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1. Introduction

We considered a generating function [4]
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where Cy, (x) is the Gegenbauer polynomial defined by [4]
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»Fy denote generalized hypergeometric function of one variable with p numerator parameters and ¢ denominator parameters

defined by [6]
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where (a)y is the pochhammer symbol, defined by
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The denominator parameters are neither zero nor negative integers the numerator parameters may be zero and negative
integers. We have some important polynomials which can be expressed in terms of Gegenbauer polynomials for different

values of v, as follows:
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where P,(x), P,(La’a)(:v) and U, (x) are Legendre, Ultraspherical, and Tchebcheff polynomials of second kind respectively.
The Gegenbauer polynomial is an important class of orthogonal polynomial which is the generalization of Legendre, and
Tchebcheff polynomials of second kind U, (x). It is also known that the Gegenbauer and Ultraspherical polynomials are

essentially equivalent (see [4])
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Recently Pathan and Kamarujjama [7] introduced a generating relation involving product of three Laguerre polynomials in
the form.
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where m* = max(0, —m), so that all factorials of negative integers have meaning. Equation (10) is in fact generalization of

number of results due to Feldheim [3].

2. Generating Relation for the Product of Gegenbauer Polynomials

In this paper we drive a generating relation involving the product of three Gegenbauer polynomials which generalize many

known results of Pathan and Kamarujjam [7], Feldhiem [3] and Exton [5]. To obtain our main results, consider the product.
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Now expanding the right hand member of (11) as a multiple series with the help (1), we get
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Now replacing p — r and ¢ + r by m and n respectively, then after rearrangement justified by the absolute convergence of

the above series, we have
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where m* = max(0, —m), so that all factorials of negative integers have meaning.

558



N.U. Khan, M. Kamarujjama and T. Kashmin

3. Special Cases

Equation (13) gives many generating functions for well known polynomials. We are presenting only some interesting special

cases here.

(1). Setting z =1 in (13), we get a known result [4]
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then we obtain a modified result of Exton [2] due to Pathan and Yasmeen [6]
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(2). If y1 = v2 = v3 = 1 in (13) and using the result [2]
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where U, (z) is called the Tchebicheff polynomials of second kind [6]

(3). If 1 =42 =v3 = 3 in (13), we get
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In view of known generating relation [4]
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thus (17) reduces to
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where Jo(x) is called the Bessel function of index zero and P, (z) is called the Legendre polynomials [8]
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(4). If we set w =0 in (13), we get
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(5). If = 0 in equation (19), we get
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(7). On replacing v and v by ut and vt in (20), and multiplying both sides by e™*#*~', and taking Laplace transform (see

[1]), we get
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where Fy is Appell function of two variables defined by [6].

(8). In view of the relation [6]
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equation (13) yields an interesting result
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