ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Edge-Vertex Domination in Graphs

D. K. Thakkar¹ and Neha P. Jamvecha^{1,*}

1 Department of Mathematics, Saurashtra University, Rajkot, Gujarat, India.

In this paper we continue the study of ev-domination (edge-vertex domination) in graphs. We give a characterization of minimal ev-dominating sets in graphs. In particular we prove that in a graph with minimum vertex degree greater than or equal to 2, the complement of a minimal ev-dominating set is an edge dominating set. We also state and prove necessary and sufficient condition under which the ev-domination number increases or decreases when a vertex is removed from the graph. We also consider the operation of removing an edge from the graph and prove that the ev-domination number does not decrease when an edge is removed from the graph.

MSC:

05C69.

Keywords: ev-dominating set, minimal ev-dominating set, minimum ev-dominating set, ev-domination number, edge dominating set, private vertex neighbourhood of edge.

© JS Publication.

Introduction 1.

The concept of edges dominate vertices was introduced in 1985 by Laskar, R. and Peters, K. [3, 5] and then in 1992 by Sampathkumar, E. and Kamath, S. S. [4]. An edge e = uv m-dominates a vertex x if $x \in N(u) \cup N(v)$. A set F of edges of a graph G is said to be an ev-dominating set if every vertex of the graph is m-dominated by some edge in F. The minimum cardinality of an ev-dominating set is called the ev-domination number of a graph. It is obvious that every edge cover of a graph is an ev-dominating set of a graph. Thus ev-domination is a generalization of the concept of edge cover for graphs. For any undefined terminologies we refer [1]. We will consider the operations of vertex removal, edge removal and will prove some theorems regarding the change in the ev-domination number when these operations are performed. In particular, we will prove that the ev-domination number of a graph may increase, decrease or remain unchanged when a vertex is removed from the graph. Also we prove that the ev-domination number does not decrease when an edge is removed from the graph.

2. Preliminaries and Notations

If G is a graph then E(G) denotes the edge set and V(G) denotes the vertex set of the graph. S is any set then |S| denotes the cardinality of S and $E(G)\backslash S$ is a subgraph of G obtained by removing the edges of S. If v is a vertex of G then $G\backslash v$ denotes the subgraph of G obtained by removing the vertex v and the edges incident to v. If f is an edge of G then $G \setminus f$ denotes the subgraph of G obtained by removing the edge f. If G is a graph then $\delta(G)$ denotes the minimum degree of graph G.

E-mail: jamvechaneha30@qmail.com

Definition 2.1 (ev-dominating set). A set $T \subset E(G)$ is an ev-dominating set if every vertex in G is m-dominated by an edge in T.

Definition 2.2 (minimal ev-dominating set). An ev-dominating set T for a graph G is said to be a minimal ev-dominating set for G if no proper subset T' of T is an ev-dominating set for the graph G.

Definition 2.3 (minimum ev-dominating set). An ev-dominating set of minimum cardinality is called a minimum ev-dominating set.

Definition 2.4 (ev-domination number). The ev-domination number for the graph G is denoted by $\gamma_{ev}(G)$ and is the cardinality of a minimum ev-dominating set.

Definition 2.5 (edge dominating set). Let G be a graph and T be a set of edges of G then T is said to be an edge dominating set of G if for every e in $E(G)\backslash T$ there is some f in T such that e is adjacent to f.

Definition 2.6 (ev-neighbourhood of a vertex). Let G be a graph and $v \in V(G)$. Then ev-neighbourhood of a vertex v is $N_m(v) = \{e \in E(G) \text{ such that } e \text{ m} - \text{dominates } v\}.$

First we prove a characterization of a minimal ev-dominating set.

Theorem 2.7. Let G be a graph and F be an ev-dominating set of G. Then F is a minimal ev-dominating set of G if and only if for every edge e in F there is a vertex which is m-dominated by e but it is not m-dominated by any other edge of F.

Proof. Suppose F is a minimal ev-dominating set of G and let $e \in F$. Now, $F \setminus \{e\}$ is not an ev-dominating set of G. Therefore, there is a vertex x in G which is not m-dominated by any edge of $F \setminus \{e\}$. But x is m-dominated by some edge of F. Therefore, e is the only edge of F which m-dominates x.

Conversely, suppose the condition holds. Let $e \in F$. There is a vertex x which is m-dominated by e but is not m-dominated by any other edge of F. Therefore, x is not m-dominated by any edge of $F \setminus \{e\}$. Thus F is a minimal ev-dominating set of G.

Corollary 2.8. Let G be a graph with $\delta(G) \geq 2$. If F be a minimal ev-dominating set of G then $E(G)\backslash F$ is an edge dominating set of G.

Proof. Suppose F is a minimal ev-dominating set of G. Let h = uv be any edge of F. Since F is a minimal ev-dominating set, there is a vertex x which is m-dominated by h but it is not m-dominated by any other edge of F.

Case (1): x = u or x = v.

Since $\delta(G) \geq 2$, there is some other edge xz incident at x. Since x is not m-dominated by any other edge except h, $xz \notin F$ because xz m-dominates x. Thus, xz is an edge which is adjacent to hand $xz \in E(G) \setminus F$.

Case (2): $x \neq u$ and $x \neq v$.

Now, x is m-dominated by h. Therefore, xu is an edge or xv is an edge. Suppose xu is an edge. Since x is m-dominated by xu and $xu \neq h$, $xu \in E(G)\backslash F$. Similarly, if xv is an edge then $xv \in E(G)\backslash F$. Note that xu or xv are adjacent to h. From both the cases it follows that $E(G)\backslash F$ is an edge dominating set.

Note that every edge dominating set of G is an ev-dominating set of G. Thus we have the following corollary.

Corollary 2.9. Let G be a graph with $\delta(G) \geq 2$. If F be a minimal ev-dominating set of G then $E(G)\backslash F$ is an ev-dominating set of G.

Proof. $E(G)\backslash F$ is an edge dominating set. Therefore, it is an ev-dominating set.

Now, we consider the operation of removing a vertex from a graph on ev-domination number.

Example 2.10. Consider the graph whose vertices are $\{1, 2, 3, 4, 5, 6\}$.

Now, consider the subgraph $G_1\setminus\{3\}$. Then, $\gamma_{ev}(G_1)=1$ and $\gamma_{ev}(G_1\setminus\{3\})=2$. Thus, $\gamma_{ev}(G_1\setminus\{3\})>\gamma_{ev}(G_1\setminus\{3\})$

Example 2.11. Consider the cycle graph with vertices $\{1, 2, 3, 4, 5\}$.

If we remove vertex 5 from the graph then $\gamma_{ev}(C_5\setminus\{5\})=1$ while $\gamma_{ev}(C_5)=2$. Thus, $\gamma_{ev}(C_5\setminus\{5\})<\gamma_{ev}(C_5)$.

Example 2.12. Consider the cycle graph with 4 vertices $\{1, 2, 3, 4\}$

Then, $\gamma_{ev}(C_4) = 1$ and $\gamma_{ev}(C_4 \setminus \{1\}) = 1$. Thus, $\gamma_{ev}(C_4 \setminus \{1\}) = \gamma_{ev}(C_4)$.

3. Main Results

Now we prove necessary and sufficient condition under which the removal of a vertex increases the ev-domination number of the graph.

Theorem 3.1. Let G be a graph and $v \in V(G)$. Then $\gamma_{ev}(G \setminus v) > \gamma_{ev}(G)$ if and only if following two conditions are satisfied.

- (1). For every minimum ev-dominating set F of G, there is an edge e containing the vertex v such that $e \in F$.
- (2). There is no subset S of $G \setminus v$ such that $S \cap N_m(v) = \phi$, $|S| \leq \gamma_{ev}(G)$ and S is an ev-dominating set of $G \setminus v$.

Proof. Suppose $\gamma_{ev}(G \setminus v) > \gamma_{ev}(G)$.

- (1). Suppose there is a minimum ev-dominating set F of G such that no edge containing v is a member of F. Then F is a set of edges of $G \setminus v$. Let x be any vertex of $G \setminus v$. Then x is m-dominated by some edge f of F in G. Then x is also m-dominated by f in $G \setminus v$. Therefore, F is an ev-dominating set of $G \setminus v$. Thus, $\gamma_{ev}(G \setminus v) \leq |F| = \gamma_{ev}(G)$ which is a contradiction. Therefore condition (1) is proved.
- (2). Suppose there is a set F of edges of $G \setminus v$ such that $|F| \leq \gamma_{ev}(G)$, $F \cap N_m(v) = \phi$ and F is an ev-dominating set of $G \setminus v$. Then $\gamma_{ev}(G \setminus v) \leq \gamma_{ev}(G)$ which is again a contradiction. Thus condition (2) is established.

Conversely, suppose condition (1) and (2) are satisfied. Suppose that $\gamma_{ev}(G \setminus v) = \gamma_{ev}(G)$. Let F be a minimum evdominating set of $G \setminus v$. Suppose F is also an ev-dominating set of G. Then F is a minimum ev-dominating set of G not containing any edge containing v. This contradicts condition (1). Suppose F is not an ev-dominating set of G. Then no edge of F can m-dominate v. Therefore, $F \cap N_m(v) = \phi$. Also $|F| \leq \gamma_{ev}(G)$ and F is an ev-dominating set of $G \setminus v$. This contradicts condition (2). Thus it follows that $\gamma_{ev}(G \setminus v) = \gamma_{ev}(G)$ is not possible.

Suppose $\gamma_{ev}(G \setminus v) < \gamma_{ev}(G)$. Let F be a minimum ev-dominating set of $G \setminus v$. Then $|F| < \gamma_{ev}(G)$ implies that F cannot be an ev-dominating set of G. Therefore, no edge of F can m-dominate v. Thus $F \cap N_m(v) = \phi$, $|F| \le \gamma_{ev}(G)$ and F is an ev-dominating set of $G \setminus v$ which again contradicts condition (2). Thus $\gamma_{ev}(G \setminus v) < \gamma_{ev}(G)$ is also not possible. Therefore, $\gamma_{ev}(G \setminus v) > \gamma_{ev}(G)$.

Definition 3.2 (private vertex neighbourhood of edge). Let G be a graph, F be a set of edges and $e \in F$. Then private vertex neighbourhood of e with respect to F is the set $prnv[e, F] = \{u \in V(G) \text{ such that } u \text{ is } m\text{-dominated by } v \text{ and } u \text{ is not } m\text{-dominated by any other member of } F\}.$

Example 3.3. Consider the following graph G

For this graph G, let $F = \{e_1, e_2\}$, where $e_1 = \{xy\}$, $e_2 = \{xz\}$ then $prnv[e_1, F] = \{u\}$.

Now, we state and prove a necessary and sufficient condition under which the ev-domination number of a graph decreases when a vertex is removed from a graph.

Theorem 3.4. Let G be a graph and $v \in V(G)$ then $\gamma_{ev}(G \setminus v) < \gamma_{ev}(G)$ if and only if there is a minimum ev-dominating set of F and edge e in F such that $prnv[e, F] = \{v\}$.

Proof. Suppose that $\gamma_{ev}(G \setminus v) < \gamma_{ev}(G)$. Let F_1 be a minimum ev-dominating set of $G \setminus v$. Then F_1 cannot be an ev-dominating set of G. Therefore, v is the only vertex which is not m-dominated by any edge of F_1 . Let e = vw be any edge and $F = F_1 \cup \{e\}$. Then obviously F is an ev-dominating set of G. Since $|F| = |F_1| + 1$, F is a minimum ev-dominating set of G.

Obviously, v is m-dominated by the edge e which is in F. Since v is not m-dominated by any edge of F_1 , v is not m-dominated by any other edge of F. Therefore, $v \in prnv[e, F]$.

- (1). Consider the vertex w. Obviously, w is m-dominated by e and $e \in F$. Since w is a vertex of $G \setminus v$, w is also m-dominated by some edge h in F_1 . Thus, w is m-dominated by two distinct edges of F. Therefore, $w \notin prnv[e, F]$.
- (2). Let z be any vertex of G such that $z \neq v$ and $z \neq w$. If z is m-dominated by e then again by similar argument z is m-dominated by some other edge of F_1 and therefore $z \notin prnv[e, F]$.

Thus, $prnv[e, F] = \{v\}.$

Conversely, suppose there is a minimum ev-dominating set F of G and $e \in F$ such that $prnv[e, F] = \{v\}$. Now consider the graph $G \setminus v$ and the set $F_1 = F \setminus \{e\}$. Then, $|F_1| < |F|$. Let z be any vertex of $G \setminus v$. Then z is also a vertex of G. If z

is m-dominated by e in G then z is also m-dominated by some other edge h in F because $z \notin prnv[e, F]$. Therefore, z is m-dominated by h which is in F_1 . If z is not m-dominated by e in G then z must be m-dominated by some other edge h' in F. Then $h' \in F$. Thus, z is m-dominated by some member of F_1 . Therefore, F_1 is an ev-dominating set of $G \setminus v$. Therefore, $\gamma_{ev}(G \setminus v) \leq |F_1| < |F| = \gamma_{ev}(G)$. Thus the theorem is proved.

Corollary 3.5. Let G be a graph and $v \in V(G)$. If $\gamma_{ev}(G \setminus v) < \gamma_{ev}(G)$ then $\gamma_{ev}(G \setminus v) = \gamma_{ev}(G) - 1$.

Corollary 3.6. Let G be a graph. $v \in V(G)$ and suppose $\gamma_{ev}(G \setminus v) < \gamma_{ev}(G)$. Then there is a minimum ev-dominating set F of G such that F contains an edge e whose one end vertex is v.

Proof. Let F_1 be a minimum ev-dominating set of $G \setminus v$. Let e = vw be any edge then from the proof of the above theorem $F = F_1 \cup \{e\}$ is a minimum ev-dominating set of G, $e \in F$ and v is an end vertex of e.

Remark 3.7. Suppose, $\gamma_{ev}(G \setminus v) < \gamma_{ev}(G)$. Then it is not necessary that every minimum set should contain an edge whose one end vertex is v.

For example, consider the cycle graph C_5 with vertices $\{1, 2, 3, 4, 5\}$.

The set $F = \{12, 34\}$ is a minimum ev-dominating set but it does not contain either $\{45\}$ or $\{15\}$. According to the above theorem there is a minimum set which contains vertex 5 as an end vertex.

For example $\{23,45\}$ is a minimum ev-dominating set of G. Note that $\gamma_{ev}(G\backslash 5)=1$ and $\gamma_{ev}(G)=2$. Now we consider the operation of removing an edge from a graph on the ev-domination number.

Proposition 3.8. Let G be a graph and e be an edge of G. Then, $\gamma_{ev}(G \setminus e) \geq \gamma_{ev}(G)$.

Proof. Let F be a minimum ev-dominating set of $G \setminus e$. Then every vertex of $G \setminus e$ is m-dominated by some edge of F. Since $V(G) \setminus \{e\} = V(G)$, every vertex of G is also m-dominated by some member of F. Therefore, $\gamma_{ev}(G) \leq |F| = \gamma_{ev}(G \setminus e)$. \square

Now, we state and prove a necessary and sufficient condition under which the ev-domination number of a graph increases when an edge is removed from the graph.

Theorem 3.9. Let G be a graph and e = uv be an edge of G. Then $\gamma_{ev}(G \setminus e) > \gamma_{ev}(G)$ if and only if following conditions are satisfied by any minimum ev-dominating set T of G.

- (1). if $e \in T$ then there is a vertex z such that $z \in prne[e, T]$.
- (2). if $e \notin T$ then every edge in T which m-dominates u is adjacent to v or every edge in T which m-dominates v is adjacent to u.

Proof. Suppose, $\gamma_{ev}(G \setminus e) > \gamma_{ev}(G)$.

- (1). Suppose, $e \in T$. Now consider $T_1 = T \setminus \{e\}$ then $|T_1| < \gamma_{ev}(G) < \gamma_{ev}(G \setminus e)$. Therefore T_1 cannot be an ev-dominating set of $G \setminus e$. Therefore, there is a vertex z of $G \setminus e$ such that z is not m-dominated by any member of T_1 . But T is an m-dominating set of G. Therefore, z is m-dominated by some member of T. Thus, z is m-dominated by e but not m-dominated by any other member of T. Therefore, $z \in prne[e, T]$.
- (2). Suppose, $e \notin T$. Since $\gamma_{ev}(G \setminus e) > \gamma_{ev}(G)$, T cannot be an ev-dominating set of $G \setminus e$. Therefore, there is a vertex w of $G \setminus e$ which is not m-dominated in $G \setminus e$ by any member of T. But w is m-dominated in G by some member of T. Therefore, w = u or w = v.

Suppose, w = u. Any edge of T which m-dominates u cannot have u as an end vertex because this edge will m-dominate u in $G \setminus e$ also which is not true. Suppose f is an edge of T which m-dominates u in G. Suppose, v is not an end vertex of f. Then, f = xy where $\{x,y\} \cap \{u,v\} = \phi$. Then u is m-dominated by f in $G \setminus e$ also which is not true. Therefore, one end vertex of f must be v. Thus every edge in T which m-dominates u does not have u as an end vertex. Similarly, if w = v then any edge of T which m-dominates v does not have v as an end vertex but it does have u as an end vertex. Therefore, condition (2) is also satisfied.

Conversely, suppose condition (1) and (2) are satisfied.

- (a). Let T be a set of vertices of $G \setminus e$ such that $|T| < \gamma_{ev}(G)$. If T is an ev-dominating set of $G \setminus e$ then it is also an ev-dominating set of G with $|T| < \gamma_{ev}(G)$, which is a contradiction. Therefore, T cannot be an ev-dominating set of $G \setminus e$.
- (b). Let T be a set of vertices of $G \setminus e$ such that $|T| = \gamma_{ev}(G)$. If T is an ev-dominating set of $G \setminus e$. Then T is also an ev-dominating set of G.

Now, $e \notin T$. Therefore, condition (2) is satisfied. Suppose, every edge in T which m-dominates u has an end vertex v then it is obvious that u is not m-dominated by any edge of T in $G \setminus e$. This contradicts our assumption that T is an ev-dominating set of $G \setminus e$. Similarly, if every edge in T which m-dominates v has an end vertex u then v is not m-dominated by any edge of T which is a contradiction. Thus, T cannot be an ev-dominating set of $G \setminus e$. Thus we have proved that if T is a set of vertices of $G \setminus e$ with $|T| \leq \gamma_{ev}(G)$ then T cannot be an ev-dominating set of $G \setminus e$. Thus, any ev-dominating set of $G \setminus e$ has cardinality greater than $\gamma_{ev}(G)$.

4. Concluding Remarks

The complement of an edge cover of a graph is also an interesting object of study in graph theory which is called an edge stable set. A set F of edges is said to be an edge stable set if for every vertex x there is an edge e containing x such that $e \notin F$ [2]. We can introduce a new concept called m-edge stable set which is the complement of an ev-dominating set. There is a possibility of interesting theorems for this new concept.

References

- [1] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New-York, (1998).
- [2] B.M.Kakrecha, A Study of Some Graph Properties, Ph.D. thesis submitted to Saurashtra University, Rajkot.
- [3] R.Laskar and K.Peters, Vertex and edge domination parameters in graphs, Congressus Numerantium, 48(1985), 291-261.

- [4] E.Sampathkumar and S.S.Kamath, Mixed Domination in Graphs, The Indian Journal of Statistics, 54(1992), 399-402.
- [5] E.Sampathkumar and P.S.Neeralagi, *The neighbourhood number of a graph*, Journal of Pure and Applied Mathematics, 16(2)(1985), 126-132.