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Abstract: In this paper, we mount an attack on RSA when ϕ(N) has small multiplicative inverse k modulo e, the public encryption
exponent. For k ≤ Nδ, the attack bounds for δ are described by using lattice based techniques. The bound for δ depends

on the prime difference p− q = Nβ and the maximum bound for δ is α−
√
α
2

for e = Nα and for β ≈ 0.5. If the prime

sum p + q is of the form p + q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are two suitably small

unknown integers then the maximum bound for δ can be improved for β ≈ 0.5.
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1. Introduction

RSA Cryptosystem is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir and Leonard Adalman in 1977

where the encryption and decryption are based on the fact that if N = pq, is the modulus for RSA, p, q distinct primes, if

1 ≤ e ≤ ϕ(N) with (e, ϕ(N)) = 1 and d, the multiplicative inverse of e modulo ϕ(N), then med = m mod N , for any message

m, an integer in ZN . The security of this system depends on the difficulty of finding factors of a composite positive integer,

that is product of two large primes. In 1990, M.J.Wiener [20] was the first one to describe a cryptanalytic attack on the use

of short RSA deciphering exponent d. This attack is based on continued fraction algorithm which finds the fraction t
d
, where

t = ed−1
ϕ(n)

in a polynomial time when d is less than N0.25 for N = pq and q < p < 2q. Using lattice reduction approach based

on the Coppersmith techniques [6] for finding small solutions of modular bivariate integer polynomial equations, D. Boneh

and G. Durfee [3] improved the wiener result from N0.25 to N0.292 in 2000 and J. Blömer and A. May [4] has given an RSA

attack for d less than N0.29 in 2001, that requires lattices of dimension smaller than the approach by Boneh and Durfee.

In 2006, E. Jochemsz and A. May [10], described a strategy for finding small modular and integer roots of multivariate

polynomial using lattice-based Coppersmith techniques and by implementing this strategy they gave a new attack on an

RSA variant called common prime RSA.

In our paper [8], we described an attack on RSA by using lattice based techniques implemented in the case when p − 1 or

q − 1 have small multiplicative inverse less than or equal to Nδ modulo the public encryption exponent e, for some small δ

and for q < p < 2q, e = Nα > p − 1. For r and s are the multiplicative inverses of p − 1 and q − 1 modulo e respectively,
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and for Nδ is an upper bound of min{r, s} and Nγ is an upper bound of


p−

⌈√
N
⌉

if min{r, s} = r

q −
⌈√

N
⌉

if min{r, s} = s,

, we shown that

RSA will be insecure for δ <
3α+γ−2

√
γ(3α+γ)

3
when both x and y shifts are used and for δ < α−γ

2
when only x−shifts are

used. Later we improved the bound for δ up to α−√αγ by implementing the sublattice based techniques given by Boneh

and Durfee in [3] under the condition δ > α − γ(1 + α) and improved the bound for δ up to δ <
2α−6γ+2

√
α2−αγ+4γ2

5
by

implementing the sublattice based techniques with lower dimension given by J. Blömer and A. May in [4], this bound is

slightly less then the above bound but this method requires lattices of smaller dimension than the above method.

For r and s the multiplicative inverses of p − 1 and q − 1 modulo e respectively, we have k = rs mod e, the multiplicative

inverse of ϕ(N) modulo e. In this paper it is shown that if k is small, that is the multiplicative inverse of ϕ(N) modulo

e is small, then RSA will be insecure for q < p < 2q and e = Nα > p + q, the prime sum. This case may be considered

when both (p− 1) mod e and (q− 1) mod e do not have small inverses but ϕ(N) mod e has small inverse as in Table 1. Let

f(x, y) = x(y+A)− 1 where A = N + 1−
⌈
2
√
N
⌉
, then (k,

⌈
2
√
N
⌉
− (p+ q)) is a solution for the modular bivariate integer

polynomial equation f(x, y) ≡ 0 mod e and note Nβ = p− q, the prime difference is an upper bound for
⌈
2
√
N
⌉
− (p+ q).

For k ≤ Nδ, the attack bounds for δ are described by implementing all lattice based techniques as given in [8], based on

the theory of finding small bivariate modular integer polynomial equations to the above modular polynomial equation. For

β ≈ 0.5, the maximum bound for δ in which RSA will be insecure is such that α−
√

α
2

and this bound can be improved when

the prime sum p+ q is of the form p+ q = 2nk0 + k1 for known positive integer n and for unknown suitably small integers

k0, k1 by using the strategy given by E. Jochemsz and A. May as in [10] for finding small modular roots of multivariate

polynomials.

2. Preliminaries

In this section we state basic results on lattices, described briefly lattice basis reduction, Coppersmith’s method and

Howgrave-Graham theorem that are based on lattice reduction techniques are described.

Let u1, u2, ..., un ∈ Zm be linearly independent vectors with n ≤ m. Let det(L ) be a lattice spanned by < u1, u2, ..., un >.

Let b∗1, b
∗
2, ..., b

∗
n be the vectors obtained by applying the Gram-Schmidt process to the vectors u1, u2, ..., un. The determinant

of the lattice L is defined as det(L) :=
n∏
i=1

‖ b∗i ‖, where ‖ . ‖ denotes the Euclidean norm on vectors. The lattice L is called

full rank if n = m and when n = m, the determinant of L is equal to the determinant of the n× n matrix whose rows are

the basis vectors u1, u2, ..., un.

In 1982, A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [11] invented the LLL lattice based reduction algorithm to reduce a

basis and to solve the shortest vector problem in polynomial time. The general result on the size of individual LLL-reduced

basis vectors is given in the following and a proof of that result can be found in [12].

Theorem 2.1. Let L ba lattice of dimension ω. In polynomial time, the LLL-algorithm outputs reduced basis vectors vi,

1 ≤ i ≤ ω that satisfy

||v1|| ≤ ||v2|| ≤ ... ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L )
1

ω+1−i .

An important application of lattice reduction found by Coppersmith in 1996 [6] is finding small roots of low-degree polynomial

equations. This includes modular univariate polynomial equations and bivariate integer equations. In 1997 Howgrave-

Graham [7] reformulated Coppersmith’s techniques and proposed a result which shows that if the coefficients of h(x, y) are

sufficiently small, then the equality h(x0, y0) = 0 holds not only modulo N , but also over integers. The generalization of

Howgrave-Graham result in terms of the Euclidean norm of a polynomial h(x1, x2, ..., xn) =
∑
ai1...inx

i1
1 ...x

in
n is defined by

516



P. Anuradha Kameswari and L. Jyotsna

the Euclidean norm of its coefficient vector i.e., ||h(x1, x2, ..., xn)|| =
√∑

a2i1...in given as follows:

Theorem 2.2 (Howgrave-Graham). Let h(x1, x2, ..., xn) ∈ Z[x1, x2, ..., xn] be an integer polynomial that consists of at most

ω monomials. Suppose that

(1). h
(
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

)
≡ 0 mod em for some m where |x(0)1 | < X1, |x(0)2 | < X2 . . . |x(0)n | < Xn, and

(2). ||h(x1X1, x2X2, ..., xnXn)|| < em√
ω
.

Then h((x1, x2, ..., xn) = 0 holds over the integers.

Resultant of two polynomials: The resultant of two polynomials f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) with respect to

the variable xi for some 1 ≤ i ≤ n, is defined as the determinant of Sylvester matrix of f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn)

when considered as polynomials in the single indeterminate xi, for some 1 ≤ i ≤ n.

Remark 2.3. The resultant of two polynomials is non-zero if and only if the polynomials are algebraically independent .

Remark 2.4. If
(
x
(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
is a common solution of algebraically independent polynomials f1, f2, . . . , fm for m ≥ n,

then these polynomials yield g1, g2, . . . , gn−1 resultants in n−1 variables and continuing so on the resultants yield a polynomial

t(xi) in one variable with xi = x
(0)
i for some i is a solution of t(xi). Note the polynomials considered to compute resultants

are always assumed to be algebraically independent.

3. Attack Bounds for RSA using Lattice Based Techniques based on
finding Small Modular Roots of Bivariate Polynomials

In our paper [8], we described an attack on RSA by using lattice based techniques implemented in the case when p − 1 or

q − 1 have small multiplicative inverse less than or equal to Nδ modulo the public encryption exponent e, for some small δ

and for q < p < 2q, e = Nα > p− 1.

Let f(x, y) = x(y + A) − 1 where A =
⌈√

N
⌉
− 1 and r, s be the multiplicative inverses of p − 1, q − 1 modulo the private

encryption exponent e respectively. For x0 = min{r, s} and y0 =


p−

⌈√
N
⌉

if min{r, s} = r

q −
⌈√

N
⌉

if min{r, s} = s,

the pair (x0, y0) is a

solution for the modular polynomial equation f(x, y) ≡ 0 mod e. For |x0| ≤ Nδ, |y0| ≤ Nγ , the attack bounds for δ are

described in [8] by using lattice reduction techniques in the direction of Boneh-Durfee [3] and Blömer-May [4] for q < p < 2q

and e = Nα > p− 1.

Applying the analysis described by Boneh-Durfee in [3] using x, y shifts and using only x shifts to the above modular

polynomial equation, we get the attack bounds for δ as given in the following Theorem and Corollary [8] respectively.

Theorem 3.1. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ and r, s are the

multiplicative inverses of p − 1, q − 1 modulo e respectively. Suppose that |x0| ≤ X and |y0| ≤ Y then one can factor N in

polynomial time if

δ <
3α+ γ − 2

√
γ(3α+ γ)

3
.

Corollary 3.2. If the lattice basis reduction algorithm is implemented only using x−shifts and repeating the above argument

then we can factorize N whenever

δ <
α− γ

2
.
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In [8] further, the bound given in the above theorem is improved by implementing the ideas given by Boneh-Durfee [3] and

Blömer-May [4] to the above modular equation using sublattice based techniques as given in the following Theorems.

Theorem 3.3. Let N, p, q, e,X, Y, x0, y0, δ and γ be defined in Theorem 3. Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA

is insecure if

α− γ(1 + α) < δ < α−√αγ.

Theorem 3.4. Let N, p, q, e,X, Y, x0, y0, δ and γ be defined in Theorem 3. Suppose that |x0| ≤ X and |y0| ≤ Y , then RSA

is insecure if

δ <
2α− 6γ + 2

√
α2 − αγ + 4γ2

5
.

The bound given in the Theorem 5 is slightly less than the bound(upper) given in the Theorem 4 but the method used to

obtain this bound requires lattice of smaller dimension than the above.

Now in this paper we first describe the attack bounds for RSA cryptosystem in this section using the lattice based techniques

based on the Coppersmith techniques [6] for finding small solutions of modular bivariate integer polynomial equations

following the idea of Boneh-Durfee [3] and Blömer-May [4], when ϕ(N) have some small multiplicative inverse modulo

e, note when either (p − 1) mod e or (q − 1) mod e has small inverse we may adapt the attack as in [8] but when both

(p− 1) mod e and (q − 1) mod e do not have small inverses the ϕ(N) mod e may have small inverse as in Table 1 then this

modified attack proposed in the following may be used.

e ϕ(N)−1 mod e (p− 1)−1 mod e (q − 1)−1 mod e

1 0 0 0

5 3 1 3

7 5 4 3

11 9 9 1

13 4 9 12

17 7 16 10

19 10 6 8

23 3 13 2

25 3* 11 23

29 21 20 17

31 26 2 13

35 33 11 3

37 16 7 34

41 22 18 24

43 28 35 18

47 12 3 4

49 12 46 45

53 45 10 31

55 53 31 23

59 4* 48 5

61 34 42 56

65 43 61 38

67 52 21 28

71 27 40 6

73 27 32 67

77 75 53 45

79 7 5 33

83 16 26 7

85 58 16 78

89 70 39 52

91 82 74 38
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e ϕ(N)−1 mod e (p− 1)−1 mod e (q − 1)−1 mod e

95 48 6 8

97 48 91 89

101 10 19 59

103 22 58 43

107 34 87 9

109 88 75 100

113 103 106 66

115 3* 36 48

119 75 67 10

121 75 53 111

125 28 86 73

127 43 8 53

131 58 41 11

133 124 25 122

137 5* 21 60

139 113 80 58

143 108 9 12

145 108 136 133

149 52 28 87

151 70 85 63

155 88 126 13

157 9* 108 144

161 26 151 94

163 45 51 68

167 147 94 14

169 147 74 155

173 82 119 101

175 103 11 73

179 124 56 15

181 33 34 166

185 53 81 108

187 75 152 78

191 1* 12 16

Table 1: Multiplicative inverse of ϕ(N), p− 1 and q − 1 modulo e for fixed N = pq = 13 · 17.

*For all such ϕ(N)−1 mod e in the table, note ϕ(N)−1 mod e is small but (p− 1)−1 mod e and (q − 1)−1 mod e are not small.

Let N = pq, q < p < 2q, p− q = Nβ and e = Nα > p+ q. As (e, ϕ(N)) = 1, there exist unique r, s such that

(p− 1)r ≡ 1 mod e and (q − 1)s ≡ 1 mod e.

Let k = rs mod e, then kϕ(N) ≡ 1 mod e, i.e., k is a multiplicative inverse of ϕ(N) modulo e. For g(x, y) = x(y + B) − 1

where B = N + 1−
⌈
2
√
N
⌉
, the pair (x0, y0) = (k,−((p+ q)−

⌈
2
√
N
⌉
)) is a solution for the modular polynomial equation

g(x, y) ≡ 0 mod e (in general (p+q)−
⌈
2
√
N
⌉

mod e ≤ (p+q)−
⌈
2
√
N
⌉

and (k,−((p+q)−
⌈
2
√
N
⌉

mod e)) is also a solution

but in this case (p+ q)−
⌈
2
√
N
⌉

mod e = (p+ q)−
⌈
2
√
N
⌉

as e > p+ q). Note as q <
√
N , p+ q−

⌈
2
√
N
⌉
< Nβ , hence Nβ

is an upper bound for y0. Now note as the monomials for the polynomial gm where g(x, y)=x(y+N + 1−
⌈
2
√
N
⌉
)− 1 and

for the polynomial fm where f(x, y)=x(y +
⌈√

N
⌉
− 1)− 1 described as in [8] are same for any positive integer m, we have

the same analysis as in [8] for the above given modular equation with the multiplicative inverse k of ϕ(N) mod e bounded

by Nδ, we have |k| ≤ Nδ and for x0 = k, RSA is insecure under the following conditions:

δ <
3α+ β − 2

√
β(3α+ β)

3
; (1)

δ <
α− β

2
; (2)
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α− β(1 + α) < δ < α−
√
αβ; (3)

δ <
2α− 6β + 2

√
α2 − αβ + 4β2

5
. (4)

Denoting the upper bounds for δ as in (1),(2),(3) and (4) by δ1, δ2, δ3 and δ4 respectively, we have the bound for δ corre-

sponding to α and β as given in Table 2, depicting the refinement of the attack bounds in the following.

α β δ

(≈) δ1 δ2 δ3 δ4

0.501 0.50 0.0005 0.0005001873 0.0005002497 0.0005001874

0.55 0.50 0.025 0.0254519548 0.0255955759 0.0254626986

0.75 0.50 0.125 0.1349307066 0.1376275643 0.1358898943

1 0.50 0.25 0.2847495629 0.2928932188 0.2898979485

Table 2: Bounds for δ corresponding to certain values of α and β ≈ 0.5 depicting the refinement.

By the analysis as in [8] note in all the above cases the maximum upper bound for δ is the bound as in (3), it is α −
√

α
2

for β ≈ 0.5 and for α = 0.501, 0.55, 0.75, 1, the value δ3 = α −
√

α
2
≈ 0.000501, 0.0254627, 0.135890, 0.289898 respectively

are the bounds for δ. Note the arguments above are considered for small multiplicative inverse of ϕ(N) mod e. Now in the

next section the attack bound for δ is further refined for β ≈ 0.5 by taking the prime sum p+ q as a composed prime sum

i.e., p+ q = 2nk0 + k1 where n is a known positive integer, k0 and k1 are suitably small unknown integers and applying the

lattice based arguments for trivariate polynomials.

4. An Attack Bound for RSA Using Lattice Based Techniques Based
on Finding Small Modular Roots of Trivariate Polynomials

In this section, the attack bound for RSA is described when the prime sum p + q is of the form p + q = 2nk0 + k1 with a

known positive integer n and unknown integers k0 and k1 using the lattice based techniques based on the E. Jochemsz and

A. May’s extended strategy [10] for finding small solutions of modular multivariate integer polynomial equations. In this

method the bound for δ can be improved for a suitable known integer n and suitable unknown parameters k0, k1 and for

β ≈ 0.5.

Let p+ q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are unknown integers. First assume that |k0| ≤ |k1|.

As k(N + 1 − (p + q)) ≡ 1 mod e for k = rs mod e, the triple (x0, y0, z0) = (k,−k1,−k0) is a solution for the modular

polynomial equation f(x, y, z) ≡ 0 mod e for f(x, y, z) = (N + 1)x + xy + (2n)xz − 1 (observe that |k0| mod e = |k0| and

|k1| mod e = |k1| as e > p + q). To apply the generalization of Howgrave-Graham result to find the small modular roots

of the above equation f(x, y, z) ≡ 0 mod e, we use the extended strategy of Jochemsz and May [10]. Now define the set

Mk =
⋃

0≤j≤t
{xi1yi2zi3+t|xi1yi2zi3 is a monomial of fm and xi1yi2zi3

lk
is a monomial of fm−k}, where l is a leading monomial

of f and define the shift polynomials as gk,i1,i2,i3(x, y, z) = xi1yi2zi3

lk
(f ′(x, y, z))kem−k, for k = 0, ...,m, xi1yi2zi3 ∈Mk\Mk+1

and f ′ = a−1
l f mod e for the coefficient al of l. For f(x, y, z) = (N + 1)x+ xy + (2n)xz − 1, xi1yi2zi3 is a monomial of fm

if i1 = 0, ...,m, i2 = 0, ..., i1, i3 = 0, ..., (i1 − i2) and xy the leading monomial of f as |k0| ≤ |k1| with coefficient al = 1.

Then for 0 ≤ k ≤ m, xi1−kyi2−kzi3 is a monomial of fm−k if i1 = k, ...,m, i2 = k, ..., i1, i3 = 0, ..., (i1 − i2). Therefore

xi1yi2zi3 ∈Mk if i1 = k, ...,m, i2 = k, ..., i1, i3 = 0, ..., (i1− i2)+ t and xi1yi2zi3 ∈Mk+1 if i1 = k+1, ...,m, i2 = k+1, ..., i1,

i3 = 0, ..., (i1 − i2) + t. From this, we obtain for 0 ≤ k ≤ m,

xi1yi2zi3 ∈Mk \Mk+1 if i1 = k, i2 = k, i3 = 0, ..., t and if i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2) + t.
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Then for 0 ≤ k ≤ m, the shift polynomials are gk,i1,i2,i3(x, y, z) = zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 0, ..., t and

gk,i1,i2,i3(x, y, z) = xi1−kzi3(f(x, y, z))kem−k, for i1 = k+1, ...,m, i2 = k, i3 = 0, ..., (i1− i2)+ t. Suppose X = Nδ, Y = Nγ1

and Z = Nγ2 are the upper bound for k, k1 and k0 respectively, then define the lattice L spanned by the coefficient of the

vectors gk,i1,i2,i3(xX, yY, zZ). For example, the matrix M of L when m = 2 and t = 1 is as given in the Table 3. Note that

the matrix M of L is lower triangular matrix and the coefficient of the leading monomial of

gk,i1,i2,i3(x, y, z) = zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 0, ..., t is XkY kem−kZi3 and

gk,i1,i2,i3(x, y, z) = xi1−kzi3(f(x, y, z))kem−k, for i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2) + t is

Xi1Y kem−kZi3 . Also note that these coefficients are the diagonal elements of the matrix M , so the determinant is

det(L ) = eneXnXY nY ZnZ (5)

where

ne =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

(m− k) +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

(m− k)

=
1

8
m4 +

1

12
(4t+ 9)m3 +

1

8
(8t+ 11)m2 +

1

12
(8t+ 9)m,

nX =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

k +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

i1

=
1

8
m4 +

1

12
(4t+ 9)m3 +

1

8
(8t+ 11)m2 +

1

12
(8t+ 9)m,

nY =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

k +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

k

=
1

24
m4 +

1

12
(2t+ 3)m3 +

1

24
(12t+ 11)m2 +

1

12
(4t+ 3)m,

nZ =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

i3 +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

i3

=
1

24
m4 +

1

12
m3(2t+ 3) +

1

24
(6t2 + 18t+ 11)m2 +

1

12
(9t2 + 13t+ 3)m+

1

2
(t2 + t)

and the dimension of L is

ω =

m∑
k=0

k∑
i1=k

k∑
i2=k

t∑
i3=0

1 +

m∑
k=0

m∑
i1=k+1

k∑
i2=k

(i1−i2)+t∑
i3=0

1

=
1

6
m3 +

1

2
m2(t+ 2) +

1

6
m(9t+ 11) + (t+ 1).

Take t = τm, then for sufficiently large m, the exponents ne, nX , nY , nZ and the dimension ω reduce to

ne =
1

24
(3 + 8τ)m4 + o(m3),

nX =
1

24
(3 + 8τ)m4 + o(m3),

nY =
1

24
(1 + 4τ)m4 + o(m3),

nZ =
1

24
(1 + 4τ + 6τ2)m4 + o(m3),

ω =
1

6
(1 + 3τ)m3 + o(m2).
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Applying the LLL algorithm to the basis vectors of the lattice L , i.e., coefficient vectors of the shift polynomials, we get a

LLL-reduced basis say {v1, v2, ..., vω} and from the Theorem 1 we have

||v1|| ≤ ||v2|| ≤ ||v3|| ≤ 2
ω(ω−1)
4(ω−2) det(L )

1
ω−2 .

In order to apply the generalization of Howgrave-Graham result in Theorem 2, we need the following inequality

2
ω(ω−1)
4(ω−2) det(L )

1
ω−2 <

em√
ω
.

from this, we deduce

det(L ) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
m(ω−2) <

1(
2

ω(ω−1)
4(ω−2)

√
ω

)ω−2 e
mω.

As the dimension ω is not depending on the public encryption exponent e, 1(
2

ω(ω−1)
4(ω−2) √ω

)ω−2 is a fixed constant, so we need

the inequality det(L ) < emω.

Using (5), we get the inequality

eneXnXY nY ZnZ < emω.

Substitute all values and taking logarithms, neglecting the lower order terms and after simplifying by m4 we get

(3 + 8τ)α+ (3 + 8τ)δ + (1 + 4τ)γ1 + (1 + 4τ + 6τ2)γ2 − 4α(1 + 3τ) < 0.

The left hand side inequality is minimized at τ = 1−(2δ+γ1+γ2)
3γ2

and putting this value in the above inequality we get

δ <
1

2
α− 1

2
γ1 +

1

6
γ2 −

1

6

√
48(1− γ1)γ2 + 33γ2

2 .

From the first three vectors v1, v2 and v3 in LLL reduced basis we consider three polynomials g1(x, y, z), g2(x, y, z) and

g3(x, y, z) over Z such that g1(x0, y0, z0) = g2(x0, y0, z0) = g2(x0, y0, z0) = 0. Suppose g1, g2 and g3 are algebraically

independent and let h1(x, y) be the resultant polynomial of g1(x, y, z) and g2(x, y, z) with respect to z and h2(x, y) be the

resultant polynomial of g1(x, y, z) and g3(x, y, z) with respect to z and if h1, h2 are algebraically independent and let h(x)

be the resultant polynomial of h1(x, y) and h2(x, y) with respect to y, then we have h(x) is not identically zero and with a

solution x = x0 from Remark 1 & 2. Note that if k is small such that k ≤ Nδ for δ < 1
2
α− 1

2
γ1+ 1

6
γ2− 1

6

√
48(1− γ1)γ2 + 33γ2

2 ,

then x0 = k is a solution for the polynomial h(x) over Z. With the knowledge of k, we can find the ϕ(N) and the value

p+ q can be obtained from ϕ(N). Then we can factor the RSA modulus N as (p+ q)2 − 4N = (p− q)2.

Theorem 4.1. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 , Z = Nγ2 and k be the

multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p+ q is of the form p+ q = 2nk0 + k1, for a known positive

integer n and assume that |k0| ≤ |k1| then for |k| ≤ X, |k1| ≤ Y and |k0| ≤ Z one can factor N in polynomial time if

δ <
1

2
α− 1

2
γ1 +

1

6
γ2 −

1

6

√
48(1− γ1)γ2 + 33γ2

2 . (6)

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in polynomial time

[11].
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Suppose |k1| ≤ |k0|. As 2|ϕ(N), gcd(e, 2n) = 1 for any n. If 2n
′
=(2n)−1 mod e then the triple (k,−k0,−k1) is a solutions

for the modular polynomial equation f(x, y, z) ≡ 0 mod e where f(x, y, z) = 2n
′
x(N + 1) + xy + 2n

′
xz − 2n

′
with the

leading monomial xy with coefficient 1. Applying the above analysis to the above modular equation for the upper bounds

X = Nδ, Y = Nγ1 and Z = Nγ2 of k, k0 and k1 respectively, we get the bound for δ same as in (6).

Note that for any given primes p and q with q < p < 2q, we can always find a positive integer n such that p+ q = 2nk0 + k1

where 0 ≤ |k0|, |k1| ≤≈ 0.25. A typical example is 2n ≈ 3√
2
N0.25 as p+ q < 3√

2
N0.5 [14]. Denoting the bound for δ as in (6)

by δ5 and as γ2 ≤ γ1 for |k0| ≤ |k1| or |k1| ≤ |k0|, in the Table 4 we represent the values of γ1 and γ2 for given α and the

bound δ5 which is grater than α−
√

α
2

, δ3 for β ≈ 0.5.

α γ1 γ2 δ5

0.501 0.25 0.249 - 0 0.00067 - 0.1255

0.15 0.149 - 0 0.07227 - 0.1755

0.01 0.009 - 0 0.21710 - 0.2455

0.55 0.25 0.225 - 0 0.02557 - 0.15

0.15 0.149 - 0 0.09084 - 0.2

0.01 0.009 - 0 0.24021 - 0.27

0.75 0.25 0.133 - 0 0.13687 - 0.25

0.15 0.149 - 0 0.16923 - 0.3

0.01 0.009 - 0 0.33508 - 0.37

1 0.25 0.052 - 0 0.29073 - 0.375

0.15 0.116 - 0 0.29005 - 0.425

0.01 0.009 - 0 0.45457 - 0.495

Table 4: The improved bounds for δ for β ≈ 0.5 and for a given e with suitable values of γ1 and γ2.

In the following Table 5 we give the attack bounds for δ for the small multiplicative inverse of ϕ(N) mod e obtained using

methods based on lattice based techniques with respect to bivariate and trivariate polynomial congruences for certain values

of α and β ≈ 0.5 thereby depicting the refinement of attack bounds for δ.

α δ1 δ2 δ3 δ4 δ5

0.501 0.0005 0.0005001873 0.0005002497 0.0005001874 γ1 = 0.25 0.00067 - 0.1255

γ2 =0.249 - 0

γ1 =0.15 0.07227 - 0.1755

γ2 = 0.149 - 0

γ1 =0.01 0.21710 - 0.2455

γ2 = 0.009 - 0

0.55 0.025 0.0254519548 0.0255955759 0.0254626986 γ1 = 0.25 0.02557 - 0.15

γ2 =0.225 - 0

γ1 =0.15 0.09084 - 0.2

γ2 =0.149 - 0

γ1 =0.01 0.24021 - 0.27

γ2 = 0.009 - 0

0.75 0.125 0.1349307066 0.1376275643 0.1358898943 γ1 = 0.25 0.13687 - 0.25

γ2 = 0.133 - 0

γ1 =0.15 0.16923 - 0.3

γ2 =0.149 - 0

γ1 =0.01 0.33508 - 0.37

γ2 = 0.009 - 0
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α δ1 δ2 δ3 δ4 δ5

1 0.25 0.2847495629 0.2928932188 0.2898979485 γ1 = 0.25 0.29073 - 0.375

γ2 = 0.052 - 0

γ1 =0.15 0.29005 - 0.425

γ2 = 0.116 - 0

γ1 = 0.01 0.45457 - 0.495

γ2 =0.009 - 0

Table 5: Refinement of attack bounds for δ using lattice based techniques with respect to bivariate and trivariate

polynomials.

5. Conclusion

In this paper it is shown that RSA is insecure if ϕ(N) has small multiplicative inverse k modulo e, the public encryption

exponent. For k ≤ Nδ, the attack bounds for δ are described by using lattice based techniques with respect to bivariate

polynomial congruence and this attack bound for δ is further refined for β ≈ 0.5 by taking the prime sum p+q as a composed

prime sum i.e., p + q = 2nk0 + k1 where n is a known positive integer, k0 and k1 are suitably small unknown integers and

applying the lattice based arguments for trivariate polynomials. This refinement of attack bound for δ is depicted for certain

values of α and β ≈ 0.5.
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