\rangle$ is a path and is of length atmost

$$
\begin{aligned}
& \frac{4 n-4}{3} \text { if } n \equiv 1(\bmod 3) \\
& \frac{4 n-6}{3} \text { if } n \equiv 0(\bmod 3) \\
& \frac{4 n-5}{3} \text { if } n \equiv 2(\bmod 3)
\end{aligned}
$$

Hence, no. of vertices in $\left\langle V\left(T\left(P_{n}\right)-D^{\prime}\right\rangle\right.$ is atmost

$$
\begin{aligned}
& \frac{4 n-1}{3} \text { if } n \equiv 1(\bmod 3) \\
& \frac{4 n-3}{3} \text { if } n \equiv 0(\bmod 3) \\
& \frac{4 n-5}{3} \text { if } n \equiv 2(\bmod 3)
\end{aligned}
$$

No. of vertices is D^{\prime} is atleast

$$
\begin{gathered}
\frac{2(n-1)}{3} \text { if } n \equiv 1(\bmod 3) \\
\frac{2 n}{3} \text { if } n \equiv 0(\bmod 3) \\
\frac{2 n-1}{3} \text { if } n \equiv 2(\bmod 3) \\
\left|D^{\prime}\right| \geq\left\lceil\frac{2 n-2}{3}\right\rceil \\
\left|D^{\prime}\right|=\left\lceil\frac{2 n-2}{3}\right\rceil
\end{gathered}
$$

if $n \geq 4, \gamma_{c t d}\left(T\left(P_{n}\right)\right)=\left\lceil\frac{2 n-2}{3}\right\rceil$.
In the following, complementary tree domination of total graph of C_{n} is found.

Theorem 2.3. Let C_{n} be a cycle on n vertices $(n \geq 3)$ then $\gamma_{c t d}\left(T\left(C_{n}\right)\right)=n$.

Proof. Let $v_{1} v_{2} \ldots v_{n}$ be the vertices of cycle C_{n} and let $x_{1} x_{2} \ldots x_{n}$ be the added vertices corresponding to the edges $e_{1} e_{2} \ldots e_{n}$ of C_{n} to obtain $T\left(C_{n}\right)$ where $e_{i}=\left(v_{i}, v_{i+1}\right), i=1,2, \ldots, n-1$. Thus

$$
V\left(T\left(C_{n}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

$T\left(C_{n}\right)$ has $2 n$ vertices and $E\left(T\left(C_{n}\right)\right)=n+n+2 n=4 n$. Let $D=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, x_{1}\right\}$ then D is a ctd-set of $T\left(C_{n}\right)$, since each vertex in $V\left(T\left(C_{n}\right)\right)$ is either in D or is adjacent to a vertex in D and $\left\langle V\left(T\left(C_{n}\right)\right)-D\right\rangle$ is a path. For any $v_{i} \in D$ then $D-v_{i}$ forms a cycle which is a contradiction to $\langle V-D\rangle$ is a tree. Therefore, D is a ctd-set of $T\left(C_{n}\right)$.

Claim: D is a minimum ctd-set of $T\left(C_{n}\right)$.
It is observed that $\delta\left(T\left(C_{n}\right)\right)=\Delta\left(T\left(C_{n}\right)\right)=4$. Since D is a ctd-set of $G .\left\langle V\left(T\left(C_{n}\right)-D\right\rangle\right.$ is a tree. Let there exist a vertex say v of degree 4 in $<V-D>$. Then $N(v) \supseteq\left\{x_{j}, x_{j+1}, v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, n, j=1,2, \ldots, n$ and hence $\left\langle V\left(C_{n}\right)-D\right\rangle$ contains a cycle. Therefore, degree of each vertex in $\left\langle V\left(T\left(C_{n}\right)-D\right\rangle\right.$ is either 1 or 2 . That is, $\left\langle V\left(T\left(C_{n}\right)-D\right\rangle\right.$ is a path. i.e., $\left\langle V\left(T\left(C_{n}\right)-D\right\rangle \cong P_{n}\right.$. Therefore, number of vertices in D is $n . \gamma_{c t d}\left(T\left(C_{n}\right)\right)=n$.

Theorem 2.4. For $n \geq 3, \gamma_{c t d}^{\prime}\left(T\left(C_{n}\right)\right)=n$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and let $x_{1} x_{2} \ldots x_{n}$ be the added vertices corresponding to the edges $e_{1}, e_{2}, \ldots, e_{n}$ of C_{n} to obtain $T\left(C_{n}\right)$ where $e_{i}=\left(v_{i}, v_{i+1}\right) ; i=1,2, \ldots, n-1$. Thus $V\left(T\left(C_{n}\right)\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}, x_{1}, x_{2}, \ldots, x_{n}\right\} . T\left(C_{n}\right)$ has $2 n$ vertices and $\mid E\left(T\left(C_{n}\right) \mid=4 n\right.$ vertices. From the Theorem 2.3 the set $D=\left\{u_{1}, u_{2}, \ldots, u_{n-1}, x_{1}\right\}$ is a ctd-set of $T\left(C_{n}\right)$. Let $D^{\prime}=\left\{x_{2}, x_{3}, \ldots, x_{n}, v_{n}\right\}$ is a inverse ctd-set of $T\left(C_{n}\right)$. Since each vertex in $V\left(T\left(C_{n}\right)\right)$ is either in D^{\prime} or is adjacent to a vertex in D^{\prime} and $\left\langle V\left(T\left(C_{n}\right)-D^{\prime}\right\rangle\right.$ is a path. Also D^{\prime} is a subset of $V\left(T\left(C_{n}\right)-D . \gamma_{c t d}^{\prime}\left(T\left(C_{n}\right)\right)=n, n \geq 3\right.$.

References

[1] V.R.Kulli and S.C.Sigarkanti, Inverse domination in graphs, Nat. Acad. Sc. Lett., 14(1991), 473-475.
[2] F.Harary, Graph Theory, Narosa Publishing House.
[3] S.Muthammai, M.Bhanumathi and P.Vidhya, Complementary tree domination of a graph, International Mathematical Forum, 6(2011), 25-28.
[4] O.Ore, Theory of Graphs, Amer. Math Soc. Colloq. Publ., 38(1962).
[5] Teresa W.Haynes, Stephen T.Hedetniemi and Peter J.Slater, Fundamental of Domination in Graphs, Marcel Dekker, (1998).

[^0]: * E-mail: vidhyaramman@gmail.com

